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ABSTRACT

“Give a man a fish, feed him for a day. Teach a man to fish,
feed him for a lifetime” — Lau Tzu

Large-scale grid computing projects such as TeraGrid and
Open Science Grid provide researchers vast amounts of com-
pute resources but with requirements that could limit ac-
cess, results delayed due to potentially long job queues, and
environments and policies that might affect a user’s work
flow. In many scenarios and in particular with the advent
of Infrastructure-as-a-Service (IaaS) cloud computing, indi-
vidual users and communities can benefit from less restric-
tive, dynamic systems that include a combination of local
resources and on-demand resources provisioned by one or
more [aaS provider. These types of scenarios benefit from
flexibility in deploying resources, remote access, and envi-
ronment configuration.

In this paper, we address how small groups can dynami-
cally create, join, and manage grid infrastructures with low
administrative overhead. Our work distinguishes itself from
other projects with similar objects by enabling a combina-
tion of decentralized system organization and user access for
job submission in addition to a web 2.0 interfaces for manag-
ing grid membership and automate certificate management.
These components contribute to the design of the “Grid Ap-
pliance,” an implementation of a wide area overlay network
of virtual workstations (WOW), which has developed over
the past six years into a mature system with several de-
ployments and many users. In addition to an architectural
description, this paper contains lessons learned during the
development and deployment of “Grid Appliance” systems
and a case study backed by quantitative analysis that veri-
fies the utility of our approach.
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1. INTRODUCTION

Grid computing presents opportunities to combine dis-
tributed resources to form powerful systems. Due to the
challenges in coordinating resource configuration and de-
ployment, researchers tend to either become members of
existing grids or deploy their own private resources. The
former approach is limited by lack of flexibility in the en-
vironment and policies, while the latter requires expertise
in systems configuration and management. Though there
exists a wealth of middleware available, including resource
managers such as Condor [1], Torque (PBS) [2], and Sun
Grid Engine [3], many see the cost of installing and man-
aging these systems as being greater than their usefulness
and as a result turn to inefficient ad hoc resource discov-
ery and allocation. To combine resources across multiple
domains solutions there exist solutions such as the Globus
Toolkit [4] or gLite [5]; however, these tool sets come with
their own challenges that require the level of expertise most
researchers in fields outside of information technology lack.

With the recent advent of cost-effective on-demand com-
puting through Infrastructure-as-a-Service “clouds”, new op-
portunities for user-deployed grids have arisen; where, for
example, a small local computer cluster can be comple-
mented by dynamically provisioned resources that run “cloud-
burst” workloads. However, while cloud-provisioned resources
solve the problem of on-demand instantiation, the problem
of how to configure these resources to seamlessly and se-
curely integrate with one’s infrastructure remains a chal-
lenge. In particular, considering that users may provision
resources from multiple IaaS providers, the configuration
demands are similar to a distributed grid: while a cloud
image can be encapsulated with a grid computing stack, it
still needs configuration in terms of allocating and distribut-
ing the appropriate certificates, network configuration to es-
tablish end-to-end connectivity, and proper configuration of
the middleware to establish worker, submit, and scheduler
nodes.

In this paper, we present techniques that reduce the entry
barrier in terms of necessary expertise and time investment
in deploying and extending ad hoc, distributed grids. To
verify this assertion, we have implemented a system sup-
porting these ideas in the “Grid Appliance,” which as will
be demonstrated, allows users to focus on making use of a
grid while minimizing their efforts in setting up and manag-



ing the underlying components. The core challenges solved
by our approach include:

e decentralized directory service for organizing grids,
e decentralized job submission,
e grid single sign on through web services and interfaces,

e sandboxing with network support,

e and all-to-all connectivity despite network asymme-
tries.
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Figure 1: The “Grid Appliance” connects to other
resources over a common network. Both the grid
middleware and the VPN use the P2P overlay to
configure and connect the user to other members of
the grid. The process uses configuration data pro-
vided by the web interface to self-configure the sys-
tem using information available in the P2P network.

The “Grid Appliance” project and concepts have been ac-
tively developed and used in several projects for the past
six years. Of these projects, Archer, a distributed grid for
computer architecture research, has demonstrated the fea-
sibility and utility of this approach by deploying a shared
collaborative infrastructure spanning clusters across six US
universities, where the majority of the nodes are constrained
by network address translation (NAT). Every resource in
Archer is configured in the same, simple manner: by deploy-
ing a “Grid Appliance” that self-configures to join a wide-
area grid. Researchers interested or desiring the ability to
access both grid resources and specialized commercial sim-
ulation tools (such as Simics) can easily use and contribute
resources from this shared pool with little effort by joining
a website, downloading a configuration image and a virtual
machine (VM), and starting the VM inside a VM manager
(VMM). Upon completion of the booting process, users are
connected to the grid and able to submit and receive jobs.

At the heart of our approach lies a P2P infrastructure
based upon a distributed hash table (DHT) useful for de-
centralized configuration and organization of systems. Peers
are able to store key, value pairs into the DHT and to query
the DHT with a key and potentially receive multiple values
efficiently. The DHT provides discovery and coordination
primitives for the configuration of a decentralized P2P vir-
tual private network (VPN), which supports unmodified ap-
plications across a network overlay. The DHT is also used
for the decentralized coordination of the grid. Users can
configure their grid through a web interface, which outputs
configuration files that can be used with the “Grid Appli-
ance.”
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The techniques described in this paper have many applica-
tions. The basic system supports the creation of local grids
by starting a virtual machine on the computers intended for
use within the grid and using LAN multicast for discovery.
It allows users to seamlessly combine their dedicated grids
with external resources such as workstations and cloud re-
sources. The level of familiarity with security, operating
systems, and networking is minimal as all the configuration
details are handled as components of the system. Manage-
ment of the system including users and network configura-
tion utilizes a social networking like group interface, while
deployment uses pre-built virtual machine images. A graph-
ical overview of the system is illustrated in Figure 1.

These techniques simplify the tethering of resources across
disparate networks The setup of security, connectivity, and
their continuous management imposes considerable admin-
istrative overhead, in particular when networks are con-
strained by firewalls and NAT devices that prevent direct
communication with each other, and which are typically
outside the control of a user or lab. Our approach inte-
grates decentralized systems behind NATSs in a manner that
does not require the setup of exceptions and configuration
at NAT/firewall by system administrators.

The rest of the paper is as follows. Section 2 highlights our
previous work to provide background for our contributions in
this paper. In Section 3, we describe the components of our
“Grid Appliance” WOW. Section 4 provides a case study of a
grid deployment using standard grid deployment techniques
compared to our “Grid Appliance,” describing qualitatively
the benefits and evaluating quantitatively the overheads of
this approach. We share our experiences from this long run-
ning project in Section 5. Finally, Section 6 compares and
contrasts other solutions to these problems.

2. WOWS

This work furthers the vision began by our earlier work
wide-area overlay of virtual workstations [6] (WOW). The
WOW paper established the use of virtualization technolo-
gies, primarily virtual networking and virtual machines, to
support dynamic allocation of additional resources in grids
that span wide area networks. For reference, the extensions
made in this paper to the WOW concept are means for the
dynamic creation of grids with support for security, decen-
tralized access, and user-friendly approaches to grid man-
agement. This section covers the development of WOWs
over the years as it relates to our other publications and as
means to distinguish the contributions made in this paper.

2.1 P2P Overlays

Peer-to-peer or P2P systems create environments where
members have a common functionality. P2P systems are
often used for discovery in addition to some user-specific
service, such as voice and video with Skype or data shar-
ing with BitTorrent. Many forms of P2P have autonomic
features such as self-healing and self-optimization with the
ability to support decentralized environments. As we will
show, this makes their application in our system very at-
tractive.

For the “Grid Applianc,” we have chosen to use Brunet [7],
a type of structured overlay. Structured overlays tend to be
used to construct distributed hash tables (DHT) and in com-
parison to unstructured overlays provide faster guaranteed
search times (O(log N) compared to O(N), where N is the



size of the network). The two most successful structured
overlays are Kademlia [8], commonly used for decentralized
BitTorrent, and Dynamo [9], to support Amazon’s web site
and services.

Brunet support for NAT traversal makes it unique from
other structured overlays. Originally in the WOWs [6],
Brunet facilitated the dynamic connections amongst peers
in the grid. Since then, it has been extended to support
DHT with atomic operations [10], efficient relays when di-
rect NAT traversal fails [11], resilient overlay structure and
routing [12], and cryptographically secure messaging [11].

2.2 Virtual Private Networks

A common question with regards to this work is “why
VPNs?” The core reason is connectivity. IPv4 has a limited
address space, which has been extended through the use
of NAT allowing a single IP to be multiplexed by multiple
devices. This creates a problem; however, as it breaks sym-
metry in the Internet limiting the ability for certain peers to
become connected and which peers can initiate connections.
With the advent of IPv6, the situation might improve, but
there are no guarantees that NATs will disappear nor can
users be certain that firewalls will not be in place that in-
hibit symmetry. A VPN circumvents these issues, so long
as the user can connect to the VPN, as all traffic is routed
through a successfully connected pathway.

The problem with traditional VPN approaches is manage-
ment overhead including maintaining resources on public TP
addresses and establishing links amongst members in the
VPN. The VPN used in the system is called IPOP [11, 13].
IPOP (IP over P2P), as the name implies, uses a P2P overlay
(Brunet) to route IP messages. By using P2P, maintaining
dedicated bootstrap nodes have less overhead, our approach
with IPOP allows an existing Brunet infrastructure to boot-
strap independent Brunet infrastructures in order to isolate
IPOP networks in their own environments [14].

Once IPOP has entered its unique Brunet overlay, it ob-
tains an IP address. IP address reservation and discovery
relies on Brunet’s DHT. Each VPN stores its P2P identifier
into the DHT at the generated by the desired IP address,
such that the key, value pair is (hash(IP), P2P). In order
to ensure there are no conflicts, the storing of this value into
the DHT uses an atomic operation, which succeeds only if
no other peer has stored a value int hash(IP).

The process for creating connections begins when IPOP
receives an outgoing message. First it parses the destina-
tion address and queries the DHT for the remote peers P2P
address. The peer then attempts to form a secure, direct
connection with the remote peer using Brunet’s secure mes-
saging layer. Once that has formed, packets to that IP ad-
dress are directed over that secure link.

In our original design [15], the virtual network was secured
through a kernel-level IPsec stack, a model kept through
our first generation Archer deployment. This approach only
secures virtual network links between parties and does not
secure the P2P layer; furthermore, in IPsec configuration
each peer requires a unique rule for every other peer, which
limited the maximum number of peers in the VPN. Securing
the P2P layer is important, otherwise malicious users could
easily derail the entire system, but securing with IPsec would
practically negate the benefits of the P2P system, because of
network configuration issues related to NATs and firewalls.
In our modern deployments, we have employed the security
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layer at the P2P layer, which in turn also secures virtual
networking links.

For grids that rely upon VPNs to connect resources and
users, this can impose the need for a certificate for the VPN
and one for the grid. Though in our approach, we avoid this
problem by using a VPN that allows a user to verify the
identity of a remote peer and obtain its certificate, and have
taken advantage of hooks in grid software that are called
to verify a remote peers authenticity. In other words, user
access is limited by the VPN and identity inside the grid
is maintained by that same certificate. This might not be
possible if all users were submitting from the same resources
but is feasible in our system since each user submits from
their own system.

2.3 Virtual Machines in Grid Computing

Earlier work [16] advocated the use of virtual machines
(VMs) in grid computing for improved security and cus-
tomization. Others since [17, 18, 19] have been established
VMs as means for sandboxing, that is environments that
allow untrusted users to use trusted resources in a limited
fashion. VMs run as a process on a system, where processes
running inside the VM have no access to the host operat-
ing system. Furthermore, VMs can have limited or no net-
working access as controlled by the host, which effectively
seals them in a cage or sandbox protecting the hosts envi-
ronment. VMs are also useful for customization and legacy
applications, since a developer can configure the VM and
then distribute it as an appliance, with the only require-
ment on the end user being that they have a VM software
or manager. Quantitatively, previous work has shown that
CPU-bound tasks perform fairly well running with no more
than 10% overhead and in some cases 0%, which is the case
with VMs like Xen.

While not a direct correlation to grid computing, clouds
have benefited significantly from VMs. VMs are the magic
behind cloud infrastructures that provide IaaS, such as EC2.
In these environments, users are able to create customized
instances, or packaged operating systems and applications,
inside of cloud environments, share with each other, and
dynamically create or shutdown them as necessary. While
the application of clouds is generic, it can easily be applied
towards grids. A user can create push excess jobs into the
cloud, when there is overflow, high demands, or the user
does not want to maintain their own hardware. One chal-
lenge, however, is the dynamic creation of a grid as well as
extension of an existing grid using the cloud, challenges that
are addressed in this paper.

3. ARCHITECTURAL OVERVIEW

Our approach attempts to reuse as many available com-
ponents to design a grid middleware generic enough that th
ideas can be applied to other middleware stacks. As a re-
sult, our contribution in this paper and in particular this
section focuses primarily on the following key tasks: making
grid construction easy, supporting decentralized user access,
sandboxing the users environment, limiting access to the
grid to authorized identities, and ensuring priority on users
own resources.

3.1 Web Interface and the Community

Before deploying any software or configuring any hard-
ware, a grid needs organization including certificate manage-



Description Scalability Job queue / submission | API Requirements
site
Boinc Volunteer computing, ap- | Not explicitly mentioned, | Each application has a dif- | Applications are bundled
plications ship with Boinc | limited by the ability of the | ferent site, no separation | with Boinc and must be
and poll head node for | scheduler to handle the de- | from job queue and sub- | written to use the Boinc
data sets mands of the client mission site API in order to retrieve
data sets and submit re-
sults to the head node
BonjourGrid| Desktop grid, use zeroconf | No bounds tested, lim- | Each user has their own | None
/ Bonjour to find available | its include multicasting | job queue / submission site
resources in a LAN overheads and processing
power of job queue node
Condor High throughput comput- | Over 10,0007 Global job queue, no limit | Optional API to support
ing / on demand / desktop on submission sites, sub- | job migration and check
/ etc / general grid com- mission site communicates | pointing
puting directly with worker nodes
PastryGrid || Use structured overlay | Decentralized, single node | Each connected peer main- | None
Pastry to form decentral- | limited by its processing | tains its own job queue and
ized grids power, though collectively | submission site
limited by the Pastry DHT
PBS / || Traditional approach to | up to 20,000 CPUs? Global job queue and sub- | None
Torque [2] dedicated grid computing mission site
SGE Traditional approach to | Tested up to 63,000 cores | Global job queue and sub- | None
dedicated grid computing on almost 4,000 hosts3 mission site
XtremWeb || Desktop grid, similar to | Not explicitly mentioned, | Global job queue, separate | No built-in support for
Condor but uses pull in- | limited by the ability of the | submission site, optionally | shared file systems
stead of push, like Boinc scheduler to handle the de- | one per user
mands of clients

Table 1: Grid Middleware Comparison

ment, grid access, user account management, and delegation
of responsibilities. These are complex questions, which can
be challenging to address, though for less restrictive systems,
like a collection of academic labs sharing clusters, they may
be very easy. One of the professors could handle the ini-
tial authorization of all the other labs and then delegate to
them the responsibility of allowing their affiliates, such as
students and scholars access.

For academic environments, grids become more challeng-
ing when the professor or worse yet students must maintain
the certificates, handling certificate requests, and placing
signed certificates in the correct location. Our solution to
this potentially confusing area was a group interface, akin
to something like Facebook’s or Google’s groups. Albeit,
those types of groups are not hierarchal, which is a neces-
sity in order to have delegated responsibilities. Thus we
have a two layer approach, a grid group for members of the
grid trusted by the grid organizers and user groups for those
who are trusted by those in the grid group. Members of
the grid group can create their own user groups. A member
of a user group can gain access to the grid by downloading
grid configuration data available within the user group web
interface. This configuration data comes in the format of
a disk image, when added to a “Grid Appliance” VM, it is
used to obtain the user’s credentials and enabling them to
connect to the grid.

To give an example, consider our computer architecture
grid, Archer. Archer was seeded initially by the University
of Florida, so we are the founders and maintainers of the
Archer grid group. As new universities and independent
researchers have joined Archer, they request access to this
group. Upon receiving approval, they then need to form
their own user group so that they can allow others to con-
nect to the grid. So a trusted member might create a user
group titled “Archer for University X” and all members of
university X will apply for membership in that group. The
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creator can make decisions to either accept or deny these
users. Once the user has access, they will download their
configuration data formatted as a virtual disk image and
the “Grid Appliance” VM and start the “VM.” After start-
ing the VM, the user will be connected to the grid and able
to submit and receive jobs.

Joining is easy; a grid requires a user to sign onto a web-
site and download a configuration data, which can then be
used on multiple systems. To support this process, the con-
figuration data contains cryptographic information that fa-
cilitates acquisition of a signed certificate from the web in-
terface through XML-RPC over HTTPS. The process begins
by either booting the “Grid Appliance” or restarting a “Grid
Appliance” service. When starting the service will detect if
there is new configuration data, and if there is, it contacts
the web interface with the cryptographic information and
a public key. The web interface verifies the user’s identity,
retrieves their profile from its database and binds that in-
formation with the public key to create a certificate request,
which will then be signed and returned to the user.

With a public web interface, we have been able to cre-
ate a variety communities. Omne of particular interest is
not the grid itself but rather a bootstrapping community
for grids. The web interface has been designed to support
many grid groups, so too has the P2P infrastructure as it
supports bootstrapping into unique private overlays for in-
dividual grids by means of Brunet’s ability to support re-
cursive bootstrapping. By using the public interface, users
have an opportunity to reuse our bootstrap infrastructure
and only need to focus on the configuration of their VPN

"http://www.cs.wisc.edu/condor/Condoreek2009/
condor\_presentations/sfiligoi-Condor\_WAN\
_scalability.pdf
Zhttp://www.clusterresources.com/docs/211

Shttp://www.sun.com/offers/docs/Extreme\
_Scalability\_SGE.pdf
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Figure 2: An example deployment scenario: obtaining configuration files, starting the appliance, and con-

necting with a resource manager.

and grid services, which has been trivialized to accepting or
denying users access to a group and turning on resources.
We would like to note that there is no need to make an ex-
plicit public grid community through the web interface, since
all “Grid Appliances” come with a default configuration file
that will connect them to an insecure public grid.

3.2 The Organization of the Grid

The previous section focused facilitation of grid configu-
ration using the web interface and skirted the issues of de-
tailed configuration and organization. The configuration of
the grid mirrors that of the connection process. The first tier
group maps to a common grid and each grid maps to a VPN.
Thus when a user creates a new grid group, they are actu-
ally configuring a new VPN, which involves address range,
security parameters, user agreements, and the name of the
group. The system provides defaults for address range and
security parameters, so users can focus on high level details
like the user agreement and the grid’s name.

As mentioned earlier, the second tier of groups enables
members in the grid group to provide access to their com-
munity. It is also the location that users download their con-
figuration data. The configuration files come in three flavors:
submission, worker, or manager. Worker nodes strictly run
jobs. Submission nodes can run jobs as well as submit jobs
into the grid. Manager nodes are akin to head nodes, those
that manage the interaction between worker and submission
nodes.

While the configuration details are handled by the web
interface and scripts inside the “Grid Appliance,” organi-
zation of the grid, more specifically the linking of worker
and submission nodes to manager nodes, relies on the DHT.
Managers store their IP addresses into the DHT at the key
managers. When workers and clients join the grid, they
automatically query this key, using the results to configure
their grid software. Managers can also query this key to
learn of other managers to coordinate with each other.

3.2.1 Selecting a Middleware

Our grid composition is largely based upon a desire to
support a decentralized environment, while still retaining
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reliability and limiting our documentation support efforts.
As there exist many middlewares to support job submis-
sion and scheduling, we surveyed available and established
middleware to determine how well they matched our require-
ments. Our results are presented in Table 1, which covers
most of the well established middleware and some recent
research projects focused on decentralized organization.

Of the resource management middlewares surveyed, we
chose to use Condor as it matches closest with our goals
due to its decentralized properties and focus on desktop
grids. With Condor, we are able to have multiple submission
points, a non-trivial obstacle in some of the other systems.
Additionally, adding and removing resources in Condor can
be done without any configuration from the managers. Con-
versely, in SGE and Torque, after resources have been added
into the system, the administrator must manually configure
the manager to control them. Most scheduling software as-
sumes that resources are dedicated, while Condor supports
opportunistic cycles, by detecting the presence of other en-
tities and will suspend, migrate, or terminate a job, thus
enabling desktop grids. A common drawback to established
middlewares is the requirement of a manager node; having
no manager in an ad hoc grid would be ideal.

3.2.2  Self-Organizing Condor

While the requirement of a central manager may be un-
desirable, they can easily be run inside a VM and Condor
supports the ability to run many in parallel through the use
of “flocking [20].” Flocking allows submission sites to con-
nect to multiple managers. This serves two purposes: 1) to
provide transparent reliability by supporting multiple man-
agers and 2) users can share their resources through their
own manager. Flocking allows each site to run its own man-
ager or share the common manager.

To configure Condor, manager IP addresses are stored into
the DHT using the key managers. Joining peers query the
DHT to obtain a list of managers, selecting one randomly to
use as its primary manager with the result used for flocking.
If the system prefers managers from its group, it will ran-
domly contact each manager in an attempt to find a match,
selecting one at random if no match is found. Until a man-



ager is found, the process repeats every 60 seconds. Upon
finding a manager, the state of the system is verified every
10 minutes and new managers are added to the flock list.

3.2.3  Putting It All Together

The following summarizes the configuration and organiza-
tion of the grid. Minimally a grid will constitute a manager,
some workers, and a submitter. Referencing Figure 2 step
“1,” during system boot, without user interaction, each ma-
chine contacts the group website to obtain a valid VPN cer-
tificate. Whereupon, it connects to the P2P overlay whose
bootstrap peers are listed inside the configuration file, “step
2.” At which point, the machine starts the VPN service run-
ning on top of the P2P overlay, also part of step “2.” The
self-configuring VPN creates a transparent layer hiding from
the user and administrators the complexity in setting up a
common fabric that can handle potential network dynam-
ics. Machines automatically obtain a unique IP address and
find their place inside the grid. For a manager machine, this
means registering in the DHT (not shown), while clients and
workers search for available managers by querying the DHT,
step “3;” IPOP translates the IP to a P2P address, step “4;”
and then client contacts the manager directly, step “5.”

3.3 Sandboxing Resources

As tasks can run on worker and potentially submission
nodes, we have devised means to sandbox the environments
that do not limit user interactions with the system. While
more traditional approaches to sandboxing emphasize a sep-
aration between worker and submission machine, in our de-
ployments, very few users explicitly deploy worker machines,
most are submission machines. Thus we developed our sand-
boxing techniques to limit the ability of submitted jobs on
systems that are simultaneously being used for submission.
So our sandboxing technique considers more than just lock-
ing down the machine but also ensuring a reasonable level
of access.

3.3.1 Securing the Resources

The core of our sandboxing approach is to limit attacks
to software in the system and not poorly configured user
space, such as poorly chosen passwords or resources exter-
nal to the “Grid Appliance.” All jobs are run as a set of
predefined user identities. When the jobs are finished exe-
cuting, whether forcibly shutdown or completed successfully,
all processes from that user are shutdown, preventing ma-
licious trojan attacks. Those users only have access to the
working directory for the job and those with permission for
everybody. Escalation of privilege attacks due to poor pass-
words are prevented by disallowing use of “su” or “sudo” for
these users. Finally, network access is limited to the VPN,
thus they are unable to perform denial of service attacks on
the Internet.

Additionally, systems can be configured such that the only
network presented to them is that of the virtual network. To
support this, IPOP has been enhanced to support a router
mode, which can be bridged to a virtual machine adapter
running on the host machine that connects to the network
device running inside the VM. Not only does this improve
performance, due to reduced 1/0 overhead, the same virtual
network router can be used for multiple VMs.

To ensure that submit machines still have a high level of
functionality without risking the system to external attacks

188

even from users on the same network, user services are run
only on a “host-only” network device within the virtual ma-
chine. This includes an SSH server and a Samba or Windows
File Share. The user name matches that from the website,
while the password defaults to “password.” We would like
to note that file sharing services work the opposite to that
of host to guest as most VMs already have in place. Instead
users can access their files on the VM from the host. This
was done to limit potential attacks on submission machine.

3.3.2  Respecting the Host

Another aspect of sandboxing is respecting the usage of
the host. While Condor can detect host usage on a machine
it is running, when run inside a VM it cannot detect usage
on the host. Thus it is imperative to support such a config-
uration otherwise our approach would be limited in that it
can only be run during idle times. In the “Grid Appliance”,
this is addressed by running a light-weight agent on the host
that communicates to the VM through the second Ethernet
interface. The agent discovers a VM through multicast ser-
vice discovery executed only on "host-only” virtual network
devices. When a user accesses the host, the agent notifies a
service in the VM, which results in running tasks being sus-
pended, migrated, or terminated. The machine remains off
limits until there has been no user activity for 10 minutes.

3.3.3 Decentralized Submission of Jobs

From the administrator’s perspective, not requiring a sub-
mission machine is also a form of sandboxing. Maintain-
ing a worker machine requires very low overhead, since jobs
and their associated files are removed upon the completion
of a job and corrupted workers can be deleted and rede-
ployed. Maintaining a submission machine means user ac-
counts, network access, providing data storage, and trusting
users to play nicely on a shared resource. So having users
be able to submit from their own resources reduces the over-
head in managing a grid. It does come with a consequence,
most grids provide shared file systems, which are statically
mounted in all nodes. In a dynamic grid that might have
multiple shares, this type of approach may not be very fea-
sible.

All is not lost, for example, Condor provides data dis-
tribution mechanisms for submitted jobs. This can be an
inconvenience, however, if only a portion of the file is nec-
essary, as the entire file must be distributed to each worker.
This can be particularly true with disk images used by com-
puter architecture simulations and applications built with
many modules or documentation. To support sparse data
transfers and simplify access to local data, each “Grid Ap-
pliance” has a local NFS share exported with read-only per-
mission. To address the issue of mounting a file system,
there exists a tool to automatically mount file systems, aut-
ofs. autofs tool works by intercepting file system calls inside
a specific directory, parsing the path, and mounting a re-
mote file system. In the “Grid Appliance,” accessing the
path /mnt/ganfs/hostname, where hostname is either the
IP address or hostname of an appliance, will automatically
that appliance’s NF'S export without the need for super-user
intervention. Mounts are automatically unmounted after a
sufficient period of time without any access to the mounted
file system.



4. DEPLOYING A CAMPUS GRID

We now present a case study exploring a qualitative and
quantitative comparison in deploying a campus grid and ex-
tending it into the “Cloud” using traditional techniques ver-
sus a grid constructed by “Grid Appliance.” One of the
target environments for the “Grid Appliance” is resources
provided in distributed computer labs and many small dis-
tributed clusters on one or more university campus as shown
in Figure 3. The goals in both these cases are to use com-
modity software, where available, and to provide a solution
that is both simple but creates an adequate grid. In both
cases, Condor is chosen as the middleware, which is a push
scheduler and by default requires that all resources be on
a common network thus a VPN will be utilized. Addition-
ally, in this section, we cover details of the “Grid Appliance”
that did not fit in the context of previous discussions in the

paper.
4.1 Background

In this case study, we will compare and contrast the con-
struction of two types of grids: a static grid configured by
hand and a dynamic grid configured by the “Grid Appli-
ance.” Each grid is initially constructed using resources at
the University of Florida and later extended to Amazon’s
EC2 and Future Grid at India University using Eucalyptus.
Each environment has a NAT limiting symmetric communi-
cation: University of Florida resources are behind two layers,
first an “iptables” NAT and then a Cisco NAT; EC2 resources
have a simple 1:1 NAT; and the Eucalyptus resources appear
to have an “iptables” NAT.

xtrnl EC2

Architecture Resources for P2P Lab

Computer Lab

Molecular Computer —
Bioloav Lab Architecture Lab Engineering
gy ‘g Computer Lab
! Student / Researcher
Laptops
Figure 3: A collection of various computing re-

sources at a typical university.

4.2 Traditional Configuration of a Campus Grid

A VPN must be used to connect the resources due to the
lack of network symmetry across the sites. There exists a
wealth of VPNs available [21, 22, 23] and some explicitly
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for grids [24, 25, 26]. For simplicity sake, OpenVPN was
chosen due to the simplicity in its configuration. In reality,
OpenVPN makes a poor choice because it is centralized,
thus all traffic between submitter and worker must traverse
the VPNs server. Whereas others in the list are distributed
and thus allow nodes to communicate directly, but in order
to do so, manual setup is required, a process, that would
overwhelm many novice grid deployers. In all these cases,
the VPN requires that at least a single node have a public
address, thus we had to make a single concession in the
design of this grid, that is, the OpenVPN server runs on a
public node.

In order to connect to OpenVPN, it must know the server’s
address and have a signed certificate. While typically, most
administrators would want a unique private key for each ma-
chine joining the grid, in our case study and evaluation, we
avoided this process and used a common key, certificate pair.
In doing so, there are potential dangers, for example, if any
of the machines were hijacked, the certificate would have
to be revoked and all machines would be rendered inopera-
ble. To create a properly secured environment, each resource
would have to generate or be provided a private key, a cer-
tificate request submitted to the certificate authority, and a
signed certificate provided to the resource.

With the networking and security components in place,
the next step is configuring grid middleware. Prior to de-
ploying any resources, the manager must be allocated and its
IP address provider to other resources in the system. Sub-
mission points are not a focus on this case study, though in
general most systems of this nature have a single shared sub-
mission site. The challenges in supporting multiple submis-
sion points in this environment include creating certificates
same as worker nodes, requiring users to configure Open-
VPN and Condor, and handling NFS mounts. Whereas
having a single submission point creates more work for the
system administrator as mentioned earlier. Both approaches
have their associated costs and neither is trivial. The evalua-
tion assumes a single user submitting from a single resource.

To address potential heterogeneity issues. An administra-
tor would need to collaborate with others to ensure that all
resources are running a common set of tools and libraries.
Otherwise an application that works well on one platform
could cause a segmentation fault on another, through no
fault of the user, but rather due to library incompatibilities.

To export this system into various clouds, an administra-
tor starts by running an instance that contains their desired
Linux distribution and then installing the grid utilities like
Condor and OpenVPN. Supporting individualization of the
resources is challenging. The simplest approach is to store
all the configuration in that instance including the single
private key, certificate pair as well as the IP address of the
manager node. Alternatively, the administrator could build
an infrastructure that receives certificate requests and re-
turns a certificate. The IP address of the manager node and
of the certificate request handler could be provided to the
cloud via user data, a feature common to most IaaS clouds
that allows users to provide either text or binary data that
is available via a private URL inside a cloud instance.

4.3 Grid Appliance in a Campus Grid

All these configuration issues are exactly the reasons why
“Grid Appliance” and its associated group Web interface
are desirable for small and medium scale grids. The first



component is deciding which web interface to use, public
(www.grid-appliance.org) or private hosted on their own
resources. Similarly, users can deploy their own P2P overlay
or use our shared overlay.

The web interface enforces unique names for both the
users and the groups. Once the user has membership in
the second tier of groups, they can download a file that will
be used to automatically configure their resources. As men-
tioned earlier, this handled obtaining a unique signed certifi-
cate, connecting to the VPN, and discovering the manager
in the grid. Configuration of the VPN and grid are handled
seamlessly, the VPN automatically establishes direct links
with peers on demand and peers configure based upon in-
formation available in the P2P overlay dynamically allowing
for configuration changes.

Heterogeneity is a problem that will always exist if indi-
viduals are given governance of their own resources. Rather
than fight that process, the “Grid Appliance” approach is to
provide a reference system and then include that version and
additional programs in the resource description exported by
Condor. Thus a user looking for a specific application, li-
brary, or computer architecture can specify that in their job
description. Additionally, by means of the transparent NFS
mounts, users can easily compile their own applications and
libraries and export them to remote worker nodes.

Extending the “Grid Appliance” system into the clouds is
easy. The similarity between a VM appliance and a cloud in-
stance are striking. The only difference from the perspective
of the “Grid Appliance” system is where to check for config-
uration data. Once a user has created a “Grid Appliance” in
a cloud, everyone else can reuse it and just supply their con-
figuration data as the user data during the instantiation of
the instances. As we describe in Section 5.2, creating “Grid
Appliance” from scratch is a trivial procedure.

As described in detail earlier, an administrator needs to
install the necessary software either by deploying VMMs
and VM appliances or installing “Grid Appliance” packages
on Debian / Ubuntu systems. Additionally, these systems
need to be packaged with the configuration files or floppy
disk images. At which point, the systems will automatically
configure and connect to the grid. An administrator can
verify this by monitoring Condor. Additional resources can
be added seamlessly, likewise resources can be removed by
shutting them off without direct interaction with the “Grid
Appliance” or manager node.

4.4 Comparing the User Experience

In the case of a traditional grid, most users will contact
the administrator and make a request for an account. Upon
receiving confirmation, the user will have the ability to SSH
into a submission site. Their connectivity to the system is
instantaneous, their jobs will begin executing as soon as it is
their turn in the queue. User’s will most likely have access
to a global NFS. From the user’s perspective, the traditional
approach is very easy and straightforward.

With the “Grid Appliance,” a user will obtain an account
at the web interface, download a VM and a configuration
file, and start the VM. Upon booting, the user will be able
to submit and receive jobs. To access the grid, users can
either SSH into the machine or use the consoles in the VM.
While there is no single, global NF'S, each user has their own
unique NFS and must make their job submission files contain
their unique path. For the most part, the user’s perspective
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of the “Grid Appliance” approach has much of the same feel
as the traditional approach. Although users have additional
features such as accessing their files via Samba and having a
portable environment for doing their software development.

4.5 Quantifying the Experience

The evaluation of these environments focuses on the time
taken to dynamically allocate the resources, connect to the
grid, and submit a simple job to all resources in the grid. In
both systems, a single manager and submission node were in-
stantiated in separate VMs. In the traditional setup, Open-
VPN is run from the manager node. Each component in
the evaluation was run three times. Between iterations, the
submission node and the manager node were restarted to
clear any state.

The times measured include the time from when the last
grid resource was started to the time it reported to the man-
ager node, Figure 4, as well as the time required for the
submit node to queue and run a 5 minute job on all the con-
nected workers, Figure 5. The purpose of the second test is
to measure the time it takes for a submission site to queue a
task to all workers, connect to the workers, submit the job,
and to receive the results; thus a stress test on the VPN’s
ability to dynamically create links and verifying all-to-all
connectivity. The tests were run on 50 resources (virtual
machines / cloud instances) in each environment and then
on a grid consisting of all 150 resources with 50 at each site.

| |
ALL ‘
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Time in Seconds

Figure 4: Comparison of times to construct a grid
in various environments using both a statically con-
figured grid and a grid constructed by the “Grid
Appliance.” Legend: EC2 - Amazon’s EC2, Euca -
Indiana University’s Eucalyptus, UF - University of
Florida’s ACIS Lab resources, Static - OpenVPN,
GA - Grid Appliance.

In the previous section, we qualified why the approach
was easier than configuring a grid by hand, though by do-
ing so we introduce overheads related to configuration and
organization. The evaluation verifies that these overheads
do not conflict with the utility of our approach. Not only
do resources within a cluster install the VMs and connect
to the grid quickly, the clouds do as well. While the results
were similar, it should be noted that the time required to
configure the static approach was not taken into effect. A
process that is difficult to measure and is largely reliant on
the ability of the administrator and the tools used. Whereas
the time for the “Grid Appliance” does include many of these
components.

It should be stated that the evaluation only has a single
submission node. In a system with multiple submitters, the
OpenVPN server could easily become a bandwidth bottle-
neck in the system as all data must pass through it, which
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Figure 5: Comparison of times to run a 300 second
job on each resource in various grids configured stat-
ically and through the “Grid Appliance.” Legend:
EC2 - Amazon’s EC2, Euca - Indiana University’s
Eucalyptus, UF - University of Florida’s ACIS Lab
resources, Static - OpenVPN, GA - Grid Appliance.

can be avoided using TPOP. Additionally, the current “Grid
Appliance” relies on polling with long delays, so as to not
have negative effects on the system. Either shrinking those
times or moving to an event based system should signifi-
cantly improve the speed at which connectivity occurs.

S. LESSONS LEARNED

This section highlights some the interesting developments
and experiences, we have had that do not fit the topics dis-
cussed so far.

5.1 Deployments

A significant component of our experience stems from the
computational grid provided by Archer [27], an active grid
deployed for computer architecture research, which has been
online for over 3 years. Archer currently spans six seed uni-
versities contributing over 600 CPUs as well as contributions
and activities from external users. The Archer grid has been
accessed by hundreds of students and researchers from over
a dozen institutions submitting jobs totaling over 500,000
hours of job execution in the past two years alone.

The Grid Appliance has also been utilized by groups at the
Universities of Florida, Clemson, Arkansas, and Northwest-
ern Switzerland as a tool for teaching grid computing. Mean-
while the universities of Clemson and Purdue are using the
Grid Appliance’s VPN (GroupVPN / IPOP) to create their
own grid systems. Over time, there have been many pri-
vate, small-scale systems using our shared system available
at www.grid-appliance.org with other groups construct-
ing their own independent systems. Feedback from users
through surveys have shown that non-expert users are able
to connect to our public Grid appliance pool in a matter of
minutes by simply downloading and booting a plug-and-play
VM image that is portable across VMware, VirtualBox, and
KVM.

5.2 Towards Unvirtualized Environments

Because of the demands put on Archer in terms of avoid-
ing the overheads of virtualization and the perceived sim-
plicity of managing physical resources as opposed to virtual
resources running on top of a physical resources, many users
have requested the ability to run Grid Appliances directly on
their machine. Unlike clouds with machine imamges such as
AMTIs or VM appliances, physical machines images cannot
be easily exported. Most physical OS installed on phyiscal

191

machines will need some some custom tailoring to handle
environment specific issues.

With this in mind, we moved away from stackable file
systems and towards creating repositories with installable
packages, such as DEB or RPM. The implications of pack-
ages mean that users can easily produce “Grid Appliances”
from installed systems or during system installation. With
the VPN router mode, mentioned earlier, resources in a
LAN can communicate directly with each other rather than
through the VPN. That means if they are on a gigabit net-
work, they can full network speeds as opposed to being lim-
ited to 20% of that due to the VPN, overheads discussed
in [28].

5.3 Advantages of the Cloud

We have had the experience of deploying the “Grid Ap-
pliance” on three different cloud stacks: Amazon’s EC2 [29],
Future Grid’s Eucalyptus [30], and Future Grid’s Nimbus [31].
All of the systems, encountered so far, allow for data to be
uploaded with each cloud instance started. The instance
can then download the data from a static URL only accessi-
ble from within the instance, for example, EC2 user data is
accessible at http://169.254.169.254/1latest/user-data.
A “Grid Appliance” cloud instances can be configured via
user-data, which is the same configuration data used as
the virtual and physical machines, albeit zip compressed.
The “Grid Appliance” seeks the configuration data by first
checking for a physical floppy disk, then in specific directory
(/opt/grid\_appliance/var/floppy.img), followed by the
EC2 / Eucalyptus URL, and finally the Nimbus URL. Upon
finding a floppy and mounting it, the system continues on
with configuration. Clouds have been also very useful for
debugging. Though Amazon is not free, with Future Grid,
grid researchers now have free access to both Eucalyptus and
Nimbus clouds. Many bugs can be difficult to reproduce in
small system tests or booting one system at a time. By
starting many instances simultaneously, we have been able
to quickly reproduce problems and isolate them, leading to
timely resolutions, and verification of those fixes.

5.4 Stacked File Systems

Configuring systems can be difficult, which makes it im-
portant to have the ability to share the resulting system with
others. The approach of actually creating packages can be
overly complicated for novices. To address this concern, our
original “Grid Appliance” supported a built-in mechanism to
create packages through a stackable file system using copy-
on-write, as describe in [15]. In this environment, the VM
used 3 disks: the “Grid Appliance” base image, the software
stack configured by us; a module; and a home disk. In nor-
mal usage, both the base and module images are treated as
read-only file systems with all user changes to the system
being recorded by the home image, as depicted in Figure 6.

To upgrade the system, users replaced their current base
image with a newer one, while keeping their module and
home disks. While the purpose of the module was to allow
users to extend the configuration of the “Grid Appliance.”
To configure a module the system would be booted into de-
veloper mode, an option during the boot phase, where only
the base and module images are included in the stacked file
system. Upon completing the changes, a user would run a
script that would clean the system and prepare it for shar-



Home
(Ivar, etc)
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(/opt, etc)

Base
(/bin, /boot, /etc, /home, /sbin, ...)

Figure 6: Example of a stackable file system from
our previous “Grid Appliance.” A file will be read
from the top most file system in the stack and all
writes are directed to Home.

ing. A user could then share the resulting module image
with others.

Issues with this approach made it unattractive to continue
using. First, there exists no kernel level support for stack-
able file systems, we had to add UnionFS [32] to the kernel,
adding the weight of maintaining a kernel unto our shoul-
ders. While FUSE (filesystem in userspace) solutions exist,
they require modifications to the initial ram disk, which is
reproduced automatically during the installation of every
new kernel, furthermore, our experience with them suggests
they are not well suited for production systems. Addition-
ally, the approach was not portable to clouds or physical
resources. So while we have deprecated the feature for now,
we see it as a potential means to easily develop packages like
DEB and RPM.

5.5 Priority in Owned Resources

In Archer, seed universities should have priority on the re-
sources at their university. Similarly, users should have pri-
ority on their contributions. Otherwise, users will remove
their resources from the grid, when they want guaranteed
access. To support user and group based priorities, Condor
has mechanisms that can be enforced at the server that al-
low for arbitrary means to specify user priority for a specific
resource. So our configuration specifies that if the resource’s
user or group matches that of the submitter, the priority is
higher than otherwise. This alone is not sufficient as mali-
cious users could easily tweak their user name or group to
obtain priority on all resources. Thus whenever this check
is made the user’s identity in the submission information is
verified against their P2P VPN certificate. Failed matches
are not scheduled and are stored in a log at the manager for
the administrator to deal with later.

5.6 Timing in Virtual Machines

Certain applications, particularly license servers, are sen-
sitive to time. Because of the nature of grids, there exist
possibilities of having uncoordinated timing, such as improp-
erly specifying the time zone or not using a network time
protocol (NTP) server With regards to VMs, VMWare [33]
suggests synchronizing with the host’s time and to avoid us-
ing services like NTP, which may have adverse affects on
timing inside the virtual machine. While NTP might have
some strange behavior, relying on host time may produce er-
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ratic jumps in time that some software cannot handle. Our
experiences recommends the use of NTP to address these
concerns, which has resolved many issues with strange soft-
ware behavior and frustration from users when their jobs
fail due to being unable to obtain a license due to a timing
mismatch.

5.7 Selecting a VPN IP Address Range

One challenge in deploying a VPN is ensuring that the
address space does not overlap with that over the environ-
ments where it will be used. If there is overlap, users will
be unable to connect to the VPN. Doing so will confuse the
network stack, as there will be two network interfaces con-
nected to the same address space but different networks. A
guaranteed, though not necessarily practical solution is to
run the resource on a VM NAT or a cluster NAT that does
not overlap the IP address space of the VPN.

Users of the “Grid Appliance” should not have to concern
themselves with this issues. Prior work on the topic by Ala
Rezmerita et al. [34] recommends using the experimental
address class E ranging between 240.0.0.0 - 255.255.255.254,
unfortunately this requires Linux kernel modifications. With
the amount of bugs and security fixes regularly pushed into
the kernel, maintaining a forked kernel requires a signifi-
cant amount of time, duplicating the work already being
performed by the OS distribution maintainers. This would
also limit the ability to easily deploy resources in physical
and cloud environments. Additionally, users that wanted
to multipurpose a physical resource may not want to run a
modified kernel, while in most cloud setups the kernel choice
is limited.

We have since moved towards using the 5.0.0.0 -
5.255.255.255 address range. Like the class E address space
it is unallocated, but it requires no changes to any operat-
ing systems. The only limitation is that some other VPNs
also use it, thus a user would not be able to run two VPNs
on the same address space concurrently. This approach is
much better than providing kernels or dealing with network
address overlaps. Interestingly, even with this in place, we
still see some “GroupVPNs” using address ranges in normal
private network address ranges for the VPN, like 10.0.0.0 -
10.255.255.255 and 192.168.0.0 - 192.168.255.255.

5.8 Administrator Backdoor

While most administrators will agree that most problems
that users encounter are self-inflicted, there are times, when
the system is at fault. Debugging systems faults in a decen-
tralized system can be very tricky, since it is very difficult
to track down a resource in order to gain direct physical
access. Additionally, having a user bring their resource to
an administrator may be prohibitively complicated, as the
user would need to relocate their “Grid Appliance” instance
and have network connectivity in order to connect to the
grid and show the problem to the administrator. To address
this and other concerns that only appear after running the
system for long periods of time, we have supplied an admin-
istrator backdoor into all resources by installing our public
ssh key, though users are informed of this and are free to
remove it for privacy concerns. In typical configurations,
this approach might not be feasible, but because the “Grid
Appliance” ships with a decentralized VPN supporting all-
to-all connectivity, any resource connected to the VPN is
accessible for remote debugging by an administrator. Most



users involved are extremely delighted with the process as it
has an appearance that the system “just works.”

6. RELATED WORK

Existing work that falls under the general area of desktop
grids/opportunistic computing include Boinc [35], Bonjour-
Grid [36], and PVC [34]. Boinc, used by many “@home”
solutions, focuses on adding execute nodes easy; however,
job submission and management rely on centralization and
all tasks must use the Boinc APIs. BonjourGrid removes the
need for centralization through the use of multicast resource
discovery; the need for which limits its applicability to local
area networks. PVC enables distributed, wide-area systems
with decentralized job submission and execution through the
use of VPNs, but relies on centralized VPN and resource
management.

Each approach addresses a unique challenge in grid com-
puting, but none addresses the challenge presented as a
whole: easily constructing distributed, cross-domain grids.
Challenges that we consider in the design of our system in-
clude allowing submission sites to exist any where without
being confined to complex configuration or highly available,
centralized locations; the ability to dynamically add and re-
move resources by starting and stopping a a resource; and
the sharing of common servers so that no group in the grid
is dependent on another. We emphasize these points, while
still retaining the ease of use of Boinc, the connectivity of
PVC, and the flexibility of BonjourGrid. The end result is a
system similar to OurGrid [37]; however, OurGrid requires
manual configuration of the grid and networking amongst
sites, administration of users within a site, and limits net-
work connectivity amongst resources, whereas “Grid Appli-
ance” transparently handles these issues with a P2P overlay
and VPN to handle network constraints and support net-
work sandboxing and a web interface to configure and man-
age the grid.

With regards to clouds, there exists contextualization [38].
Users construct an XML configuration file that describes
how a cloud instance should be configured and provide this
to a broker. During booting of a cloud instance, it will con-
tact a third-party contextualization broker to receive this file
and configure the system. This approach has been leveraged
to create dynamic grids inside the Nimbus cloud [39]. While
this approach can reproduce similar features of the “Grid
Appliance,” such as creating grids inside the cloud, there are
challenges in addressing cloud bursting, automated signing
of certificates, and collaboration amongst disparate groups.

7. CONCLUSIONS

In this paper, we have presented a grid framework that
enables users to easily deploy their own grids. By reducing
the entry barrier to constructing wide-area grids, rather than
just prividing a grid, our approach teaches users to create
grids rather than providing access. The features of the “Grid
Appliance” significantly simplify the construction of a grid
over traditional approaches. These methods are based upon
and have been verified through experience with individuals
and groups coming from various backgrounds. Furthermore,
we have presented both qualitative and quantitative utility
of the “Grid Appliance” in Section 4. Namely, decentralized,
P2P VPNs are resilient and easily configured; web interfaces
ease the burden of crafting configuration files and signing of
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certificates; and package management systems can be used
to create appliances nearly as conveniently as VMs. Those
interested are able to test drive the system by coming to
our public Web interface at the www.grid-appliance.org,
where they can either use our public testing grid or deploy
their own.

The concepts in this paper are intentionally generic so that
they can easily be applied to other systems. For example,
more complex approaches to grids involve entities known
as virtual organizations. A virtual organization allows the
same set of resources to be members of many distinct grids.
Our web interface idea could be extended to support virtual
organizations. Additionally, the sandboxing technique could
be applied to many environments, including OurGrid, to
allow grid network access without compromising the safety
of the system.

For future work, we are considering mechanisms to fully
decentralize the “Grid Appliance” by using a decentralized
grid system that requires no manager nodes, though the
challenges in doing so, are efficient resource discovery, clus-
tering of group resources, and fair use scheduling. A com-
pletely decentralized grid could be constructed completely
by client machines, in which, no one is more responsible
than another for maintaining the grid.
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