
OverSoc: Social Profile Based Overlays
David Isaac Wolinsky, Pierre St. Juste, P. Oscar Boykin, Renato Figueiredo

University of Florida

Abstract—Online social networking has quickly become one
of the most common Internet activities. As social networks
evolve, they encourage users to share more information, requiring
the users, in turn, to place more trust into social networks.
In centralized systems, this means trusting a third-party
commercial entity, like Facebook or MySpace. Peer-to-peer
(P2P) systems can enable the creation of online social networks
extending trust to friends only. In this paper, we present a
novel approach to constructing completely decentralized social
networks through P2P overlays, OverSoc. Our approach relies
on a common directory overlay, which facilitates friend discovery
and bootstraps connectivity to individualized profile overlays.
Each user has their own individual profile overlay managed
transparently using a public key infrastructure (PKI). We define
necessary interfaces for constructing the system and describe
some examples of user interactions with the system.

I. INTRODUCTION

Online social networking has become pervasive in daily

life, though as social networks grow so does the wealth of

personal information that they store. Once information has

been released on a social network, known as a user’s profile,

the user and the data are at the mercy of the terms dictated

by the social network infrastructure, which today is typically

third-party, centrally owned. If the social network engages in

activities disagreeable to the user, due to change of terms

or opt-out programs not well understood by users such as

recent issues with Facebook’s Beacon program [1], the options

presented to the user are limited. The options include leaving

the social network, surrendering their identity and features

provided by the social network; accepting the disagreeable

activities; or to petition and hope that the social network

changes its behavior.

As the use of social networking expands to become the

primary way in which users communicate and express their

identity amongst their peers, the users become more dependent

on the policies of social network infrastructure owners. Recent

work [2] explores the coupling between social networks and

P2P systems as a means to return ownership to the users,

noting that a social network made up of social links is

inherently a P2P system with the aside that they are currently

developed on top of centralized systems. In this paper, we

extend this idea with focus on the topic of topology; that

is, how to organize social profiles that leverage the benefits

offered by a structured P2P overlay abstraction.

Structured P2P overlays provide a scalable, resilient,

autonomic platform for distributed applications. Structured

overlays enable users to easily create their own decentralized

systems for the purpose of data sharing, interactive activities,

and other networking-enabled activities. In this paper, we

extend our previous work [3], [?] to enable social network

profile overlays. The previous work addresses the challenges

of bootstrapping secure, private overlays in environments

constrained by network address translators (NATs) and

firewalls through a public overlay used for discovery and as a

relay or communication transport.

A typical social network consists of users and groups.

Each user has a profile, a set of friends, and the ability

to send and receive private messages; each group consists

of one or more managers, users, and a messaging board.

Profiles contain user’s personal information, status updates,

and public conversations, similar to a message board. Friends

are individuals trusted sufficiently by a user to view the user’s

profile. Private messaging sends messages discretely between

users without leaking the message to other members. Groups

have similar features, though identity is shared by many users.

Using this social networking model, we have designed

OverSoc. OverSoc uses a public overlay as a directory for

finding and befriending peers or finding and accessing groups.

Once group and profile access has been offered, the public

overlay can be used to bootstrap connectivity to existing profile

and group overlays. Security for a profile is provided by a

public key infrastructure (PKI), where profile owners or group

managers are the certificate authorities (CA) and all members

have signed certificates. The overlay stores profile data or

group information in its distributed data store, supporting

decentralized access using scalable mechanisms regardless of

the profile owner’s online presence. In this paper, we present

the architecture of these overlays, as presented in Figure 1.

Fig. 1. An example OverSoc social overlay network. Alice has a friendship
with Bob and Carol, hence both are members of her profile overlay. Bob
has a friendship with Alice and Dave but not Carol; hence Alice and Dave
are members of his profile overlay, while Carol is not. Each peer has many
overlay memberships but a single root represented by dashed lines in various
shades of gray. For clarity, overlay shortcut connections are not shown.

The rest of this paper is organized as follows. Section II

provides background and related work. Section III describes

OverSoc, explaining how to map social networks onto

structured P2P overlays. We express our expectations for user

interaction with the system in Section IV. In Section V, we

explore some of the remaining challenges introduced by our

approach. We conclude the paper in Section VI.

2010 Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises

978-0-7695-4063-4/10 $26.00 © 2010 IEEE

DOI 10.1109/WETICE.2010.39

205

II. BACKGROUND

In this section, we review structured P2P overlays,

challenges and solutions for bootstrapping overlays, and other

methods for constructing decentralized online social networks.

P2P systems build upon existing decentralized concepts by

creating scalable, autonomic environments, thereby limiting

user exposure to the gory details of system configuration

and organization. Since our system consists of many profile

overlays, we focus on the challenges of bootstrapping P2P

systems, when the system lacks dedicated bootstrapping nodes.

A. Structured P2P Overlays

P2P systems typically come in two flavors: unstructured

and structured. Unstructured systems [4], [5] are generally

constructed by peers attempting to maintain a certain amount

of connections to other peers in the P2P system, whereas

structured systems organize into well-defined topologies, such

as trees, 1-D rings, or hypercubes. Though unstructured

systems are typically simpler to bootstrap and maintain, they

rely on global knowledge, flooding, or stochastic techniques

to search for information in an overlay, creating potential

scalability constraints. Alternatively, structured systems [6],

[7], [8], [9], [10] have guaranteed search time typically with a

lower bound of O(logN) and in some cases even O(1) [11].

The most common feature found in structured overlays is the

support for a decentralized storage / retrieval system called a

distributed hash table (DHT), that maps keys with associated

data to specific node IDs in an overlay.

The bootstrap problem presents a challenge to scenarios

discussed in this paper, where peers will be joining many

overlays with overlay peers behind NATs. Our previous

work [12] presents an abstraction layer to bootstrapping across

existing overlays. The key components are a method for

reflection in order to obtain publicly reachable addresses,

so peers behind network address translators and firewalls

can receive incoming connection requests; communication

relaying to share public addresses and communicate when

direct communication is not feasible; and rendezvous for

discovering remote peers, when the overlay lacks stable

membership. The solution has been applied to structured

overlays, that enabling peers to bootstrap structured overlays

from a structured overlay with nodes constrained by NATs.

In this application, a peer obtains a public address mapping

through reflection using the public overlay. Upon connection,

the peer has has the ability to route packets through recursive

routing on the overlay, and uses the DHT to discover other

peers in the private overlay. Peers multiplex the same UDP

and TCP sockets in the private overlay to reuse the reflection

services provided in the public overlay.

B. Peer-to-Peer Social Networks

In [13], Buchegger et al. describe how to use a DHT to

store social networking profile. The DHT provides look-up

services for storing meta-data pertaining to a peer’s profile.

Peers query the DHT for updated content from their friends by

hashing their unique identifiers (e.g. friends’ email addresses).

The retrieved meta-data contains information for obtaining the

profile data such as IP address and file version. Their work

relies on a PKI system that provides identification, encryption,

and access control. In contrast, OverSoc maps individual user

profiles and groups to a private overlay secured by point-to-

point encryption and authentication amongst all peers in the

overlay. The private overlay provides a clean abstraction of

access control, whereby once admitted to a private overlay,

users can access a distributed data store which holds the

contents of the owner’s profile.

Shakimov et al. in [14] take a different approach by

depending on virtual individual servers (VIS) hosted on a

cloud infrastructure such as Amazon EC2. Friends contact

each other’s VIS directly for updates. A DHT is used

as a directory for groups and interest-based searches.

Their approach assumes bidirectional end-to-end connectivity

between each VIS, where a profile is only available during

the up time of the VIS. Because of the demands on network

connectivity and up time, the approach assumes a cloud-hosted

VIS and has difficulty being used on user-owned resources.

OverSoc allows peers to have asymmetric connectivity and

does not require constant up time through the use of NAT

traversal support and the ability to store the profile in the

overlay’s distributed data store.

The approach presented by Cutillo et al. in [15] relies on

a central system to host identities and certificates that can

then be used to query a DHT to discover an initial hop in

a route to a specific peer through their circle of friends. The

circle of friends consists of an unstructured overlay, where

direct friends maintain direct connections with the peer, and

outer circles consist of friends of friends and friends of friends

of friends. The main goal of this work is to remove the

private components of a profile from a central entity, whereas

OverSoc makes a clean break from all centralization and

enables scalability through distributed replication techniques.

Unlike the above approaches, the P2P social network

presented by Abbas et al. in [16] uses an unstructured overlay

without a DHT where peers connect directly to each other

rather than through the overlay establishing unique identifiers

to deal with dynamic IPs. Peers cache each other’s data to

improve availability, while helper nodes are used to assist with

communication between peers behind NATs. The approach

lacks security and access control considerations and lacks the

guarantees and the simplicity of the abstraction offered by a

structured overlay.

III. SOCIAL OVERLAYS

In this section, we explain how OverSoc maps online social

networking to virtual private overlays consisting of a public

directory overlay with many private profile overlays. The

directory overlay supports friend discovery and verification

and stores a lists of peers currently active in each profile

overlay. Profile overlays support message boards, private

messages, and media sharing.

A. Finding Friends

In a traditional social network, directories are used to search

for users based upon public information, such as the user’s full

206

Fig. 2. Alice requests and receives a friendship from Bob.

name, user ID, e-mail address, group affiliations, and friends.

The resulting search returns zero or more matching directory

entries. In OverSoc, directory entries are inserted into the

DHT of a public overlay. Since the public information has

many components, various subsets form DHT keys that all

point to a common, complete listing of the matching public

information. For example, a user can store a pointer at the

DHT key hash(”alice”) or hash(”alicebob”). The key here

is that any subset of the user’s public information in lower-

case format can be hashed into a DHT index that would

eventually direct the searching user to one or more users’

public information. More explicit searches could sift through

the results and present to the user only those peers matching

all the search parameters. The amount of information shared

publicly should be configurable by the user.

While looking for an individual, a peer may discover

that many individuals have overlapping public information

components, such as the user’s name. Assuming all entries are

legitimate, the overlay must have some method of supporting

multiple, distinct values at the same key, requiring the

application and user to parse the responses and determine

the best match by reviewing the contents of each certificate.

Alternatively, a technique like Sword [17], which supports

attribute based searching, could be used to efficiently find

peers in an overlay.

To address trust levels when searching for friends, a PGP

certificate can be used to store user’s public information

and verify user’s friends and groups. In OverSoc, the main

portion of a PGP certificate contains information such as

user name, full name, e-mail address, potentially other user-

defined data, and signature packets from the user and those that

trust the certificate including groups and individuals. These

signature packets represent a list of verifiable friends and

groups assisting to further uniquely identify a user. Each time

a user befriends someone, they should exchange signature

packets containing at a minimum the friend’s PGP certificate

ID, a signature expiration time, and a signature binding this

information with the new friend’s existing PGP certificate.

This increases the trust level of individuals searching for

others especially if they have common friendships or group

membership. The use of a time stamp in the signature assists in

deciding whether or not a friendship link is still active without

accessing the profile overlay of either peers. Thus peers that

maintain friendships need to periodically exchange signature

packets.

B. Making Friends

In this example, Alice becomes friends with Bob, as

illustrated in Figure 2. Once a user, Alice, has found a friend

candidate, Bob, Alice can issue a friendship request and store

it in the DHT using the hash of Bob’s certificate as an index,

this acts a public overlay mailbox. Bob can review the public

information of Alice prior to making a decision. If Bob accepts

the request, Alice and Bob exchange signature packets and are

granted access to each other’s profiles. Once profile access has

been enabled, the Alice and Bob can learn more information,

and if it turns out to be a mistake, either one of them can

unilaterally end the relationship.

Alice’s friendship request should contain a pointer to her

certificate in the overlay, a time stamp, and Bob’s certificate

identifier. The friendship request is encrypted using Bob’s

public key and signed using Alice’s private key for the

purposes of anonymity and authenticity. When Bob receives

the friendship request, he can verify that the request was

made for Bob by Alice. Upon receiving the friendship request,

he has three choices: a conditional accept, an unconditional

accept, or a reject. During an unconditional accept, Bob signs

Alice’s PGP certificate and issues a request to befriend her.

Alternatively, he could issue a request to befriend her and

wait for her to sign his certificate and investigates her profile

prior to signing hers.

Discovery of a user is not limited to the directory entries.

Because users have a public overlay based mailbox, they are

not required to discover each other only through the directory.

Instead, they can use out of band discovery, using mechanisms

like e-mail, chat, or personal websites to exchange certificates.

207

Fig. 3. Alice, already a friend of Bob, connects to his social overlay.

Once a peer has received another peer’s certificate, they can

submit secure friendship requests using the public overlay. In

fact, this sort of system can leverage the trust established by

an existing social network to sign and exchange OverSoc’s

certificates.

C. The Profile Overlay

In a traditional social network, the profile or user-centric

portion consists of private messaging, data sharing, friendship

maintenance, and a public message board for status updates

or public messages. In this section, we explain how these

components can be applied to a structured overlay dedicated

to an individual profile.

Using the techniques such as those described in [3], it

is feasible to efficiently multiplex a P2P system across

multiple, virtual private overlays enabling each profile owner

to have a profile overlay consisting of their online friends.

For access control, OverSoc employs point-to-point encryption

and authentication, peers bootstrap private connections by

exchanging the base of the PGP certificate and the profile

overlays signature packet obtained in the “making friends”

stage. Because the profile owner also is the CA, control

of which could be distributed across the users resources,

for all members of the overlay, they can easily revoke

users from access to the profile overlay. [3] describes

efficient mechanisms for overlay revocation through the use

of broadcasting for immediate revocation and the use of DHT

for indirect and permanent revocation.

The message board of a profile can be stored in two

ways: distributed within the profile overlay via a data store

or stored on the profile owner’s personal computing devices.

The distributed data store provides the profile when the owner

is offline and also distributes the load for popular profiles.

For higher availability, each peer always stores and provides

all data in their profile when they are online. To ensure

authenticity and integrity, peers sign their messages and each

peer’s certificate is available in the overlay as well as stored

by mutual friends for verification. Messages that are unsigned

are ignored by all members of the overlay. An ideal overlay

for this purpose should support complex queries [18] allowing

easy access to data stored chronologically, by content, by type,

i.e., media, status updates, or message board discussions.

Private messaging in the profile overlay is unidirectional;

only the profile owner can receive private messages using

their overlay. To enforce this, a private message should be

prepended with a symmetric key encrypted by the profile

owners public key, the message should be appended by a

signature of the message using the private key of the message

sender, and the entire message encrypted by the symmetric

key. This approach ensures that only the sender and the profile

owner can decrypt the private message and verify the senders

identity. The contents of the private message include the

sender, time sent, and the subject. Messages are be stored in

well known locations in the DHT, like “private messages for

me”, so that the profile owner can either poll the location.

D. Active Peers

The directory overlay should be used to assist in finding

currently active peers in the profile overlays. By placing their

node IDs at a well-known, unique per-profile overlay keys in

the DHT, active peers can bootstrap incoming peers into the

profile overlay. We implemented and evaluated this concept

in [3]. Because the profile overlay members all use PKI to

ensure membership, even if malicious peers insert their ID

into the active list, it would be useless as the peer would

only form connections with peers who also have a signed

certificate. Extending from the earlier example, where Alice

became Bob’s friends, Figure 3 presents in detail how she

would join his private overlay.

E. Groups

Groups can be considered extensions of profile overlays.

The fundamental difference between a group and a profile is

that a group lacks private messaging and has shared ownership.

So just as a peer can find a profile in the directory by hashing

the name of the user and other identifiable information, so

can the user find the group. Like the certificate of the user,

the members of a group sign the group’s certificate to represent

their membership to that group. In OverSoc, users request

208

membership to the group like they do friendship requests, in

response a group manager can sign their certificate allowing

that member access to the group. Finally, the group can be

bootstrapped in the same way as the profile overlay through

the directory overlay.

The unique challenge presented by groups is the sharing

of the CA task. A decentralized solution would be for all

members of the group to be listed in the groups DHT and

when a peer becomes a manager, they obtain a new signature

packet that contains a user-defined component stating that they

are managers. If an administrator loses their position, then all

members who had their certificate signed by that administrator

would need to obtain a new certificate. To avoid member

churn, the owner could provide signature packets for all group

members. Thus the managers just allow temporary access until

the owner comes online and provides more permanent access.

IV. USER INTERACTION

OverSoc consists of many components that are transparent

to the user, the user experience should appear to the user

no differently than an existing online social network. The

OverSoc could be a downloadable application or a browser

based Flash or Silverlight application. If the user, Bob, had

already created an account, Bob would be presented with an

interface showing their friends profiles. Based upon Bob’s

configuration, the social application could retrieve profile

updates as he navigates to individual profiles or as soon as the

application joins an individual profile overlay, reactive versus

proactive profile querying.

If this was Bob’s first time starting OverSoc, he would

be presented with screens asking for his privacy preferences,

such as whether or not he wants his information in the

directory overlay, if he felt comfortable enough with the idea

of people knowing he was a member of the social network

and who his friends are. Then OverSoc would ask for personal

information to populate his profile and to generate his directory

information. At which point, the OverSoc would join the

overlay and create Bob’s private overlay. Bob could then start

searching for friends, make friend requests, and respond to

friend requests.

Recently, Bob had been thinking about his high school days

and was curious if Alice was also a member of OverSoc,

though Bob did not have Alice’s e-mail address, just her first

and last name. Bob enters Alice’s name into the OverSoc

search box and is presented by a list of Alice’s. As Bob

reviews each of the entries, he recognizes an Alice that is

friend’s with some of the same people Bob was in high

school. Bob selects to become her friend. At which point,

the OverSoc transparently inserts a friendship request to Alice

and signs Alice’s certificate so Alice can view Bob’s profile.

Of course that is because Bob has chosen to allow user-

initiated friend requests access to his profile. Alice receives

Bob’s request, peruses his profile and feels fine becoming

friends with Bob, which initiates a transparent process of

signing Bob’s certificate and placing the result in the public

overlay. There is one problem though, when Bob receives

Alice’s signature and views her profile, he realizes that this

is some other Alice. He quickly chooses to defriend her. This

causes Bob’s OverSoc instance to broadcast a revocation for

Alice’s signature and to store the revocation in the DHT. Alice,

who was viewing Bob’s profile, is notified of this sudden loss

of trust and while she is able to view the contents of Bob’s

profile, which she has already accessed and obtained, she can

no longer receive updates as members of Bob’s overlay prevent

her from accessing it.

In another instance, Bob bumped into Carol, who e-mailed

Bob a copy of her certificate. Bob points OverSoc to the

certificate, and OverSoc verifies that he wants to become

friends with the identity associated with the certificate. When

he accepts, OverSoc immediately submits a request to become

Carol’s friend. Carol receives notification and accepts Bob’s

friendship request. At this point, both Bob and Carol have

transparently exchanged signed certificates and have mutual

access to each other profiles. As Bob reads Carol’s latest news,

he remembers a funny personal story and that he would like to

share with Carol. So he sends Carol a private message. Carol

is offline though. The next time Carol goes online, her social

application discovers the message and presents it to her. In

this scenario, OverSoc has taken the private message, secured

it with her public key and a symmetric key and signed it with

his private key. After which, it inserts the message into the

DHT and sends a notice to the event notification system, which

detects that there were no listeners. When Carol’s application

comes online, it queries the DHT receiving the message. Prior

to presenting Carol the message, the OverSoc decrypts and

verifies the message.

The OverSoc architecture can leverage existing social

networks to bootstrap trust. For example, consider Bob and

David are two friends on Facebook. Bob joins a Facebook

application called “OverSoc/Facebook Bridge”, which stores

a copy of his OverSoc certificate in his personal profile. Bob

has been bragging to David about OverSoc and mentions to

him how easy it is to migrate from Facebook to OverSoc

using this application. So David joins OverSoc as well as the

application. When David accesses the application, it pastes

his certificate to his profile, notifies notifies him that he has

a friend already using it, Bob, and that he can immediately

sign Bob’s certificate, and leaves a request for Bob to sign his

certificate. Additionally, when David logs into OverSoc, he

can leave a friend request there as well, so that the next time

Bob accesses Facebook or OverSoc, he will receive David’s

request and can sign David’s certificate. At which point, both

will have access to each others OverSoc profile overlays.

V. CHALLENGES

While structured P2P overlays have been well-studied in

a variety of applications, their use in social profile overlays

raises new interesting questions, including:

1) Handling small overlay networks - P2P overlay

research typically focuses on networks larger than the typical

user’s friend count (Facebook’s average is 1301). Because

social profile overlays are comparatively smaller, this can

impact the reliability of the overlay and availability of profile

data. A user can host their own profile; however when the

1http://www.facebook.com/press/info.php?statistics

209

user is disconnected it is important that their profile remains

available even under churn. It is thus important to characterize

churn in this application to understand how to best approach

this problem. An optional of per-user deployment of a virtual

individual server (VIS) and the use of replication schemes

aware of a user’s resources provide possible directions to

address this issue.

2) Overlay support for low throughput, unconnected

devices - devices such as smart phones cannot constantly be

actively connected to the overlay and the connection time

necessary to retrieve something like a phone number may be

too much to make this approach useful. Similar to the previous

challenge, this approach could benefit from using a VIS

enabling users access to their social overlays by proxy without

establishing a direct connection to the overlay network.

3) Reliability of the directory and profile overlay -

Overlays are susceptible to attacks that can nullify their

usefulness. While the profile overlay does have point-to-point

security, in the public, directory overlay, the lack of any

form centralization makes policing the system a complicated

procedure. While our approach of appending friends list can

assist users in making decisions on identity, it does not

protect against denial of service attacks. For example, users

could attempt create many similar identities in an attempt

to overwhelm a user in their attempt to find a specific peer.

Previous work has proposed methods to ensure the usability of

overlays even while under attack. For the social overlay to be

successful, we must identify which methods should be used.

A possible approach is to replicate public information within

a user’s profile overlay thus providing an alternative directory

overlay for querying prior to using the public directory overlay.

4) Social profile data storage - In previous works, DHTs

have been used as the building blocks to form more complex

distributed data stores as presented in Past [19] and Kosha [20].

Application of data stores will be heavily dependent on the

churn rate associated with the overlay. If the system lacks

any reasonably stable membership, large data files may be

corrupted while smaller data sets are completely lost. Ideally,

the usage model would be similar to those of Skype and

Twitter, which have active processes for the duration of the

computers usage. In an environment like this, data storage

would be limited only by the available bandwidth of the

participants.

VI. CONCLUSION

In this paper, we proposed OverSoc, a system that constructs

a decentralized online social network through the use of

structure P2P overlays. P2P systems, in general, have very

nice properties that make them attractive for average users.

Namely, they require minimal configuration and organization

of resources, in addition, P2P systems naturally handle

increased demand due to additional peers. Our approach is

based upon the use of a multiple overlay system, where

all users join a public directory overlay which assists in

finding friends and groups and bootstrapping into their private

overlays. When making a friendship or joining groups, peers

exchange signatures that enable access to each others overlays.

Each private overlay employs point-to-point encryption and

authentication so that only trusted peers can access the

overlays. The use of unique overlays for each profile and group

allows a clean abstraction for privacy purposes that simplifies

security handling of access to private data. Existing work in

the realm of structured overlays describes mechanisms for

efficiently and securely storing profile information into the

profile overlay. Our proposed system returns control of the

social network and more importantly users’ identity to the

users and eliminates the need for centralized social networks.

The most important insight in this paper is that structured

overlays can be used to efficiently organize and maintain a

social network.

REFERENCES

[1] J. C. Perez, “Facebook’s beacon more intrusve than previously
thought,” http://www.pcworld.com/article/140182/facebooks beacon
more intrusive than previously thought.html, 2007.

[2] S. Buchegger and A. Datta, “A case for P2P infrastructure for social
networks - opportunities & challenges,” in WONS ’09: The Sixth

International Conference on Wireless On-demand Network Systems and

Services, 2009.
[3] D. I. Wolinsky, K. Lee, T. W. Choi, P. O. Boykin, and R. Figueiredo,

“Virtual private overlays: Secure group communication in NAT-
constrained environments,” January 2010.

[4] T. Klingberg and R. Manfredi, “Gnutella 0.6,” http://rfc-gnutella.
sourceforge.net/src/rfc-0 6-draft.html, June 2002.

[5] hex, “The fasttrack protocol,” http://cvs.berlios.de/cgi-bin/viewcvs.cgi/
gift-fasttrack/giFT-FastTrack/PROTOCOL, September 2004.

[6] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized
object location and routing for large-scale peer-to-peer systems,” in
IFIP/ACM International Conference on Distributed Systems Platforms

(Middleware), November 2001.
[7] I. Stoica and et al., “Chord: A scalable Peer-To-Peer lookup service for

internet applications,” in SIGCOMM, 2001.
[8] G. S. Manku, M. Bawa, and P. Raghavan, “Symphony: distributed

hashing in a small world,” in USITS, 2003.
[9] P. Maymounkov and D. Mazières, “Kademlia: A peer-to-peer

information system based on the XOR metric,” in IPTPS ’02, 2002.
[10] S. Ratnasamy, P. Francis, S. Shenker, and M. Handley, “A scalable

content-addressable network,” in In Proceedings of ACM SIGCOMM,
2001.

[11] V. Ramasubramanian and E. G. Sirer, “Beehive: O(1)lookup
performance for power-law query distributions in peer-to-peer overlays,”
in Symposium on Networked Systems Design and Implementation, 2004.

[12] D. I. Wolinsky, P. S. Juste, P. O. Boykin, and R. Figueiredo, “Addressing
the p2p bootstrap problem for small overlay networks,” , 2010.

[13] S. Buchegger, D. Schiöberg, L. H. Vu, and A. Datta, “Peerson: P2p social
networking: early experiences and insights,” in SNS ’09: Proceedings of

the Second ACM EuroSys Workshop on Social Network Systems, 2009.
[14] A. Shakimov, H. Lim, L. P. Cox, and R. Caceres, “Vis-à-vis:online social

networking via virtual individual servers,” Tech. Rep., May 2008.
[15] L. A. Cutillo, R. Molva, and T. Strufe, “Privacy preserving social

networking through decentralization,” in Wireless On-Demand Network

Systems and Services (WONS’09).
[16] S. M. A. Abbas, J. A. Pouwelse, D. H. J. Epema, and H. J. Sips,

“A gossip-based distributed social networking system,” in Enabling

Technologies, IEEE International Workshops on, 2009.
[17] J. Albrecht, D. Oppenheimer, A. Vahdat, and D. A. Patterson, “Design

and implementation trade-offs for wide-area resource discovery,” in ACM

Trans. Internet Technol., 2008.
[18] M. Harren, J. M. Hellerstein, R. Huebsch, B. T. Loo, S. Shenker, and

I. Stoica, “Complex queries in dht-based peer-to-peer networks,” in
IPTPS ’01: Revised Papers from the First International Workshop on

Peer-to-Peer Systems, 2002.
[19] A. Rowstron and P. Druschel, “Storage management and caching

in PAST, a large-scale, persistent peer-to-peer storage utility,” in
Symposium on Operating Systems Principles (SOSP’01).

[20] A. R. Butt, T. A. Johnson, Y. Zheng, and Y. C. Hu, “Kosha: A
peer-to-peer enhancement for the network file system,” in IEEE/ACM

Supercomputing 2004.

210

