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Abstract—Research projects in many fields are increasingly
reliant on the use of computer-based simulation and computing
grids. Many projects have successfully leveraged voluntary com-
puting infrastructures by developing and distributing “@home”
applications using the BOINC framework. Through generous
contributions from the general public, these systems now have
a computing backbone on which to have their data processed
or simulations run. A shortcoming of such systems is that most
users are often limited to contributing resources and few users
are capable of developing or porting their own applications in
order to use these resources. While many users are satisfied
with receiving points (an intangible good) in return for their
contribution, the need to port applications presents a barrier to
entry to many other users who can potentially benefit from using
the voluntary resources.

In this paper, we describe enhancements made to the “Grid
Appliance”, a virtual machine based system which enables an
execution environment in which users are given the opportunity
to voluntarily share (providing and using) resources and run
unmodified x86/Linux applications. Voluntary grids introduce a
host of issues to tackle, most importantly getting users involved
quickly. With that in mind, the Grid Appliance provides many
tools for making a user-friendly environment for users, develop-
ers, and administrators. This paper summarizes the challenges of
getting users involved, reducing the overhead for administrators,
and describes the solutions used in the Grid Appliance.

Index Terms—Voluntary Grid Computing, Virtual Computing,
Virtual Machines, Virtual Networking.

I. INTRODUCTION

While virtualization technologies can substantially ease de-
ployment and use of distributed systems, experience suggests
that many potential users of these systems are unaware of the
capabilities and limitations of a shared grid environment. The
Grid Appliance [1] virtual environment has been developed
with the key goal of reducing the entry barrier of complex
grid environments, such that end users, even inexperienced
ones, can setup and use a Condor-based Grid node within a
matter of minutes. As such, the architecture and interfaces of
the Grid appliance have been developed with user-friendliness
as the focal point, both to end users and to administrators
of an appliance-based infrastructure. This paper summarizes
our experiences in developing and deploying wide-area Grid
Appliance pools for over one year, and its contributions are in
the discussions of lessons learned, design decisions, integra-
tion and analysis of interfaces and self-configuring software
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for virtual appliance-based desktop and voluntary grids.

To assist in decreasing the complexity of the Grid Ap-
pliance interface, demonstrations and courses were taught,
surveys were taken, and tutorials were prepared. Through
this process, responses from users with varying backgrounds
provided insights not apparent to the development team. The
demonstrations and courses provided an opportunity to interact
directly with target audiences. It was clear that users wanted
simple point-and-click interfaces.

Over time it became apparent that there were shortcomings
in the original design, such as the requirement of being
able to handle a POSIX driven command-line. While most
engineers were comfortable with this, the target audience
includes individuals from all walks of life, including biologists,
chemists, and students, many of whom live in a completely
“Windows” world. In order to easily distribute our system, the
open-source Linux O/S was used which, while able to provide
similar look-and-feel to Windows, is not identical. Adding
greater GUI functionality increases the download size and the
performance overhead in the appliance, which is a deterrent
in getting users interested and involved.

In the initial Grid appliance design, it was cumbersome to
deploy new pools of resources, which limited the possibility
of providing opportunistic private computing desktop Grids
within an organization. With a focus on decentralization and
self-configuration, the process of bringing up separate pools
has been streamlined such that it does not require users to set
up any external infrastructure, just a single configuration file
in the Grid Appliance. This along with several other features
described in the paper has reduced the overhead for system
deployment and management.

The rest of the paper discusses detail the solutions to the
aforementioned issues, how to deal with enabling multiple
users to share a single instance of the Grid Appliance, simpli-
fying the deployment of a security infrastructure, and enabling
the Grid Appliance to be seamlessly portable across various
virtualization platforms, including the open source KVM and
Virtualbox.

II. WHAT IS THE GRID APPLIANCE

This section provides a high level overview of the Grid
Appliance system architecture initially described in [1], pro-



viding context for the discussions to follow. The three major
components of the Grid Appliance are virtualization, services,
and user interfaces.

A. Virtualization and What It Can Do For You

Virtual machines provide an abstracted environments which,
from the user’s point of view, appears as if operating systems
are running as applications in their host operating system.
From the host operating system, a virtual machine is nothing
more than another application and has no more privileges than
any other application. The virtual machine “guest” operating
system views itself as a completely isolated, sandboxed system
running on real hardware where unmodified software (includ-
ing the O/S kernel) is supported.

Virtual machines are becoming a popular way to distribute
complete software packages in the form of appliances [2]. For
example, consider the practice of setting up a Web server. The
basic requirements are the ability to install services such as the
Web server, an SQL database, and scripting language support,
and possibly a content management system. A virtual machine
allows one user to prepare the system and share as packaged,
ready to run system with others. This is because it stores all
its data to disk as standard portable files. So the requirements
in setting up the entire Web server environment are reduced
to downloading the appliance and a virtual machine monitor,
which are easily installed. Surveys for the Grid Appliance
suggest that, including download and installation time, the
process of accessing the grid and running a demonstration job
can be done in less than 30 minutes.

B. Making Services User-Friendly

Building on existing software, the Grid Appliance can take
advantage of many different services. This section focuses
on networking, file systems, and security, and the zero-
configuration features in the appliance which make these
services seamless to the user.

1) Networking: Distributed peer-to-peer systems (P2P) rely
on direct connectivity between all participants. Connectivity
is simple when all nodes in a system can talk directly to
each other, such as in a LAN; however, with the modern
Internet, creating a system with direct connectivity regardless
of location is impossible. The lack of IPv4 addresses as well as
security concerns have caused users to adopt the sharing of a
single address with devices such as network address translators
(NAT), which are an impediment to all-to-all connectivity in
P2P systems. To work around this problem, the Grid Appliance
takes advantage of IPOP [3], [4]. IPOP provides a NAT
traversing self-organizing overlay that routes IP-over-P2P. This
allows two different Grid Appliance nodes placed behind two
completely different networks both connected to the Internet
or a common network to communicate with each other over a
self-configuring virtual private network.

The interface of IPOP to the user is transparent. When a user
boots the Grid Appliance, system initialization calls a script
that starts IPOP. This process includes enabling a TAP [5]
device and starting the IPOP process. The system recognizes

the TAP device as any other network device and uses the
DHCEP [6], [7] protocol on the device to configure the IPOP
virtual IP address.

Another key feature required for many legacy applications
is the use of domain name services DNS [8], [9]. These
services do not require user-friendly domain names, so the
Grid Appliance uses a virtual DNS server, which provides a
direct mapping between the IPOP IP address and a host name,
enabling fast name resolution with a loop-back server.

2) File Systems Extensibility through Modules: Appliances
provide a convenient means of distributing software. The
problem, however, is that once an appliance is made, it can
be difficult to create a derivative product and still maintain
updates from the original appliance. For example, a user
takes a Web server appliance to be their home Web server.
In the event that the Web server appliance has upgrades for
performance or security, it becomes a difficult procedure for
the user to migrate his Web site over to the new appliance.
That would require at least a knowledge of how file systems
and databases work, if not more, and defeats the purpose of
having appliances in the first place.

In the Grid Appliance, this problem is addressed through
the use of union file systems [10], [11] and modules. Union
file systems work by merging the contents of several file
systems. In the Grid Appliance, three layers are used: the first
layer provides the data for the base system, the second layer
allows for developers to add/customize new features to the
Grid Appliance independently from any specific version of
the base system, in what is called a module. The final layer
provides an area for the user’s content, so that when a new
base or module is released, their files are easily migrated.

3) Security: Having a P2P system in one’s hands can be an
undertaking, because as easy as it is to harness the power of the
system for good, it can equally be used for evil. If a malicious
user were to gain access to several naively setup machines,
they would have the ability to use it to cause problems for
other users of the Internet, e.g. with a distributed denial of
service (DDoS) attack. This would be even easier if all the
machines were on the same local network and had the exact
configuration, which just happens to be the case with the Grid
Appliance.

A simple approach to prevent such kinds of attacks actively
deployed in the Grid Appliance is a strict firewall implemented
by Linux’s IPTables. This prevents all communication by
regular users to public Internet servers outside the IPOP
network. The virtual networking component and other nec-
essary components are run by the administrative user who is
capable of communicating over the network. Of course, this
approach cannot prevent users who escalate privileges within
the appliance to lift the firewall constraints; we rely on security
mechanisms in the Grid middleware and the underlying O/S
(Condor and Linux in our case) to prevent escalation of
privileges.

The approach to providing strong authentication and end-
to-end encryption is based on signed certificates in the form
of IPSec[12] and its helper utility Racoon. A safe, certificate



authority machine is assumed; it has the proper authority to
sign X.509 host certificates. Users who wish to join a Grid
appliance pool send a requesting certificate to the central
machine, who can determine based upon the user’s credentials
whether to sign or to deny the request. In the case of signing,
the user would simply place the signed certificate in their
machine and have protected safe access to the pool. Now in the
case of malicious usage, there is a direct correlation between
the IPOP address of the malicious appliance and their owner’s
identity, and allowing the host certificate to be revoked.

C. Making Grid Systems User-Friendly

In an attempt to get users connected smoothly to the grid,
when a user turns on a Grid Appliance, the first thing a user
sees is a graphical interface providing some hints as well as
a console waiting for batch job submission. This also meant
that a user-friendly grid environment with support for multiple
entry points either needed to be found or built. Thankfully,
Condor covered this base. Other popular grid environments
like PBS [13], [14], [15] and Grid Engine [16] rely too much
on a shared file system and the use of a single user submission
site, while Condor enables grids to be configured without
the need of a shared file system and allows any participant
in the pool to also submit tasks. In appliance pools, a few
nodes in the system run the Condor resource database and
match-making daemons (collector, negotiator), while end-user
appliances run the scheduler and starter daemons, allowing
end-user nodes in the system to both submit and receive jobs.
Condor also sports features for scalability and fault-tolerance,
such as flocking to allow multiple collector / negotiator nodes,
priority schemes and preemption fair usage of resources,
and job migration and checkpointing, which are leveraged
unmodified by the appliance.
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Fig. 1. The execution of the command condor_status. It shows the state of
the nodes in the system.

III. GETTING USERS INVOLVED: DOCUMENTATION AND
INTERFACES

Users approach interacting with new grid applications in
many different ways. Some users will attempt to jump straight
into everything without a second thought, while others may
want some quick pointers. Few want a long document ex-
plaining how everything works in detail. This poses problems
for systems developers, where there can be many components
with varying amounts of relevance amongst them. How does
one properly make documentation that is readily available to
all these groups? How do you avoid the questions that are
obvious, if the user were to only read the "How to?”

A. Pointing Users in the Right Direction

Because the Grid Appliance has a conglomeration of pre-
established components, it is able to reuse already written
documentation. However, one only needs to look at the com-
plex documentation of a Grid scheduler [17] to realize that
simply pointing a user there is not enough. Several approaches
have been taken to deal with this: tutorials, well organized
”Readme” documents for different topics, quick start guides,
publications explaining critical components, and links to as-
sociated projects. A Web portal provides all this information
and also serves as a front-end to a pool of resources and itself
is packaged as appliance for easy distribution.

The tutorial is a quick run through of tools embedded into
the Grid Appliance pertaining only to obtaining access to grid
features. The tutorial links directly to a survey, where the most
valuable feedback from external resources has been compiled.
The results were compiled from a variety of backgrounds, for
example, 60% of the surveyors had no experience with grid
computing. This provided an excellent source of feedback as
users rated the Grid Appliance with over 90% of good or better
ratings for their experience in using the Grid Appliance and its
effectiveness. Everyone agreed that it is an excellent tool for
batch computing. While a majority did agree that it was easier
than most of their applications, there were still some that saw it
was more complex. It is that group which is the primary focus
in making the system more user-friendly. The primary issue
lied in the fact that not all users have the proper background
to understand how grid computing can benefit them and that
the Grid Appliances provides an easy way to take advantage
of it.

The Web interface provides several other tutorials for all
types of users. Specifically, the system has 3 levels of users:
casual/entry-level users who would want to test the system
out and run tasks from their own desktop; advanced users
who would want to set up their own independent pools while
reusing the shared PlanetLab infrastructure; and expert users
who would want to deploy independent pools on a completely
private system. As users become more comfortable, more
advanced tasks and tutorials are available to guide them from
entry-level to expert usage.



B. The Graphical User Interface Effect

If users were confronted with the decision between a graph-
ical or console application providing the same capabilities,
no doubt that a majority would choose the graphical version.
When the first paper entailing the Grid Appliance was released
over a year ago, so much of the time had been spent in de-
veloping and stabilizing a well-rounded grid system and little
development towards developing a user-friendly interface.

We have since developed a generic user front end for
Condor to serve as a primary GUI for job submission (see
2 for a screenshot). By using the .NET libraries and C#, this
application can be run on any computer that supports .NET,
since it is dependent on having a run-time environment on the
host machine to support conversion from byte-code to native
code. With a free, stable implementation available (Mono),
this front end is extremely portable. It currently supports the
core functionality of selection of an executable, input files,
command-line arguments, job submission and monitoring.

It is trivial to run this interface within the appliance. Ideally,
however, accessing the pool through the GUI would be easier
if it were accessible from the host operating system and
not just within the appliance. Through the use of a zero-
configuration start up sequence, the GUI software locates an
instance of a Grid Appliance. From there, communication
occurs by leveraging Condor’s BirdBath API library for SOAP
interactions. As a result, the user can submit jobs and receive
data back from the jobs through this API using their host
windowing system, without interacting with the appliance’s
X11 window system which may be foreign to them.

input |output |
Select Application:
[ montepi Select
Parameters: Input Files:
| [
|
Job Submitted! B
Submitting job(s).
Logging submit event(s).
1 job(s) submitted to cluster 4
Add Delete Add Delete
Output Files: universe: Output File Name Format:
' Standard Output W vanilla [task
¥ Standard Error standard Output Directory:
| Condor Output
[ /homergriduser Select
Fig. 2. The graphical user interface running the Monte Carlo Pi estimator

demonstration program.

IV. EASING THE BURDEN ON ADMINISTRATORS:
MANAGEMENT ENHANCEMENTS

A reason why many pre-deployed services like Tera-
Grid [18], OpenDHT [19], NanoHub [20], InVIGO [21] do
not have distributable installation packages lies in the fact that
setting up such services is difficult. Providing front-ends and
clients is significantly easier. Over the past year, much effort

has been put into reducing the difficulty of installation, assis-
tance in monitoring the system, and reducing the requirements
on any one specific machine. The purpose being that deploying
independent Grid Appliance systems should be simple and
straightforward. These are described in this section.

A. Easing Deployment

In the initial appliance design, users could easily join a
pre-deployed pool but it was far from trivial to setup one’s
own pool. This limitation prevents many would-be users or
administrators from hosting their own appliance private pools
where they may have no desire to share their resources
with unknown parties. To address this, the architecture of
the core IPOP virtual network has been enhanced to support
multiple IP namespaces [22] and the self-configuring software
in the appliance has been enhanced to enable easy creation of
independent pools.

The base appliance distribution for job submission / execu-
tion consists of a single VM image. We also have deployed
a “bootstrap” infrastructure on hundreds of nodes in the
PlanetLab [23] test bed such that users can easily connect to an
existing environment. Depending on the route the user wants
to go, they can either use this open infrastructure or create
their own. The default configuration connects to the open
infrastructure; if a user wishes to create their own pool, they
can generate appropriate configuration files on virtual floppy
images via the Web interface. The system provides support
for three different appliance configurations: Condor client
(for interactive job submission/execution), Condor manager
(for job scheduling), and Condor worker (for unmanaged job
execution). Users can then copy and attach the appropriate
floppy disks to the baseline image to build an independent
pool.

For instance, suppose our open infrastructure runs on Plan-
etLab hosts and connects appliances bound to the default
IPOP namespace named “UFL_Condor”. An administrator
wanting to create a completely independent PC lab grid on
their institution would proceed as follows:

1) Choose a unique name for the IPOP namespace (e.g.
“UniversityXpool”)

2) Register with the Web front-end to create the virtual
floppy disks

3) Download, copy and deploy the grid appliance base
image and the “manager” virtual floppy on one or more
servers

4) Deploy the appliance on lab PCs using the “worker”
virtual floppy

5) Distribute the “client” floppy packaged with the base
appliance image to the end users of the system

More information is provided on the Web interface by

means of tutorials.

B. Monitoring the System

Condor already provides a nice suite of applications to
monitor the state of its system; however, with the appliance
it becomes necessary to also monitor the underlying IPOP



infrastructure. The discussion in this section focuses on en-
hancements meant to assist developers of infrastructure code
and users / administrators who have setup setup their own
backends.

The Grid Appliance creation image also provides a tool
called a crawler, which walks the entire P2P overlay virtual
network. This helps determine the state of the system and
assists in finding possibly bad nodes. Crawling helps determine
the consistency of the IPOP overlay. In IPOP, any node and
its neighbor must agree on their position in its ring topology;
that is, the X node must agree that X+1 is its left neighbor
and X+1 must agree that X is its right neighbor. Nodes
lacking consistency could be caused by being a faulty node,
or a neighbor of a faulty node. Finding these poorly reacting
nodes is important, because at this point in time, there is no
mechanism to autonomously remove them from the system. If
they remain, packets can be lost and connectivity broken.

The other application in development assists administrator
in determining the network location of all Grid Appliances
in the system. If a user were to install 100 nodes in a
cluster, finding the one that may have crashed or corrupted
data can be an extremely time consuming matter, requiring an
administrator to log into every virtual machine monitor until
the broken one was found. With this tool the developer would
be able to locate all the machines which have Grid Appliances
and how many instances are run on that machine. Taking that
list and a list of all locations where the Grid Appliance should
be installed, an administrator would be able to pin point the
broken node.

C. Reducing the Stranglehold of Centralization

Unlike systems that require users to access a head node,
such as PBS and GridEngine, Condor out of the box provides
the ability to use any node in the system submit tasks. The only
requirement being that all nodes have direct connectivity; in
the Grid Appliance this is dealt with by the virtual networking
of IPOP. However, in the initial Grid appliance design, the
IPOP DHCP server was centralized and there was no self-
configuring mechanism to support the Condor flocking feature.
These limitations meant that the IPOP DHCP server and
Condor manager nodes needed to be closely monitored by
an administrator, since they become single points of failure.

Previous work [22] discusses the integration of a decen-
tralized object store/retrieval system (Distributed Hash Table,
or DHT) into IPOP with example usage of DHCP. This
technology was integrated into the Grid Appliance making the
Condor manager the only remaining centralized portion of the
Grid Appliance.

The approach of fully decentralizing Condor requires sub-
stantial modifications to Condor itself. Condor does however
support the use of flocking, which provides the ability of a
system to continue servicing new jobs if a manager fails. We
have built on this ability and leveraged the DHT data structure
to implement publish and discovery of Condor primary and
flocking managers. An appliance booting with the “manager”

virtual floppy claims to be a manager by putting such in-
formation and its IP address into the DHT. Nodes looking
for a manager (i.e. “client” and “worker” nodes) can look up
the generic manager key and find any available managers. If
there are multiple managers in the pool, a node will choose
at random one of them as its main manager and the rest as
flock-to nodes. In the case the main manager goes down, the
node will restart Condor with one of the remaining managers.
Contrasting this work with previous work [24], the differences
are that in our design the DHT is used to self-organize the
connection of every node to not only flocking node(s), but
also to its primary manager. Ongoing work is being done to
provide a more flexible design that would require no specific
client or manager nodes and no restarting of Condor.

V. TIE-INS AND OPEN ISSUES

This section reviews components that deal with issues that
affect the overall system including administrators and users.

A. Bandwidth Hog and Dealing with Network Limitations

In the absence of a common file system, when a user
submits the same application multiple times with different
parameters, Condor uploads that same application for each
task to the machine where the task will run. For home
users this can quickly make their connectivity to the Internet
completely useless due to the overwhelming strain on upstream
bandwidth. The ripple down effects are that the time saved by
running the tasks in parallel may be lost due to the bottleneck
provided by the transfer of the application to the remote
computer. There are two partial solutions to this, one being
have bandwidth aware software and, the second, based on a
distributed file system.

There are many ways to implement bandwidth throttling. A
simple solution is to take advantage of built-in tools provided
by Linux, e.g. tc, for traffic control. This works well but
is not adaptive, so users would be forced in selecting an
optimal speed for them. Future thoughts on the matter would
incorporate the techniques done in tc into IPOP and then add
algorithms to determine the optimal upstream bandwidth that
would not interfere with the users connectivity. This does not
deal with the problem of multiple file transfers.

There has been much work in distributed file systems, but
the unique environment in which the Grid appliance operates is
unlike typical environments where such file systems have been
deployed. P2P file systems such as Shark[25] which provide
an NFS interface and cooperative caching are the closest to
our environment. However, because of our goal of deploying
systems to large user bases, it is very important to deploy
production-quality software; at this point in time, this is still
an open issue. On going research is taking place in the form
of a DHT file system to be attached to the existing IPOP
DHT as well as the possibility of a BitTorrent based file
system. The main advantages of the BitTorrent file system is
the cooperative caching effects that would not readily available
in a DHT file system.



B. Removing the Shackles of Proprietary Software

In the very beginning, this project aimed to be a contender
in the VMWare Virtual Machine Appliance challenge, where
it was one of the top 15 appliances out of over 100 submitted.
Life began for the Grid Appliance purely focused to be run
on VMWare [26] virtual machines. Over the past year and
a half, the market of virtual machines monitors has become
increasingly diversified and now there are contenders such as
VirtualBox [27], Parallels [28], Xen [29], and KVM [30]. Each
one of these virtual machine monitors have their advantages:
VirtualBox being free and open source, Parallels being the first
to have good support for Mac OS/X, Xen has low performance
overheads and is open source, and KVM is the lightest weight
as it comes with modern Linux distributions.

The reliance on VMWare also caused issues with the nature
of the Grid Appliance, which is that it is free open source
software, while VMWare is not. This led to many purists
ignoring the potential of the Grid Appliance. To remedy this
problem, the Grid Appliance imagine has been designed such
that it becomes straightforward to automatically convert from a
baseline .vimdk image to formats used by KVM, Parallels and
VirtualBox. The virtual disk has been configured to be loaded
as SCSI disks supported by VMWare or IDE disks supported
by the other VMs. To ensure compatibility, the Grid Appliance
has successfully been run on all the previously mentioned
virtual machine monitors mentioned.

VI. BRINGING IT ALL TOGETHER - THE WEB INTERFACE

This paper introduces many new services and discusses new
levels of decentralization that should decrease setup time and
increase productivity. However, there are some components
that our experience shows a centralized approach to be best,
namely a system management “console” and a Web-accessible
user interface and content management system portal based on
Apache and Joomla.

The purpose of the web portal is to bring a centralized
location where users can retrieve packages, share a single
resource, and receive news and administrators can monitor
the system and take care of security responsibilities. Our envi-
sioned deployments are ones where a (virtual) organization can
easily deploy a pre-packaged management and portal front-end
by downloading the base appliance and front-end module, use
the management interface to create manager / worker / client
virtual floppies, and seamlessly deploy appliance pools.

The Web interface is available through a module add-in
for the Grid Appliance, building on the UnionFS capability
described earlier in this paper. Further, the Grid Appliance
system can run completely independent or with multiple web
interfaces accessing it. To use it, a user needs to only download
the module, add it to the Grid Appliance, and access the IP
address for the virtual machine in a web browser.

In the current deployment, we host a Grid appliance
web interface is available for public use at http://www.grid-
appliance.org. Users are able to download appliance images,
documentation, register with the system to generate and down-

load floppy images with custom configurations to create their
own independent pools, and check the statistics of the system.

A. User Interfaces

In addition to providing documentation and additional con-
tent on how to use the system, to further promote better
user interfaces in a collective environment, the Grid Appli-
ance borrowed ideas from environments such as InVIGO and
NanoHub. The Grid appliance Web interface allows remote
users to submit, monitor and interact with applications, and to
upload and download files. In essence, it provides the core
capabilities to deploy a gateway to a grid appliance pool
without requiring one to run an appliance on their desktop.
Such interface is very important in attracting new users by
displaying the capabilities of the system with low overhead -
all the user needs to interact with the system is a Web browser.
Two approaches to this are individual user web space and
interfaces. There are two interfaces provided, one that hooks
directly over VNC [31] and AJAX [32].

VNC works by forwarding a host’s graphical session to
a remote machine. By using a Java library, it is possible to
integrate this right into web pages. This means that graphical
applications can be run completely unchanged. Results are
stored in the WEBDAV [33] file system, a web based file
system that is easily mountable in Windows, Linux, and Mac
OS/X. The disadvantage is that each instance requires at least
10MB of space and everything is run on the server in volatile
memory and can be draining on the processor of the host
machine.

Web 2.0 enables interactive Web sessions that are substan-
tially richer and more appealing to users than static HTML.
As a proof-of-concept, the appliance portal has support for
AJAX-based applications; currently, a demonstration applica-
tion using the SimpleScalar computer architecture simulator is
in place. Future work is still needed to devise both a generic
framework for developers to use a single XML file to define
their interface and its tie into to Condor. A key feature in this
system is that all the session data is stored in the database and
even if the server crashes the data will be available the next
time the user returns.

B. System Management

The tool for “crawling” the virtual network for monitoring
the state of the system is also integrated with the inter-
face/management appliance. This tool takes a snapshot of
the entire system every 30 minutes, taking note of resource
usage, node consistency, and the geographical location of of
the nodes. This data is stored in a database and used to review
the system over time to ensure that it is indeed stable. It is also
displayed using a Google maps API to provide an interactive
map to users and administrators of where appliances are
running.

C. Security Done Easy

Implementing IPSec in the system is complicated because
it requires a centralized system to sign a X.509 certificate and
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Fig. 3. A web based AJAX session of SimpleScalar. SimpleScalar is
simulator for a MIPS/RISC CPU.

Atlantic
Ocean

Pacific America

Gcaan Indian.

Ocean Australia

Nodes above: 235

Total node count: 321

Ring consistency: 0.9447

Node Avg CPU %: 0.8800

Node Avg MEM: 25762.38

Nodes missing SimpleNode: 0

Last update: Fri Oct 5 10:54:02 2007

Fig. 4. The distribution of the current Grid Appliance system. This is one
of the many tools administrators have at their disposal.

return it to the requester. To alleviate this problem, the Web
interface/management appliance also integrates an interface to
facilitate requesting and signing of host certificates for IPsec.

In this approach, the configuration virtual floppy is piggy-
backed to hold information needed for users to issue certificate
requests for their appliances. The floppy is created automati-
cally at the Web interface appliance and presented to the user
for download; it contains the certificate authority’s public key
and user information registered with the Web front end (e.g.
name and email address). Users can then copy these floppies as
described earlier to boot appliances of different kinds (worker,
client, manager). Upon boot, the appliance checks the virtual
floppy and, if necessary, generates a host certificate request
for signing. The certificate request is transmitted to the CA

automatically, and the appliance polls the Web interface server
for updates periodically.

The administrator of the Web interface/management appli-
ance is presented with the list of requestor’s credentials. He
or she is then given the choice to accept or deny the request.
One additional motivation for this approach is that it enables
batching of requests; the same virtual floppy containing the CA
and user information can be distributed over several computers
and booted.

VII. QUALITATIVE ANALYSIS

While the appliance has not yet reached a large user base,
experience from its usage during the past year has helped
provide the feedback guiding some of the design decisions
presented in this paper.

Ease of installation: our survey has reassured us that
installation is often a simple process, even to novice users
(undergraduate and high-school students included). The vast
majority of users reported installation times of 30 minutes
or less — from installing the VMM to running a demo
Condor job. We have been able to demonstrate the system
in two hands-on tutorial sessions, where students installed
our software from a CD-ROM handed to them on site and
submitted jobs to our Grid in less than 30 minutes.

System stability: we rely on the PlanetLab infrastructure to
bootstrap our public Grid appliance pool. Because PlanetLab
nodes are distributed, highly loaded and faulty, it has proven
to be a harsh environment. This has made for time-consuming
debugging; on the other hand has served to harden our system
considerably and provide us confidence on its stability. We
have had a 400+ node wide-area overlay running for several
months and logged the execution of tens of thousands of
Condor jobs, including a two-week long job batch submitted
through a Condor-G entry point from the nanoHUB.

Reaching users: we have had some success in bringing
external users to our system. One particular example was a
class in Grid computing offered at a Swiss university. The
instructor and students used our appliance in two assignments,
with appliances deployed on their resources. They were able
to do so completely independently from us, relying only on
the very limited documentation available at that point. We
estimate that a couple hundred distinct appliances have been
downloaded and deployed by external users; our anecdotal
evidence of where most of our users come from points to
the VMware appliance directory site.

Our ability to retain users needs to improve. Our enhance-
ments to allow independent pools aims at reaching and retain-
ing users who are more interested in deploying a local pool
than connecting to a shared WAN infrastructure. Furthermore,
there are many users who could be potential users but are not
aware of the capabilities of a system like Condor — let alone
the Grid appliance. Reaching such users is very challenging;
our appliance is helpful in providing the ability to quickly
demonstrate its basic features through short hands-on self-
learning sessions at conferences/workshops.



VIII. CONCLUSION

The lessons learned in the development and deployment of
the Grid Appliances came down to that users involved in grid
computing come from varying backgrounds and experiences.
Attempting to make a single, slim application in a one fits all
method does not work. While making things simpler though,
you do not want to make it impossible for more advanced
users from feeling comfortable in a familiar environment.
Most importantly it is of the utmost importance that a user
be removed as a far as possible from system issues and
quirks and be able to focus on getting their task done. The
Grid Appliance approach is to provide and integrate user
interfaces, diversified documentation, and less dependence on
centralization. These three cases make handling resources in
grid systems significantly less complex from both users and
administrators.

Overall, this project has made contributions in reducing the
complexity of setting up desktop grids by focusing on the
ability for non-expert users to setup and maintain both wide-
area and private Condor pools. In this paper we describe our
experiences with this system and novel features, which include
the ability for Condor clients/managers to self-configure using
a DHT and integration with a portable web interface. Other
aspects discussed in the paper are not unique to this project
but have been integrated in ways that are also described, such
as setting up wide area peer-to-peer based IPsec systems and
the ability to have a single virtual machine self-configure as a
server, worker, or client. The experience and lessons learned
discussed in this paper have been obtained by observing and
interacting with users; these interactions have helped improve
our system and helped shape it into a useful open-source
resource available to the community at large.
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