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Abstract—This paper presents a parallel processing frame-
work for structured Peer-To-Peer (P2P) networks. A parallel
processing task is expressed using Map and Reduce primitives
inspired by functional programming models. The Map and
Reduce tasks are distributed to a subset of nodes within a P2P
network for execution by using a self-organizing multicast tree.
The distribution latency cost of multicast method is O(log(N)),
where N is a number of target nodes for task processing.
Each node getting a task performs the Map task, and the task
result is summarized and aggregated in a distributed fashion
at each node of the multicast tree during the Reduce task. We
have implemented this framework on the Brunet P2P system,
and the system currently supports predefined Map and Reduce
tasks or tasks inserted through Remote Procedure Call (RPC)
invocations. A simulation result demonstrates the scalability
and efficiency of our parallel processing framework. An ex-
periment result on PlanetLab which performs a distributed
K-Means clustering to gather statistics of connection latencies
among P2P nodes shows the applicability of our system in
applications such as monitoring overlay networks.

Keywords-Parallel processing, Map, Reduce, P2P, Monitor-
ing, Distributed data mining

I. INTRODUCTION

In recent years, Peer-To-Peer (P2P) systems have received
considerable attention from industry and academia. Different
from the client-server architecture, each peer in a P2P system
participates a virtual overlay network while acting as a client
and a server. Without a central server, in a P2P network, each
peer is responsible for providing and retrieving information
and services to and from other peers in the overlay network.
Despite of the growing popularity of P2P model, use cases
of P2P systems are limited to file-sharing applications (e.g.,
Gnutella and BitTorrent) and VoIP solutions (e.g., Skype).

Map and Reduce primitives are popular paradigms in
functional programming languages. LISP defines Map as a
function that applies to successive sets of input data. Reduce
is defined as a function that combines input elements of
sequence or aggregates results from those elements. Erlang
and Python use Map and Reduce functions similarly to
LISP. Hadoop [1] and Google-MapReduce [2] also use
Map and Reduce concepts for large data processing jobs.
Different from the others, Hadoop and Google MapReduce
apply Map and Reduce primitives at distributed computing

environments freeing users from parallel job distributions
and handling failed nodes.

In this paper we present a decentralized parallel process-
ing framework which uses Map and Reduce primitives on
a structured P2P network for applications such as network
status monitoring, resource discovery, and distributed data
mining. Without a central broker node, our system relies
on a self-organizing multicast tree for an efficient task
distribution. Map functions are performed at each node in
a multicast tree with input data. In parallel to Map task
execution, the task is propagated to child nodes in a multicast
tree to reach all leaf nodes. Once leaf nodes have computed
their Map functions, the results are communicated up the
tree. As the results are propagated up the tree, aggregation
and summarization happen at each intermediate node. Those
nodes execute Reduce function over the results obtained
from their child nodes and local Map function.

We have implemented our parallel processing framework
on a structured P2P framework, Brunet. Brunet implements
Symphony [3], a 1-D Kleinberg small-world architecture [4],
and we use the Brunet P2P overlay for connection manage-
ment, routing, and task distribution. In order to provide an
interface to define Map and Reduce tasks, the system pro-
vides not only basic Map (e.g., count function) and Reduce
(e.g., add and array concatenation) tasks, but an XML-RPC
interface to register user-defined Map and Reduce functions.

The major contributions of this work are as following:

• A novel P2P parallel processing framework that uses
multicast trees and Map and Reduce primitives

• Implementation and real-world deployment of our sys-
tem show applicability and feasibility

The rest of this paper is organized as follows. Section II
introduces Map and Reduce primitives on functional pro-
gramming languages. Section III presents an architecture
of our parallel processing framework. Section IV talks
about use case examples of our system. Section V covers
discussions for our system. Section VI evaluates our system
through simulation and a PlanetLab experiment. Section VII
discusses related works. Section VIII concludes this paper.
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II. MAP AND REDUCE PRIMITIVES

Map and Reduce functions were introduced in LISP
functional programming language in 1958. Currently many
other languages, such as Python, Heskell, and Erlang, adopt
Map and Reduce functions.

Map function is usually applied to successive sets of an
input argument for recursive operation, and it is defined as:

map result type function : input → result (1)

In (1) result type is a type of result. The function is called
sequentially for all the elements of the input. For example,

map ′Array′ ′ABS()′ : {−10, 3,−4,−1} → {10, 3, 4, 1}

The input Map function is defined as ABS(), which returns
an absolute value of an input. After the Map function, an
array of absolute values from input is returned as a result.

The Reduce function usually combines all elements of
input sequences using a binary operation and is defined as:

reduce function input sequence → result (2)

In (2) function is a designated operation which combines the
elements of input sequence to create result. For instance,

reduce ′ ∗′ (4, 3, 6) → 72

In this example, a binary operation multiply is defined as a
Reduce function for the input sequence (4, 3, 6). First, the
input sequence is processed as (* 4 3) = 12. Then the next
combining is processed as (* 12 6) = 72.

Map and Reduce functions provide powerful primitives
for programming of parallel applications. Building upon
these concepts, for instance, Google MapReduce [2] and
Hadoop [1] are widely used for large data processing (e.g.,
count of URL access frequency, reverse web-link graph, and
distributed grep) in a distributed computing environment.

III. ARCHITECTURE

In this section, we describe our Map and Reduce style par-
allel processing framework architecture, whose components
are composed of Underlying P2P network, Task Distribution,
and Map and Reduce Tasks modules.

A. P2P Network Module

The P2P network is responsible for handling node joins
and departures, connection management with neighboring
nodes, routing messages, and XML-RPC interface for an
user interface. The current version of our parallel process-
ing framework is developed on top of Brunet [5], which
implements Symphony, a 1-d Kleinberg’s small-world net-
work [4]. However, our system can be deployed on the
structured P2P, such as Chord [6], CAN [7], or Pastry [8].

               

Figure 1: Bounded-broadcast task propagation (a) Node A dis-
tributes a task from node A to L. Node A sends the task to its
neighboring nodes, B, E, K, and L after setting broadcast region
appropriately. The task recipient nodes send the task to neighbors
within the allocated region recursively. (b) Generated bounded-
broadcast tree after distributing the task.

B. Task Distribution

In a distributed computing environment, task distribu-
tions or job scheduling are vital procedures for an efficient
resource usage. Most compute power sharing frameworks
rely on a master node, which maintains the entire view
of resources currently deployed in the system. This master
node-client approach often imposes significant administra-
tive costs and scalability constraints: the server needs to be
closely managed, and the failure of the master node can
render all its resources unusable. In order to overcome these
shortcomings, our decentralized parallel processing frame-
work does not rely on a master node for task distribution.
Instead, a bounded-broadcast [9] that uses a self-organizing
multicast tree is in charge of task distribution.

Bounded-broadcast spreads a message over a sub-region
of a P2P network by self-organizing a multicast tree using
a Structured P2P network. It is currently implemented on
top of Brunet [5]. Each Brunet node maintains two types of
connections: (1) a constant number of near connections to
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its nearest left and right neighbors on the P2P ring, and (2)
approximately log(N), shortcut connections based on the
proximity neighbor selection on the P2P ring; such that the
routing cost is O(log(N)), where N is the number of nodes.

During a broadcast a node is allocated a sub-region of
the P2P ring over which to distribute tasks. The node then
redistributes the task to its neighboring nodes inside its allo-
cated sub-region while allocating new sub-regions to them.
This process continues until the message is disseminated
over the entire sub-region. A detailed technical description
of the procedure is explained in Algorithm 1.

Algorithm 1 Bounded-Broadcast(Start, End, Message)
Require: ConnectionList

1: for i in Length(ConnectionList) do
2: n start ← ADDRESS(ConnectionList[i])
3: if n start 6∈ [Start, End) then
4: continue
5: end if
6: n end ← ADDRESS(ConnectionList[i+ 1])
7: if n end 6∈ [Start, End) then
8: n end ← end
9: end if

10: msg←(Bounded-Broadcast, n start, n end, Message)
11: SEND(ConnectionList[i], msg)
12: end for

For example, to broadcast a task over the sub-region [A-L]
in Figure 1, a message initiator issues a broadcast command
to node A with sub-region information, [A-L]. Node A
recognizes B, P, E, K, L, and M as neighbors. Node A then
broadcasts the task to its neighbors located within [A-L],
by specifying broadcast range as [B-E), [E-K), [K-L), [L]
to node B, E, K, and L, respectively. After receiving the
message, nodes B, E, K, and L re-broadcast the task only
to their neighboring nodes inside the specified sub-region
recursively. After distributing the task until the leaf node,
a graph like Figure 1 (b) is formed. If a message-initiating
node does not lie within the bounded-broadcast region, the
message is first routed to a center node inside the bounded-
broadcast region by using greedy routing.

Similar to our bounded-broadcast, Vishnevsky et. al [10]
present multicast mechanisms on a structured P2P network
using a routing table information. In their work, a multicast
message is propagated over a subset of region by recursively
partitioning allocated sub-region. They explained the algo-
rithm on Chord [6] and Pastry [8]. Although our system
is currently deployed on top of Brunet [5], our parallel
processing framework can be deployed on Chord or Pastry
by maintaining a current architecture design by adopting
these multicast methods for task distribution.

Brunet Node

Map and Reduce Core

(1)

Task

Distribution

(4)(2-b)

(5)

(3-b)

MapReduce

MapReduce
Map - MiReduce - Rj
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P2P Overlay 

Network
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Figure 2: Map/Reduce Parallel Processing Framework Architecture

C. Map and Reduce Tasks

Nodes within a bounded-broadcast range are candidate
nodes to execute Map and Reduce tasks. Every node in the
range receives a name of Map and Reduce task with input
arguments for each task. With the input arguments and tasks,
each node executes the Map task and delivers a result of the
task to the Reduce task. The Reduce task is performed with
the input argument, the Map task result from itself, and the
Reduce task results from child nodes. A Reduce task usually
summarizes and aggregates those results and creates a new
result. The summarized result is delivered to the Reduce task
of parent node in the multicast tree for further aggregation.
The hierarchical information aggregation method, which ap-
plies to the Reduce result accumulation, provides scalability
in a distributed information management system [11] [12].

One user-favorable feature of MapReduce framework is
the transparency for parallel job execution. Users do not
need to concern about resource discovery, job scheduling,
and handling a failed worker node. What a user needs to
do is defining Map and Reduce functions associated with
one’s needs. Similar to Hadoop and Google MapReduce, our
decentralized MapReduce framework supports user-defined
Map and Reduce function by creating a class at runtime
or loading a DLL that contains tasks which a user want to
execute. All these actions are possible through XML-RPC
interface of an underlying P2P framework. Note that users
can also use pre-defined basic Map (e.g., count) and Reduce
(e.g., add, array concatenation) tasks.

In our decentralized parallel processing framework, in
brief, task distributions are processed at the Bounded-
Broadcast module, and the tasks are determined by a user
according to one’s need. Using Task Distribution, Map, and
Reduce modules, our system works as shown in Figure 2.

1) A task is delivered to the Map/Reduce Core module.
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2) The Core module executes a Map task Mi among
n Map tasks (2-a). In parallel to executing the Map
task locally, it redistributes the task using Bounded-
Broadcast to the allocated sub-region (2-b).

3) Local Map task result (3-a) and child nodes’ Reduce
results (3-b) are delivered to the Reduce module.

4) A Reduce task Rj among m Reduce tasks is executed
using results from the local Map task and child nodes.
The Reduce result is returned to Core module.

5) The Reduce task result is delivered to the Reduce task
of parent node using underlying XML-RPC module.

IV. USE CASES ON A P2P NETWORK

In this section, we present our parallel processing frame-
work use case examples while showing how to define Map
and Reduce functions according to a task purpose. Increasing
order of Reduce task complexity, we present from a simple
Map and Reduce functions to more complicated functions.

A. Counting Number of Nodes in a P2P Pool

Although a P2P system provides a self-organizing and
scalable overlay network service, a lack of global status
of a network limits system administrators’ control over the
network, and it makes system debugging challenging. This
is a factor that contributes to the hesitation in adopting a P2P
as an underlying overlay network for some applications [13].

Our parallel processing framework provides a scalable
approach to monitor a structured P2P network. For example,
consider how to measure the number of nodes in a P2P pool
using our framework. At the Map task, each node creates
a <key, value> pair whose key is ”count” and value is an
integer, 1. The Map task returns a result (<”count”, 1>
pair) to the local Reduce task. The Reduce task adds count
values returned from the Map task of itself and child nodes.
The accumulated values are returned to their parent nodes
until the result reaches the root node in the multicast tree.

Figure 3 shows the overall flow of counting the number
of nodes using our Map and Reduce framework. The dotted
line shows task distribution using bounded-broadcast, and
the thick line shows passing an aggregated Reduce result.

With regards to the job scheduling, every node receiving
the task has to perform Map and Reduce tasks. Thus, nodes
within a bounded-broadcast region will perform a task. By
setting the broadcast region as the entire network address
space, a task-initiating node can get an accurate number
of nodes in a pool. A task-initiating node can reduce task
distribution range and infer a number of nodes based on the
task distribution range and the number of nodes within the
range. This inference is possible based on the fact that node
addresses of structured P2P networks are randomly selected,
and nodes in a pool are uniformly distributed [5] [6] [8].

Map
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Map

Reduce

Map

Reduce

Map

Reduce

Map

Reduce

Map

Reduce

Map

Reduce

Map

Reduce

Map = <“count”, 1>
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<“count”,1>

<“count”,4>

<“count”,1>

<“count”,3>

<“count”,8>

<“count”,1>

Figure 3: Counting the number of nodes in a P2P pool: Map task
returns an entry <”count”, 1>. Reduce task sums the ”count” value
from local Map task result and Reduce results from child nodes.
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Figure 4: P2P network consistency check: (a) Node A maintains a
stable connection: (NodeA == NodeA.Right1.Left1) and (NodeA
== NodeA.Right2.Left2) (b) Node A maintains inconsistent con-
nection: Node A is ignorant of Node B.

B. P2P Pool Connection Consistency Check

In structured P2P systems, it is important to maintain
consistent connection pointers among nodes to ensure cor-
rect routing. In ring-structured P2P networks (i.e., Chord,
Pastry, and Brunet), a consistent connection can be defined
with respect to the pointer of predecessor and successor
nodes. Specifically in Brunet, for every node, we can check
if its immediate left near connection node identifies it as
immediate right connection node. The consistent connection
in Brunet is shown in Figure 4 (a). The same rule applies
for the second left and right neighboring nodes. Figure 4 (b)
shows an inconsistent connection at node A. In the figure,
Node A is ignorant of Node B, so Node A points Node C as
its left-most neighbor and Node D as its second left neighbor.
By checking connection table of Node C and D, Node A can
notice that it is maintaining inconsistent connections. These
steps can be applied for every node in a pool to determine
overall connection consistency of a P2P pool. Based on
this definition, we can measure a P2P network connection
consistency using our parallel processing framework.

Algorithm 2 and 3 show Map and Reduce tasks which
count the number of nodes in a pool and check connection
consistency. Algorithm 2 line 1-2 initialize variables to keep
consistency and count value. At line 4, the Map task gets
connection list of Left1, Left2, Right1, Right2 nodes. At line
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Algorithm 2 Map()
Require: ConnectionList

1: dict[”s score”] ← 0.0
2: dict[”n count”] ← 1
3: for s in Array(”Left1”,”Left2”,”Right1”,”Right2”) do
4: c table[s] ← GetConnectionTable(ConnectionList[s])
5: if c table[s].[s̃1] is self address then
6: dict[”s score”] ← dict[”s score”] + 0.25
7: end if
8: end for
9: SEND(Local Node’s Reduce Task, dict)

Algorithm 3 Reduce(reduce result[], map result)
1: n count ← map result[”n count”]
2: s score ← map result[”s score”]
3: for i in Length(reduce result) do
4: count ← reduce result[i].[”n count”]
5: score ← reduce result[i].[”s score”]
6: n count ← n count + count
7: s score ← s score + score
8: end for
9: dict[”n count”] ← n count

10: dict[”s score”] ← s score
11: SEND(Parent Node’s Reduce task, dict)

5 and 6, it checks whether it is pointing correct left or right
neighbor. If it is, s score is increased by 0.25. Finally the
dictionary is returned to the Reduce task of local node.

Algorithm 3 line 1 and 2 initialize n count and s score
values with the Map task result from itself. Those two
values keep the number of nodes and consistency score,
respectively. Line 3 - 7 iterate over Reduce results returned
from child nodes. At the step, node counts and consistency
scores are accumulated. Those summed values are delivered
to the Reduce task of the parent node.

C. Distributed Data-Mining in a P2P Network

Data mining is a process of extracting patterns or use-
ful models from large datasets. A survey of parallel and
distributed data mining algorithms is presented at [14].
Many of those algorithms are applicable in our decentralized
parallel processing framework by carefully defining Map and
Reduce function. Among them, we are going to cover K-
means clustering algorithms [15] and will show how it can
be applied to our framework. K-mean clustering algorithm
is aim at partitioning N datasets into K disjoint clusters
minimizing the sum of squared error function:

k∑
j=1

n∑
i=1

|xi − cj |2

xi means the value of each data point, and cj means
centroid of each cluster. To achieve the minimal squared
error between data point and centroid in a cluster, the
algorithm first places K centroid points which represent

each cluster. Each data point joins a cluster which has the
closest centroid value. After all data points join clusters,
new centroids are calculated within a cluster. This step is
repeated until centroids do not change.

We apply K-means clustering algorithm to our Map and
Reduce style parallel processing framework to get a statistic
of connection latency among nodes in a P2P pool. At the
task, the Map function is defined as measuring communi-
cation latency between neighboring nodes (i.e., structured
near and shortcut connections). The latency information is
aggregated at the Reduce task using K-Means clustering
algorithm. In Section VI-B, we present a statistic of clustered
shortcut and near connection latency among P2P nodes on
PlanetLab using K-means clustering algorithm. Note that
other data mining algorithms (e.g., classification, associa-
tion, and regression) can be also applied at Reduce phase.

D. P2P-Grid Computing Resource Discovery

A resource discovery is an important process for a large
scale distributed grid computing to achieve an efficient
resource provisioning and a fair resource usage. Most of grid
computing middlewares [16] [17] rely on a central server
for resource discovery while suffering from shortcomings of
server-client approach. Our decentralized parallel processing
framework can provide a new approach for resource discov-
ery while overcoming shortcomings of centralized approach.

We can define Map task as a matchmaking process that
checks whether a current resource status satisfies a job
requirement or not. The matching result is returned to the
local Reduce task. The Reduce task orders matchmaking
results from the local Map task and child nodes’ Reduce
task. The ordering can be done using various methods (e.g.,
Ordering based on Rank value in Condor [16] or waiting
queue size at each host). The ordered matchmaking result
will be delivered to the Reduce task of parent node for
further aggregation and summarization.

As we have shown in this section, users can define a Map
function as processing locally available datasets. In Reduce
function, many aggregation methods, such as sum, average,
sorting, and even distributed data mining algorithms, can be
defined in accordance with users’ need.

V. DISCUSSIONS

A. Comparison with Hadoop/Google MapReduce

The goal of Hadoop [1] and Google MapReduce [2] is
sharing computing power in order to process large dataset in
a cluster environment. Our decentralized Map and Reduce
parallel processing framework, on the other hand, targets
not only sharing computing power but for monitoring and
managing nodes in a highly distributed environment.

Hadoop and Google MapReduce run a central manager
which is responsible for assigning Map and Reduce tasks
and dealing with a worker failure. On the contrary, our
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framework has no central manager node. Instead, a self-
organizing bounded-broadcast tree is responsible for com-
mitting Map and Reduce tasks.

For efficient task processing, Hadoop MapReduce detects
a lagging node based on a progress score. If a node’s
progress score is below a threshold value, which is decided
based on the average Map and Reduce task execution
time, the node is marked as a straggler. The node’s job
is reassigned by a central manager. In our system, XML-
RPC timeout from an underlying P2P system will distinguish
lagging nodes. If a parent node detects a RPC timeout from
one of its child nodes, the parent node would prune the
retarding node from a bounded-broadcast tree.

B. Nodes Churn Issue

Users can easily join and leave a P2P network voluntarily,
so P2P systems should handle churn issues efficiently to
provide reliable services. In our framework, nodes churn
is handled by underlying Brunet protocol [5]. Regaring
the impact of churn on parallel task execution, our system
does not have an impact from churn when no Map and
Reduce task is running, because no data is shared among
nodes when there is no tasks running. Otherwise, DHT
uses data replication heuristic to deal with node churn. If
a churn occurs in the middle of Map and Reduce task
processing, a RPC timeout from a child node handles it by
pruning problematic nodes. Adding fault-tolerant aspect at
the bounded-broadcast is our future work.

VI. EVALUATION

In this section, we evaluate Map and Reduce Parallel
Processing Framework on a P2P system in a decentralized
and heterogeneous environment using a simulation and real-
world deployment on PlanetLab [18]. We implemented an
event-driven simulator to evaluate our system in a control-
lable manner. The simulator models not only our parallel
processing framework but also Brunet [5] routing, XML-
RPC, and node management shown in Figure 2 by reusing
the Brunet code base that has been extensively verified
and deployed in realistic infrastructures such as PlanetLab.
In order to allow experiments with large networks on a
controlled environment, it uses simulated event-driven times.
We used King data set [19] to set network latency between
nodes and Archer [20] to run simulations on a distributed
computing resources. After running 10 simulations with
different parameters, we calculate an average value.

A. Simulation

Figure 5 shows latency to complete counting number of
nodes and checking P2P network consistency which was
introduced in Section IV-B using our parallel processing
framework. In order to compare our system with a sequential
system, we also performed the same task using sequential
method. In a sequential method, a master node asks N
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Blue bar shows our Map and Reduce parallel processing latency.
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Table I: Bandwidth Usage Per One task

# Nodes Crawling BW Consumption
Parallel Processing Sequential Processing

100 35 KBytes 41 KBytes
500 218 KBytes 278 KBytes
1000 430 KBytes 623 KBytes
2000 946 KBytes 1,472 KBytes
3000 1,310 KBytes 2,237 KBytes
4000 1,861 KBytes 3,234 KBytes

number of nodes in a pool to get connection table one after
another. Based on the returned connection tables, the master
node calculates consistency value. Our parallel processing
task is performed once a minute at a random node, and
sequential task is performed once in an hour. In case of our
Map and Reduce based parallel crawler, it took 8.7 seconds
to scan 4000 nodes. Otherwise, sequential crawler took 27
minutes to scan 1000 nodes, and it could not complete the
task within an hour when the number of node is 2000, 3000,
and 4000 nodes. In order to show the latency increasing
pattern, we added O(LOG(N)) pattern. Though the latency
increasing pattern is slightly larger than O(LOG(N)), we
can see that it almost follows the O(LOG(N)) pattern. On
the other hand, sequential task shows linearly increasing
latency pattern. Table I presents bandwidth consumption
per one task. Both approaches show linearly increasing
bandwidth consumption when the number of scanned nodes
increases. The sequential task shows more bandwidth con-
sumption than our approach, because it takes more than
one routing hops from a master node to a target node
while querying connection table. In our parallel approach, in
contrast, each querying action takes one hop, because every
node gets connection table from its nearest neighbors.

By optimizing a sequential method, we can decrease
the latency and bandwidth consumption of the sequential
approach. However, we want to emphasize that our Map and
Reduce based parallel processing framework can perform
tasks in parallel without imposing overheads for managing
parallel jobs. In addition, with the aid of bounded-broadcast,
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our approach can distribute tasks and aggregate results with
the O(LOG(N)) latency cost.

B. Experiment on PlanetLab

In this section, we present an experiment result that was
conducted on PlanetLab with about 430 nodes deployed
globally. Figure 6 shows a clustered statistic of connection
latency among nodes in a P2P network. The clustered
latency information is created using our parallel processing
framework with K-means clustering algorithm as explained
in Section IV-C. The blue diamond mark shows a distributed
and parallel K-means clustered connection latency created
by our framework. X mark shows a centralized K-means
clustered connection latency to compare the performance
with our system. At the centralized method, every node
reports latency values to one central node, and the central
node creates a clustered connection latency using K-means
clustering method. The horizontal axis shows latency be-
tween connections in milliseconds. Note that the horizontal
axis value is presented in log scale. The vertical axis shows
the number of connections for each latency value. For
example, a point whose horizontal axis value (i.e., latency)
is 15 msec and the vertical axis value (i.e., the number of
connections) is 317 means that there are 317 connections
whose clustered latency is 15 msec. From the figure, we
can see that the clustered connection latency distribution of
Map and Reduce parallel processing framework is similar to
that of centralized K-means clustered distribution.

Figure 7 shows Cumulative Distribution Function (CDF)
of clustered structured near and shortcut connection latency
of Brunet deployed on PlanetLab. The clustering is per-
formed using our parallel processing framework. As we can
see from the figure, structured shortcut connections show
shorter latencies than near connections. The reason is Brunet
establishes shortcut connections using proximity metrics
based on Vivaldi coordinates. Otherwise, structured near
connections are formed to near left and right neighbors based
on the P2P address. From this experiment, we can confirm
that the proximity-based shortcut connection algorithm in
Brunet is working correctly. As shown here, our parallel
processing framework can provide a P2P system monitoring
capability in an efficient and scalable manner.

For the distributed K-mean clustering experiment, 30
clusters are created using a midpoint initial centroid value
selection method. We noticed that different number of clus-
ters and initial centroid selection methods show different
clustering performance. Choosing the optimal number of
clusters and initial K-means centroid values on a hierarchi-
cally distributed tree structure remain as our future work.

VII. RELATED WORK

Binzenhofer et. al [13] presents a Chord-based P2P sys-
tem monitoring system. They use a snapshot algorithm to
infer the status of P2P pool at a given time window. The
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Figure 6: Clustered connection latency on PlanetLab. The blue
diamond mark shows a clustered latency map which uses our
decentralized parallel processing framework. The X mark shows
centralized clustered information.
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Figure 7: Cumulative distribution of clustered connection latency
of shortcut and near connections.

algorithm determines a begin and end address of subregion
for scanning. Nodes within the region pass a token to gather
statistics for pool status. Due to its sequential token-passing,
its communication latency increases as O(N), where N is
the number of scanned nodes. Different from our parallel
processing system, this system supports only pre-defined
pool monitoring functions.

Flock of Condor [21], WaveGrid [22], and PastryGrid [23]
presents a grid computing middleware for resource sharing
which runs on top of P2P network. PastryGrid [23] is
built on Pastry [8], and a job scheduling is performed by
sequentially traversing nodes in a pool until all queued jobs
are assigned. In WaveGrid [22], a timezone-aware overlay
network is formed to consider time zone information for
a job scheduling. Flock of Condor [21] connects several
Condor [16] pool header nodes using Pastry [8] P2P frame-
work. Head nodes within the P2P pool share their hosts
and queued job information for efficient resource scheduling.
BonjourGrid [24] built a compute power sharing framework
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while using publish/subscribe-based multicast mechanism.
The scheduling cost for sequential traversing (e.g., O(N),
where N is the number of nodes for job scheduling in a
pool) is much more expensive than our parallel processing
framework, which is O(logN), where N is the number of
nodes for a job assignment in a pool. Without a structured
multicast mechanism, flooding a scheduling message to the
network does not guarantee complete message transmission.
In addition, these approaches are inappropriate for tasks
whose results correlate to each other.

VIII. CONCLUSION AND FUTURE WORK

This paper presents a parallel processing framework
which runs on a structured P2P network. The system relies
on a self-organizing tree based broadcast method, bounded-
broadcast, for parallel task distribution without the need
of a central head node. With the aid of Map and Re-
duce primitives from functional programming languages, we
could clearly define tasks suitable for parallel processing
as shown in the use case scenarios. In our implementation
using Brunet, users can easily define and insert a task by
using underlying XML-RPC interface or use pre-defined
tasks. Using a simulator which reuses Brunet routing and
node management source code, we demonstrated that our
system provides a scalable and efficient parallel process-
ing framework. PlanetLab deployment and the clustered
connection latency information using K-means clustering
method show the feasibility of our system as a real-world
application with various application scenarios. Future work
includes optimizing user-transparent scheduling method and
heuristics to handle faulty nodes in a bounded-broadcast tree.
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