
Cluster Comput (2009) 12: 239–256
DOI 10.1007/s10586-009-0075-1

Improving peer connectivity in wide-area overlays of virtual
workstations

Arijit Ganguly · P. Oscar Boykin · David I. Wolinsky ·
Renato J. Figueiredo

Received: 1 January 2009 / Accepted: 5 January 2009 / Published online: 17 January 2009
© Springer Science+Business Media, LLC 2009

Abstract Self-configuring virtual networks rely on struc-
tured P2P routing to provide seamless connectivity among
nodes through overlay routing of virtual IP packets, sup-
port decentralized hole-punching to establish bi-directional
communication links among nodes behind network address
translators, and dynamic configuration of virtual IP ad-
dresses. Our experiences with deployments of virtual net-
works in support of wide-area overlays of virtual worksta-
tions (WOWs) reveal that connectivity constraints imposed
by symmetric NATs and by Internet route outages often
hinder P2P overlay structure maintenance and routability,
subsequently limiting the ability of WOWs to deliver high-
throughput computing through aggregation of resources in
different domains.

In this paper, we describe and evaluate two novel ap-
proaches which are generally applicable and fully decen-
tralized, and show that they improve routability of struc-
tured P2P networks in such connectivity constrained envi-
ronments: (1) a fault-tolerant routing algorithm based on
simulated annealing from optimization theory, and (2) tun-
neling of connections between adjacent nodes (in the P2P
identifier space) over common neighbors when direct com-
munication is not possible. Simulation-based analyses show

A. Ganguly (�) · P.O. Boykin · D.I. Wolinsky · R.J. Figueiredo
Advanced Computing and Information Systems Laboratory,
University of Florida, Gainesville, FL 32611, USA
e-mail: aganguly@acis.ufl.edu

P.O. Boykin
e-mail: boykin@acis.ufl.edu

D.I. Wolinsky
e-mail: davidiw@acis.ufl.edu

R.J. Figueiredo
e-mail: renato@acis.ufl.edu

that (1) when pairs of nodes only have 70% chance of be-
ing able to communicate directly, the described approaches
improve all-to-all routability of the network from 90% to
99%, and (2) even when only 70% of the nodes are behind
NATs that include symmetric NATs, these techniques im-
prove the all-to-all connectivity of the network from less
than 95% to more than 99%. We have implemented these
techniques in the IP-over-P2P (IPOP) virtual network and
have conducted experiments with a 180-node WOW Condor
pool, demonstrating that, at 81% probability of establishing
a pair-wise connection, annealing and tunneling combined
allow all nodes to be connected to the pool, compared to
only 160 nodes in the absence of these techniques.

Keywords P2P · DHT · Virtual network · Overlay ·
Routing

1 Introduction

Wide-area overlays of virtual workstations (WOWs) are ap-
pealing infrastructures for the creation of high-throughput
computing pools and cross-domain collaborative environ-
ments [1, 4, 11, 22] due to their ability of self-configuring
functionally homogeneous virtual networks of virtual ma-
chines on top of a heterogeneous wide-area physical in-
frastructure [14, 32]. Like several related efforts (such as
Chord [30], Kademlia [24] and Pastry [29]), WOWs rely
on structured P2P overlays to provide the core service of
message routing and additional capabilities such as object
storage and retrieval. In the case of WOWs, a structured
P2P virtual network (IPOP [13]) provides all-to-all con-
nectivity among nodes, automatic configuration of virtual
IP addresses of nodes using a decentralized Dynamic Host
Configuration Protocol (DHCP) [15] implementation, and

mailto:aganguly@acis.ufl.edu
mailto:boykin@acis.ufl.edu
mailto:davidiw@acis.ufl.edu
mailto:renato@acis.ufl.edu

240 Cluster Comput (2009) 12: 239–256

self-optimization through creation of direct overlay links be-
tween virtual IP nodes [14].

Structured P2P routing assumes each node has a con-
sistent view of its local neighborhood in the P2P identifier
space, which is reflected in its ability to communicate with
its neighboring nodes. However, in practice, wide-area en-
vironments are becoming increasingly constrained in terms
of peer connectivity, primarily due to the proliferation of
NAT and firewall routers. These constraints can render struc-
tured P2P routing inconsistent, negatively affecting routabil-
ity and services built upon the assumption of consistent rout-
ing. In this paper, we describe and evaluate novel techniques
that achieve consistent routing in connectivity-constrained
environments and demonstrate their applicability in repre-
sentative WOW-based high-throughput computing environ-
ments.

Studies have shown that about 30%–40% [20] of the
nodes in a P2P system are behind NATs. Certain kinds of
NAT devices can be “traversed” to support bi-directional
communication links through UDP-hole punching, a tech-
nique which has been implemented in systems such as IPOP
and is known to work for a large variety of “cone” NATs.
However, certain scenarios often arise where hole-punching
is not possible, such as in “symmetric” NATs. In addition,
studies have also shown the existence of permanent or tran-
sient route outages between pairs of nodes on the Internet;
for example, [12] reports 5.2% pair-wise outages among
nodes on PlanetLab [8], and an experiment described in this
paper reveals 9 broken structured connections in a 420-node
P2P ring overlaid on PlanetLab. Together, these connectiv-
ity constraints pose a challenge to overlay structure main-
tenance: two adjacent nodes cannot communicate directly,
creating false perceptions of a neighbor not being available.
In general, these missing links on a P2P structure lead to
inconsistent routing decisions, and subsequently hinder the
correctness of structured routing. As applied to WOWs, they
hinder the ability of IPOP to provide all-to-all connectivity
among nodes that form a virtual cluster.

Related work has addressed challenges including con-
struction of efficient overlay topologies [17], correct rout-
ing of object lookups under churn [5, 27], and proximity-
aware routing [6]. However, an implicit underlying assump-
tion common in previous work is of an environment where
P2P nodes are able to establish direct connections to one
another. Deployments of these systems have recognized the
problem of overlay structure maintenance when only a small
fraction of pairs (about 4% [19]) cannot communicate with
each other [12, 16]. However, from our practical experience
with WOW deployments, we have observed that this frac-
tion can be significantly larger due to nodes behind (mul-
tiple) NATs, and NATs that are symmetric or do not sup-
port “hairpin” translation that preclude hole-punching. To
illustrate the negative impact of pair-wise connectivity con-
straints, results from a simulation-based analysis show that

the all-to-all routability of a 1000-node ring structured over-
lay using a conventional (greedy) structured routing algo-
rithm is less than 90% when there is a 70% chance that P2P
nodes will be able to communicate directly using TCP or
UDP transports, and less than 95% when 70% of the nodes
are behind cone and symmetric NATs.

This paper makes the following contributions. We de-
scribe and evaluate two novel, synergistic techniques for
fault-tolerant routing and structured overlay maintenance in
the presence of network outages: annealing routing, an algo-
rithm based on simulated annealing from optimization the-
ory, and tunnel edges, a technique to establish connections
between P2P nodes over common neighbors. These tech-
niques are fully decentralized, self-configuring and gener-
ally applicable to any structured P2P system. An implemen-
tation of these techniques in IPOP has been demonstrated to
operate in actual wide-area PlanetLab deployments as well
as in NATed environments with emulated pair-wise outages.
The effectiveness of these approaches are analyzed for var-
ious system configurations with the aid of analytical mod-
els, simulation, and data collected from realistic system de-
ployments. We demonstrate these techniques significantly
improve all-to-all routability (with respect to conventional
greedy routing) from 90% to over 99% at 70% probability of
successful pair-wise connections. We also simulated a 1000
node network consisting of varying fraction of public nodes
and well-studied distributions of NAT types. We observed
that when 70% of the nodes are behind different types of
NATs (including non-traversable NATs), the described tech-
niques improved routability from less than 95% to over 99%.
We also report on results from realistic NAT-constrained
environments through experiments which demonstrate the
benefit of annealing routing and tunnel edges to improve
connectivity within nodes of a 180-node WOW Condor [21]
pool, increasing the fraction of reported worker nodes from
88% to 100% at 81% probability of successful pair-wise
connections.

The rest of the paper is organized as follows. In Sect. 2,
we overview several sources of connectivity constraints
found in wide-area environments for deployment of desk-
top grids and collaborative environments. In Sect. 3 we
qualitatively describe the impact of incorrect routing on the
functioning of WOW distributed systems. We then describe
a fault-tolerant annealing routing algorithm that can route
messages to their correct destinations, even in the presence
of missing overlay links (Sect. 4.1). In Sect. 4.2, we describe
a technique that allows tunneling of overlay links over con-
nections to other nodes and the implementation of this tech-
nique in IPOP. In Sect. 5, we quantify the improvement in
structured routing using these two techniques through simu-
lations. We describe our implementation of tunnel edges in
the IPOP system in Sect. 6. In Sect. 7, we describe exper-
iments that demonstrate the operation of IPOP in connec-

Cluster Comput (2009) 12: 239–256 241

Fig. 1 Illustration of the
connectivity-constrained
wide-area deployment scenario
targeted by deployments of the
IPOP P2P system

tivity constrained environments. We discuss related work in
Sect. 9, and conclude the paper in Sect. 10.

2 Connectivity hazards in wide-area networks

Several structured P2P systems have been deployed on
wide-area infrastructures when participating hosts are on the
public Internet. For example, OpenDHT [28] relies on non-
firewalled PlanetLab P2P nodes to deploy its DHT; however,
nodes behind NATs and firewalls can only act as OpenDHT
clients and do not store keys. In order to aggregate the in-
creasing number of hosts behind NATs/firewalls as WOW
nodes, the IPOP virtual network must be able to deal with
a complex wide-area environment as the one depicted in
Fig. 1, where typical end users of a P2P system are con-
strained by NATs in which they do not have the control (or
expertise) necessary to set up and maintain firewall excep-
tions and mappings necessary for NAT traversal.

The scenario which we address in this paper allows the
vast majority of P2P nodes to run on hosts that connect to the
Internet through one or more levels of NATs. For example,
it is common for broad-band hosts to be behind two levels of
NAT (a home gateway/router and the ISP edge NAT, nodes
A and B in Fig. 1). IPOP supports establishment of UDP
communication using hole-punching techniques for “cone”
type NATs (e.g. between nodes A and C in Fig. 1), and there
is empirical evidence pointing to the fact that these are the
common case [10]. Cone NATs consistently map a private
IP endpoint to same external IP endpoint, irrespective of the
destination. These external IP endpoints can be discovered
and subsequently exchanged out-of-band between peers in
different private networks for hole-punching.

However, nodes behind “symmetric” NATs for which
hole-punching does not prove effective cannot communicate
with nodes in different private networks, and only commu-
nicate with public nodes or full-cone NATs (e.g. nodes C
and D). Symmetric NATs map a private IP endpoint a
different external IP endpoint for each destination. Hole-
punching for symmetric NATs rely on the ability to predict
the external IP endpoint prior to communication with the
destination—such port prediction techniques have not been
very effective.

Recognizing the importance of supporting traversal,
some of recent NATs have started supporting Universal Plug
and Play (UPnP) [31] which allow them to be configured to
open ports so that other hosts (outside the NAT) can initi-
ate communication with hosts behind the NAT (e.g. hosts I
and H). However, UPnP is not ubiquitous, and even when it
is available, multi-level NATs create the problem that hosts
can only configure their local NATs through UPnP, while
having no access to control the behavior of the edge NAT.
This problem renders the UPnP approach ineffective outside
the domain. For example, although hosts A and E in Fig. 1
are connected to UPnP NATs, they are also subject to rules
from an ISP NAT and a University NAT respectively, which
they do not control.

Some NATs support “hairpinning”, where two nodes in
the same private network and behind the same NAT can
communicate using each other’s translated IP and port. Such
a behavior is useful in a multi-level NAT scenario, where
two hosts behind the same public NAT but different semi-
public NATs are able to communicate only using their IP
address and port assigned by the public NAT. However, not
all NATs support hairpinning, creating a situation in which

242 Cluster Comput (2009) 12: 239–256

two nodes in the same multi-level NATed domain may not
be able to use hole-punching to communicate directly (e.g.
nodes E and F) as depicted in Fig. 2. Through communica-
tion with nodes on the public Internet, nodes E and F can
only learn their IP endpoints assigned by the public NAT-P.
In case NAT-P does not support hairpinning, these learned
endpoints cannot be used for communication between nodes
E and F. Only 24% of the NATs tested in [10] support hair-
pinning.

Some hosts are behind firewall routers (e.g. host G) that
might block all UDP traffic altogether. Only a few P2P
nodes are public and are expected to be able to communi-
cate with each other. Connectivity even among these hosts
is constrained: Internet-1 and Internet-2 hosts cannot com-
municate with each other (e.g. hosts J and K), while multi-
homed hosts can communicate with them both. In addition,
link failures, BGP routing updates, and ISP peering disputes
can easily create situations where two public nodes cannot
communicate directly with each other. In [12], the authors
observed that about 5.2% of unordered pairs of hosts (P1,
P2) on PlanetLab exhibited a behavior such that P1 and P2
cannot reach each other but another host P3 can reach both
P1 and P2.

We observe that a typical wide-area environment presents
several deterrents to connectivity between a pair of nodes,
and when two such nodes have adjacent identifiers on the
P2P ring, structure maintenance is affected. To the best of
our knowledge, while structured P2P systems have been
demonstrated in public infrastructures such as PlanetLab,
where there are only a few pair-wise outages and a small
amount of disorder can be tolerated [16], no structured P2P
systems described in the literature have been demonstrated
where the majority of P2P nodes are subject to NAT con-
straints of various kinds as illustrated in Fig. 1.

Fig. 2 Nodes E and F behind two different semi-public NATs respec-
tively, which in turn are behind a public NAT-P

3 Impact of connectivity constraints

Peer connectivity constraints result in the inability to cor-
rectly maintain an overlay structure, which in turn affects
the deployment of virtual networks and WOWs in important
ways. These are presented and discussed in the remainder of
this section.

3.1 Impact on core structured overlay routing

The IPOP virtual network implements a ring-structured P2P
network where each node has a randomly generated 160-bit
identifier. Each node maintains 2m structured near connec-
tions, m connections on each side of the P2P ring. In addi-
tion to the neighbor connections, each node also acquires k

structured far connections that are far away in the address
space, so that the average number of overlay hops between
nodes is O(1

k
log2(n)) for a network of size n using the al-

gorithm of [18].
Similar to other structured systems, routing in IPOP uses

the greedy algorithm where at each hop a message gets
monotonically closer to the destination until it is either de-
livered to the destination or to the node that is closest to
the destination in the P2P identifier space. Greedy routing
assumes each node has a consistent view of its local neigh-
borhood, which is reflected in its ability to form structured
near connections with its left and right neighbors in the P2P
identifier space. The inability to form connections with im-
mediate neighbors in the identifier space creates inconsistent
view of the local neighborhood, thus resulting in incorrect
routing decisions as shown in Fig. 3(a). In this figure, nodes
115 and 110 cannot form a connection. A message is sent
to key 112, and the closest node is 110. In one case (a), the
message (Create) addressed to key 112 arrives at node 115;
it believes that it is the closest to the destination and the
message is delivered locally (also replicated at node 100).

Fig. 3 Inconsistent roots in DHT

Cluster Comput (2009) 12: 239–256 243

In another case (b), a message Create addressed to the same
key arriving at node 83 is correctly routed to node 110, the
key is not found and created again.

3.2 Effect on all-to-all connectivity

Techniques for the creation of overlay links between P2P
nodes behind “cone” NATs have been presented in earlier
work, which incorporates decentralized NAT traversal using
UDP hole-punching [14]. The notion of a connection, which
describes an overlay link between two P2P nodes, is key to
establishing such links. Connections operate over physical
channels called edges, which in IPOP can be based on dif-
ferent transports such as UDP or TCP. Besides assisting in
overlay structure maintenance, the connection protocols al-
low the creation of 1-hop shortcuts between WOW nodes
to self-optimize the performance of the virtual network with
respect to latency and bandwidth.

The connection setup between P2P nodes is preceded
by a connection protocol for conveying the intent to con-
nect and exchanging the list of Uniform Resource Indicators
(URIs) for communication. These connection messages are
routed over the P2P network. Incorrect routing leads to sit-
uations where connection messages are either misdelivered
(or not delivered at all), thus affecting both overlay structure
maintenance and connectivity within the virtual network.

3.3 Effect on dynamic virtual IP configuration

The structured P2P system in IPOP also provides decen-
tralized object storage and retrieval based on a DHT [15],
which is used for dynamic virtual IP configuration of WOW
nodes, summarized as follows. IPOP supports creation of
multiple mutually-isolated virtual networks (called IPOP
namespaces) over a common P2P overlay. The virtual IP
configuration of WOW nodes in each such private network
is achieved using a decentralized implementation of the Dy-
namic Host Configuration Protocol (DHCP). The DHCP im-
plementation uses a DHT primitive (called Create) to cre-
ate key/value pairs mapping virtual network namespaces and
virtual IP addresses uniquely to P2P identifiers. The Create
primitive relies on the consistency of key-based routing to
guarantee uniqueness of IP-to-P2P address mappings. That
is, messages addressed to some key k must be delivered to
the same set of nodes regardless of its originator. Incorrect
routing decisions can cause Create messages addressed to
the same key from different sources to be routed to different
nodes, as shown in Fig. 3(a) and (b). This problem is also
identified in [12] and is referred to as inconsistent roots, and
can lead to a situation where two WOW nodes claim the
same virtual IP address.

3.4 Effect on completion of DHT operations

To reduce the impact of inconsistent roots, the IPOP-DHT
internally re-maps each application specified key k to n keys
(k1, k2, . . . , kn), which are then stored (together with the as-
sociated value) at n different locations on the P2P ring and
the DHT operations are expected to separately provide re-
turn values for each re-mapped key. Majority voting on re-
sults obtained for each such re-mapped key is used to deter-
mine the outcome of an operation. For a fault to occur in this
scenario, the roots of as many as half of the re-mapped keys
have to be inconsistent. However, majority voting can reach
a consensus only when results from at least half of the n re-
mapped keys are communicated back to the source node. If
the nodes close to the source node in identifier space have in-
consistent view of their neighborhoods, situations can arise
when not enough results arrive at the source node for con-
sensus, causing the operation to fail. This inability to com-
plete a DHT operation impacts both the process of acquir-
ing a virtual IP address, and also resolution of a virtual IP
address to P2P identifier.

3.5 Effect on DHT dynamics

The inability to create overlay links also hinders the dynam-
ics of a DHT as it reacts to changes in ownership of keys
when nodes join, and actively replicates keys when nodes
leave. Until a new node can form a consistent view of its
local neighborhood by communicating with its neighbors, it
can neither retrieve any keys (that it is supposed to store)
from its neighbors, nor copy (or migrate) some keys that are
now supposed to be stored at its neighbors. This affects the
degree of replication of keys in the DHT, and subsequent
reliability of object storage.

To summarize, incorrect routing in the P2P network
impacts the virtual IP connectivity between WOW nodes,
which directly affects the applications using the virtual net-
work. For example, in a WOW-based Condor pool [32], the
inability of a worker node to obtain an IP address implies
it does not join the pool. Even if a node “N” obtains an IP
address, if it cannot communicate with the central manager
node “M”, it is not available for computation. Furthermore,
the inability of node “N” to route to a worker node “W” pre-
vents jobs submitted by “N” to execute on “W”. All these
situations result in the system not being able to achieve the
maximum available throughput because not all nodes can
participate in computations.

4 Consistent P2P routing under connectivity
constraints

Based on the observations from the previous section, we
propose two synergistic approaches to cope with missing

244 Cluster Comput (2009) 12: 239–256

overlay links in a structured P2P network: (1) annealing
routing and (2) tunnel edges. These are described in the rest
of this section.

4.1 Annealing routing

The first technique we propose is a fault-tolerant routing al-
gorithm based on simulated annealing that, unlike conven-
tional greedy routing, does not force a message to monotoni-
cally get closer to the destination at each hop. This algorithm
is inspired by optimization theory. Under the assumption of
a convex function, a greedy method converges to a global
minimum (or maximum); however, with non-convex func-
tions, a greedy approach can stop at local minima and not
find the global minimum. In optimization theory, a simu-
lated annealing approach allows for a deviation from greedy
search in order to “escape” from a local minimum. In the
context of P2P routing, connectivity constraints create anal-
ogous situations where a greedy algorithm can reach a local
minimum when a node is not able to establish a near link
which would allow the distance between the message and
its destination to be reduced. Even if the underlying net-
work is free from connectivity constraints, transient churn
can also create situations where a node has an inconsis-
tent view of its local neighborhood. For successful operation
of connection setup protocols for overlay structure mainte-
nance, structured routing has to be designed to be tolerant
to such disorder on the P2P ring. The annealing algorithm is
described in Algorithm 1 and works as follows.

Lines 1–9 of Algorithm 1 describe the behavior when the
message destination matches the current node, or is destined
to a node to which the current node is directly connected
to. In lines 10–19, the node looks up its connection table to
determine if it is adjacent to the destination in the identifier
space. In that case, the node delivers the message locally
and also sends it to the node on the other side (left or right)
of the destination in the identifier space.1 Otherwise (line
21), it finds the two closest nodes to the destination from the
connection table, umin and usec.

If the message has not taken any hops yet (i.e. it orig-
inated at the current node), it is sent to the closest node
umin. Otherwise (lines 25–31), until the message has taken
MAX_UPHILL hops it is delivered to the closest node umin

or the next closest usec (if it was already received from the
closest node umin). Until this point, the algorithm does not
check for the forward progress of the message towards the
destination in identifier space.

1The state of the local connection table may not correctly reflect the
local neighborhood. While greedy routing may terminate the progress
of the message here, the annealing algorithm continues its search for
the node closest to the destination by also sending the message to the
node on the other side.

Algorithm 1 AnnealingNextHop(v,prev,dest,p) This algo-
rithm describes how a packet p arriving at v from prev takes
its next hop towards the destination dest using annealing
mode.

1: if v == dest then
2: Deliver locally.
3: Return.
4: end if
5: if v has a connection to dest then
6: Send to dest.
7: Return.
8: end if
9: /** Case 1: Connection table indicates that current node v is

adjacent to dest. Deliver locally and send to the node on the
other side of dest, according to the connection table.**/

10: if (v is adjacent to dest) then
11: Deliver locally.
12: if (v is to the left of dest) then
13: w ⇐ vright (which is on the right of dest)
14: else
15: w ⇐ vleft (which is on the left of dest)
16: end if
17: if prev �= v′ then
18: Send to w (send to other side of dest)
19: end if
20: else
21: Find first and second closest nodes umin and usec to dest,

respectively.
22: if p.Hops == 0 then
23: /** Case 2: This is the first hop. Let the packet go to

closest even if v itself is closest.**/
24: Send to umin.
25: else if p.Hops ≤ MAX_UPHILL then
26: /** Case 3: Not the first hop. We will do this for up to

MAX_UPHILL (= 1) hops. **/
27: if prev �= umin then
28: Send to umin.
29: else
30: Send to usec.
31: end if
32: else
33: /** Case 4: Send only if can get closer than previous

node.
34: Find nodes umin (closest) and uother (on other side of the

dest on the ring), respectively.
35: if prev �= umin then
36: w ⇐ umin
37: else
38: w ⇐ uother
39: end if
40: dmin ⇐ DISTring(w,dest)
41: if dmin < DISTring(prev,dest) then
42: Send to w.
43: end if
44: end if
45: end if

Cluster Comput (2009) 12: 239–256 245

Beyond MAX_UPHILL hops (lines 32–45), the node
finds the nodes (1) umin: closest to the destination in identi-
fier space, and (2) uother: on the opposite side of umin to the
destination. The message is sent to umin or uother , only if the
next hop is closer to the destination than the previous hop.
It should be noted that this condition only requires progress
with respect to the previous node; it still allows a message to
take one hop that is farther away from the destination than
the current node.

Figure 4 illustrates the cases 1 and 4 of the annealing
algorithm.

The annealing algorithm is very useful for routing mes-
sages addressed to exact destinations, which include con-
nection setup messages between P2P nodes, virtual IP pack-
ets between IPOP nodes, and the results of DHT operations
back to the source node. In a perfectly-formed structured
ring, this algorithm works exactly as the greedy algorithm
and incurs the same number of hops.

When messages are addressed to DHT keys, this algo-
rithm has a better chance to reach the node closest to the
key, by delivering the message at each local minima. As a
side effect, DHT operations for a key are performed at more
than one node in the P2P overlay. This redundancy is use-
ful for applications using only Put and Get DHT interfaces,
which do not require uniqueness of key values. However,
annealing is not sufficient for scenarios including the de-
centralized DHCP protocol of IPOP, where it is required to
guarantee uniqueness of creation of a key to avoid IP address
collisions. Ensuring that each key is delivered to exactly one
node (closest to the key in the identifier space) is possible by
using greedy routing on a completely formed overlay. Our
next technique is designed to provide a complete overlay
structure in face of connectivity constraints that may prevent
direct connections among overlay neighbors.

4.2 Tunnel edges

In this section, we describe our second novel technique—it
allows an overlay link between two nodes A and B, which
cannot communicate directly over TCP or UDP, to be prox-
ied by a set nodes to which both A and B can communicate.
It is a fully decentralized technique for both discovering a
proxy node C, and establishing an edge “tunnel” connecting
A and B through C.

The idea behind tunnel edges is as follows. Assume that
each node in the network attempts to acquire connections
to its closest 2m near neighbors on the P2P ring, m such
neighbors at each side. Consider a situation where there is

an outage between two adjacent nodes A and B on the P2P

ring. Since both A and B also attempt to form near connec-

tions with 2m nodes each, their neighborhoods intersect at

2(m−1) nodes as shown in Fig. 5. For a tunnel edge to exist

between A and B, there must be at least one node C in the

intersection I to which both A and B are connected. Such

node C is a candidate to be used in tunneling the structured

near connection between A and B.

This enhancement allows the connection state at a node

to consistently reflect the overlay topology even when it is

not possible to communicate with some neighbors using the

conventional TCP or UDP transports. In the IPOP imple-

mentation (described in Sect. 6), tunnel edges are function-

ally equivalent to UDP or TCP edges once they are estab-

lished, allowing seamless reuse of the code responsible for

state maintenance and routing logic in the system.

4.2.1 Probabilistic analysis of tunnel edges

Two important questions arise in the context of this pro-

posed approach: what is the probability of tunnel edges to

be formed between two nodes A and B? how many nodes

are candidates for proxying tunnel edges? We address these

questions analytically in this section.

Let q be the probability of successful edge setup between

a pair of nodes. For a tunnel edge to exist between A and

B, there must be at least one node C in the intersection I

to which both A and B are connected. Assuming m near

connections at each side of both nodes, the probability for a

tunnel edge between A and B to exist through C is given by:

P [A and B can connect]
= 1 − P [A and B cannot connect]
= 1 −

∏

C∈I

P [A and B cannot connect through C]

= 1 − (1 − q2)2(m−1)

In Table 1, we show the probability of forming a tun-

nel edge between unconnected nodes A and B for differ-

ent values of edge probability q and number of near con-

nections m. It should be noted that the there is a sharp in-

crease in the probability of being able to form a tunnel edge

when nodes acquire more than 2 near connections on each

side. This fact is also reflected in simulation results which

246 Cluster Comput (2009) 12: 239–256

Fig. 4 Illustration of the annealing algorithm. It is assumed that node
100 is unable to create an overlay link with node 105 due to con-
nectivity constraints, as marked by a red X in the drawings, and that
a message addressed to key 104 is received by node 100. The dis-
cussion follows the illustrations from left to right, top to bottom.
(1) The message addressed to key 104 arrives at node 100. (2) Be-
cause node 100’s connection table says that it is adjacent to the des-
tination 104, the message is delivered locally. (3) The message is
also sent to the node on the other side of the destination: node 110.
(4) Node 110 checks for the halting condition (Case 4 of the an-

nealing algorithm); node 105 is indeed closer to the destination than
the previous node (100), and hence (5) the message is sent to node
105. (6) Node 105’s connection table says it is adjacent to destina-
tion 104. Message is delivered locally. (7) Message is sent to the
node on the other side, node 95. (8) Node 95 checks the halting
condition (annealing algorithm Case 4); its closest node (105) is not
closer to destination 104 than previous node 100, hence the mes-
sage is not forwarded. At the end of the algorithm, both nodes ad-
jacent to node 104 (nodes 100 and 105) are delivered with the mes-
sage

show that improvements in correctness of routing using tun-
nel edges are significantly higher when m ≥ 3. Figure 8
shows 3.9% broken pairs when m = 2 and 0.86% broken
pairs when m = 3.

Now consider a situation where a tunnel edge involves
exactly one forwarding node. When the forwarding node de-
parts, the current node also loses the tunnel edge connection.
Therefore, for fault-tolerance, it is also important that the

Cluster Comput (2009) 12: 239–256 247

Fig. 5 Tunnel edge between nodes A and B that cannot communicate
over TCP or UDP transports

Table 1 Probability of being able to form a tunnel edge as a function
of edge probability and number of required near connections on each
side

Edge prob Tunnel edge probability

m = 2 m = 3 m = 4 m = 5

0.70 0.7399 0.9323 0.9824 0.9954

0.75 0.8085 0.9633 0.9929 0.9986

0.80 0.8704 0.9832 0.9978 0.9997

0.90 0.9638 0.9986 0.9999 0.9999

forwarding set of nodes for tunnel edge contains more than
one node. The probability that forwarding set consists of at
least 2 nodes is given by:

P [forwarding set of size atleast 2]

= 1 −
k=1∑

k=0

P [forwarding set of size exactly k]

= 1 −
k=1∑

k=0

(
2(m − 1)

k

)
· (q2)k · (1 − q2)2(m−1)−k

and the expected size of the forwarding set is given by:

E[expected size of forwarding set]

=
k=2(m−1)∑

k=0

k · P [forwarding set of size exactly k]

=
k=2(m−1)∑

k=0

k ·
(

2(m − 1)

k

)
· (q2)k · (1 − q2)2(m−1)−k

= 2(m − 1) · q2

For m = 3, and q = 0.9, the expected size of the forwarding
set for a tunnel edge is 3.24, while the probability of having
a forwarding set of at least 2 nodes is 0.976.

5 Improvements in structured routing

In this section, we quantify the improvements in structured
routing due to annealing routing and tunnel edges with re-
spect to: (1) the all-to-all routability of the P2P network, and
(2) consistent routing of keys. The analysis is conducted by
simulating structured routing on randomly generated static
graphs that model the IPOP overlay, for varying edge prob-
abilities between pairs of nodes.

Scenarios such as symmetric NATs, multi-level NATs
and Internet route outages result in complex models for the
likelihood of two nodes being able to communicate. For ex-
ample, the likelihood of a node behind a symmetric NAT be-
ing able to form an edge with another arbitrary node depends
on the fraction of nodes that are public (or behind full-cone
NATs). In the multi-level NAT scenario (Fig. 2) where the
outermost NAT-P does not support “hairpinning”, the like-
lihood of a node E to form an edge with another arbitrary
node is a function of the fraction of nodes that are behind
the same NAT-P, but in a different semi-private network. An
Internet route outage between two sites A and B results in
the inability of any node in A to communicate with any node
in B.

A fault model to capture all such scenarios does not exist
in the literature. We investigate the existence of route out-
ages under the following two different models:

1. Uniform edge likelihood: Likelihood of an edge be-
tween a pair of nodes with a uniform pair-wise edge
probability and allow for high probabilities of P2P edges
not being able to form—as high as 30%, and

2. Nodes behind symmetric NATs: The fraction of public
nodes in the network is varied between 70% and 30%. Of
the remaining nodes behind NATs, 80% are considered
to exist behind cone NATs, while 20% are considered to
exist behind symmetric NATs. Nodes behind cone NATs
can create direct connections with cone NATed nodes,
and also with nodes on Internet. Nodes behind symmet-
ric NATs can only create direct connections with nodes
on the public Internet. This distribution is guided by the
analysis of different kinds of NATs in [10].

5.1 Simulation methodology

The simulation environment captures the algorithms used in
IPOP for structured overlay creation and routing. We create
1000 nodes with randomly generated 160-bit identifiers and
model pair-wise outages as follows.

248 Cluster Comput (2009) 12: 239–256

We simulate the uniform edge likelihood model with a
configurable probability q . Based on the probability q of
any pair of nodes being able to communicate using TCP or
UDP, we create a connection matrix that allows/disallows
connections between pairs of nodes. To model nodes behind
Symmetric NATs, we create a connection matrix that allows
all types of connections except the ones involving nodes be-
hind symmetric NATs and other NATed nodes. We then add
connections to nodes in the following steps:

1. At each node, attempt to add near connections to the im-
mediate m neighbors (on each side) respecting the con-
nection matrix.

2. If tunneling is enabled: identify all the missing connec-
tions between pairs of nodes, compute the overlap of their
connection tables to see if tunneling is possible, and add
the possible tunnel edges to the network.

3. If there are nodes with fewer than m connections on each
side: each such node tries to acquire more near connec-
tions (to its closest neighbors, and fully respecting the
connection matrix), until it has successfully acquired m

near connections on each side.
4. If there are nodes which acquired more than m connec-

tions on each side, these excess connections are trimmed
in the subsequent step.

5. We then add one far connection at each node (that is al-
lowed by the connection matrix). The distances traveled
by these connections in the structured ring follow the dis-
tribution described in [18].

To study the all-to-all routability of the network, we sim-
ulate the sending of a message between each pair of nodes,
and count the number of times the message is incorrectly
delivered. We conduct this experiment for 200 different ran-
domly generated graphs. To investigate correct routing of
keys, we randomly generate 10000 different keys. For each
key, we simulate the sending of a message addressed to that
key from each node as the source, and count the number of
times the lookup is wrongly delivered, i.e. to nodes other
than the node closest to the key in identifier space. We con-
duct this experiment for 200 different randomly generated
graphs.

Figure 6 shows the number of non-routable pairs (out of
1000 × 1000 possible pairs) of nodes for different values
of the number of near neighbors m, when neither annealing
routing nor tunnel edges are used. We observe that as edge
likelihood drops to 70% , the all-to-all routability of the net-
work drops to less than 90%, i.e. more than 10% of pairs are
non-routable. Furthermore, keeping more near connections
at each node only marginally improves the network routabil-
ity. Similar observations are also made for routing of keys
(see Fig. 7)—there is more than 10% chance that a key is
wrongly routed as the edge likelihood drops to 70%.

Fig. 6 At edge likelihood of 70% (0.7), the percentage of non-routable
pairs varies from 9.5% to 10.9% (the total number of pairs in the sim-
ulated network is 1,000,000)

Fig. 7 At edge likelihood of 70%, the percentage of wrongly routed
keys varies from 9.5% to 10.7% (the total number of simulated mes-
sages is 10,000,000)

5.2 Evaluating the impact of annealing routing

5.2.1 Uniform edge likelihood

In Fig. 9, we show the reduction in average number of non-
routable pairs using Algorithm 1 with m = 3; tunnel edges
are not enabled. We observe that, at an edge likelihood of
85%, the percentage of non-routable pairs with annealing
routing is about 0.6%, which is less than one-fifth of the
percentage when greedy routing (3.3%) is used. Even when
the edge likelihood drops to 70%, the percentage of non-
routable pairs (less than 3.4%) is still less than half of that
when greedy routing is used (more than 10%). It should also
be noted that annealing routing with m = 3 is more likely to
reach the correct destination than using greedy routing with
m = 5, for the same edge likelihood in these networks of
1000 nodes.

Cluster Comput (2009) 12: 239–256 249

Fig. 8 Comparing greedy routing with tunnel edges for m = 3 and
m = 2. At edge likelihood of 70%, the percentage of non-routable pairs
in a network of 1000 nodes is (1) 3.9% for m = 2, and (2) 0.86% for
m = 3

Fig. 9 Average number of non-routable pairs. At edge likelihood of
70%, the percentage of non-routable pairs for greedy and annealing
routing is (1) without tunnel edges, 10.26% and 3.4% respectively;
(2) with tunnel edges, 0.86% and 0.21% respectively. At edge likeli-
hoods of 95%, there are no non-routable pairs with tunnel edges

We measured the average number of hops taken by a mes-
sage for both greedy and annealing routing for these cases.
In a perfectly formed structured network, both routing algo-
rithms incur exactly the same number of hops. Otherwise,
the average number of hops between P2P nodes for anneal-
ing is almost the same as for greedy routing. For an edge
likelihood of 70% and m = 3, the ratio of number of hops
incurred by annealing to that of greedy is 1.01. Therefore,
annealing routing only incurs a marginal overhead in terms
of number of hops.

In Fig. 10, we show the average number of wrongly
routed key lookups for both annealing and greedy routing

Fig. 10 Average number of wrongly routed keys. At edge likelihood
of 70%, the percentage of wrongly routed keys for greedy and anneal-
ing routing is (1) without tunnel edges, 10.2% and 3.4% respectively;
(2) with tunnel edges, 0.86% and 0.19% respectively

using the methodology as described in Sect. 5.1. We observe
at an edge likelihood of 70% (m = 3), annealing routing re-
duces the chances of a key being wrongly routed from 10.2%
to 3.4%. By delivering a message at more than one node,
the annealing algorithm can result in creation of additional
(more than two) replicas for a key.2 The storage overhead
due to this additional replication was found to be 9.5%.

5.2.2 Nodes behind symmetric NATs

Figure 11 shows results for the scenario where 20% of simu-
lated NATed nodes are behind symmetric NATs. We observe
that even when the number of public nodes drops to less than
30%, the all-to-all routability of the network using annealing
routing exceeds 98.12% (as opposed to 94.4% with greedy
routing), which is about a 66% reduction in the number of
non-routable pairs to that of greedy routing.

5.3 Evaluating the impact of tunnel edges

5.3.1 Uniform edge likelihood

Figure 9 shows how the enhanced overlay structure because
of tunnel edges can improve the all-to-all routability of the
network, for m = 3. We observed that even at an edge likeli-
hood of 70%, tunnel edges substantially reduce the percent-
age of non-routable pairs of nodes from 3.4% to 0.21% for
annealing routing (from 10% to 0.86% for greedy routing).

Each virtual hop over a tunnel edge actually corresponds
to two overlay hops. We also recorded the actual number of

2Each key in IPOP-DHT is typically replicated at two nodes, on either
side of the key in identifier space.

250 Cluster Comput (2009) 12: 239–256

Fig. 11 Average number of non-routable pairs in a scenario where
20% of NATed nodes are behind symmetric NATs. When 70% of nodes
are behind NATs, the percentage of non-routable pairs for greedy and
annealing routing is (1) without tunnel edges, 5.6% and 1.88% respec-
tively; (2) with tunnel edges, 1.6% and 0.57% respectively. When 70%
of nodes are public, there are no non-routable pairs with tunnel edges

hops taken by messages addressed to exact destinations in an
overlay that supported tunnel edges. For an edge likelihood
of 70% and m = 3, the ratio of number of actual hops to that
of virtual hops was observed to be 1.14, which is a small
overhead considering the improvement in routability.

Figures 10 also compares how tunnel edges improve the
consistency of key routability of the network, for m = 3.
We observed that, at an edge likelihood of 70%, with tunnel
edges the chances of a key being wrongly routed are 0.86%
for greedy routing (and 0.19% for annealing routing).

5.3.2 Nodes behind symmetric NATs

Figure 11 shows the improvements in all-to-all routability
of the network when the number of public nodes is reduced
from 70% to 30%. Even when only 30% of the nodes are
public, tunnel edges improve the percentage of non-routable
pairs from 1.88% to 0.57% for annealing routing (from 5.6%
to 1.6% for greedy routing).

6 Tunnel edge implementation in IPOP

The IPOP P2P system provides extensive support for creat-
ing overlay links between nodes over a variety of transports
and incorporates decentralized UDP hole-punching. To im-
plement tunnel edges, we extend the existing mechanisms
for connection setup to discover suitable proxy nodes for
tunnel edges, when direct communication is not possible.

Connection setup between P2P nodes is preceded by a
connection protocol [14] that uses the P2P overlay to ren-
dezvous with a remote node for out-of-band exchange of

information relevant for communication (through Connect
To Me (CTM) messages), followed by a bidirectional link-
ing protocol that establishes the connection. In the original
IPOP system, the connection protocol allows nodes to ex-
change their NAT-assigned IP address/port. In this paper, we
use the same mechanism to also exchange information about
their connections to near neighbors.

6.1 TunnelEdgeListener

As described earlier, each connection in IPOP is based on
an edge. Each node has one or more Uniform Resource In-
dicators (URIs) that abstract the edge protocols it can sup-
port and the endpoints over which it can communicate. For
each type of edge, an EdgeListener is responsible for creat-
ing and maintaining edges of that type, and also sending and
receiving messages over connections using that edge type.
For example, to create an edge with another node using a
URI ipop.udp://128.227.56.123:4000, the UdpEdgeListener
is invoked, whereas to communicate with the same node us-
ing URI ipop.tcp://128.227.56.123:4001, the TcpEdgeLis-
tener is invoked. An IPOP node can have more than one
EdgeListener, and new types can be easily added.

Before we further describe the process of creating a tun-
nel edge, we overview the functionality that allows each
IPOP node C to also act as a message forwarder for com-
munication between two nodes A and B. The message from
the original source A is encapsulated inside a forward re-
quest message addressed to node C. When node C receives
the message from A, it extracts the original message (from
A to B), and sends it to node B. This functionality is used
by a new IPOP node to identify its left and right neighbors
in the P2P ring [14].

To enable connections between nodes A and B to be
proxied by common neighbors, we have implemented an
EdgeListener called TunnelEdgeListener. The TunnelEdge-
Listener is invoked together with the TCP and UDP Edge-
Listeners during the process of a connection setup. The URI
for a node corresponding to the tunnel edges is computed
dynamically by concatenating the addresses of its closest
structured connections. In addition to URIs corresponding
to TCP or UDP, nodes also exchange their tunnel URIs in-
side CTM messages during the connection protocol. Once
node A learns about the connections of node B, it can com-
pute the forwarding set F which is the intersection of its
own connections with those listed in the tunnel URI of B.

Having computed the forwarding set F with remote node
B, the node A sends this information to B in an Edge Re-
quest using the forwarding services of one of the nodes in F .
When B receives an Edge Request, it replies back with an
Edge Response and also records the new tunnel edge. On
receiving the Edge Response, the node A also records the

Cluster Comput (2009) 12: 239–256 251

new tunnel edge. Once the tunnel edge is successfully cre-
ated, nodes A and B can subsequently create a connection
between them.

Our implementation does not require the nodes in the for-
warding set to keep any state about the tunnel edges that
are using them. Furthermore, the periodic ping messages to
maintain a connection based on a tunnel edge also keep the
underlying connections alive. Therefore, no extra overhead
is incurred by nodes in the forwarding set. The forwarding
set for a tunnel edge can change over time as connections
are acquired or lost. To keep the forwarding set up to date
and synchronized, nodes A and B notify each other about
the changes in their connections.

When a node joins an existing overlay and cannot com-
municate with its immediate left and right neighbors, its tun-
nel URI is initially empty since it does not have any connec-
tions yet. However, it is possible that the new node can com-
municate with its other near neighbors, therefore it must first
try to form connections with them and then use those con-
nections to form tunnel edges with its immediate neighbors
on the P2P ring. The new node learns about its other close
neighbors through the CTM messages it receives from its
immediate neighbors, which also contain a list of their near
connections.

7 Experiments

In this section, we demonstrate the ability of our tunnel edge
implementation to provide a complete ring of P2P nodes in
environments where the majority of nodes are behind NATs
and some pairs of nodes cannot communicate with each
other directly. We also observe the time it takes for a new
node to become connected with its left and right neighbors in
an existing P2P ring, in situations where these connections
have to use tunnel edges. Finally, we also study the impact
of using annealing routing and tunnel edges on connectivity
within a WOW when P2P nodes only had 81% chance of
being able to setup connections.

7.1 Structure verification of P2P network

To verify the completeness of the P2P ring, we iteratively
“crawl” the IPOP network using the immediate right neigh-
bor information at each node. We check the consistency of
its connections with respect to its predecessor. Specifically,
for every node, we check if its immediate left near connec-
tion node identifies it as immediate right right connection
node.

When two adjacent P2P neighbors cannot form a con-
nection, it is likely that crawling the network using neighbor
information will skip a node. If the next reported node has
a connection with the missing node, an inconsistency will

be reported. However, in case even the second node does
not have connection to the missing node, the inconsistency
may go unnoticed. It is still possible that we observe a 100%
consistent ring with a few nodes completely missing. These
hidden nodes can be detected using information logged by
IPOP at each node; knowledge of the number of nodes and
their identifiers is also available.

We demonstrate the effect of our techniques with respect
to overlay structure, in both a synthetic environment where
we artificially create situations where connection setup is
not always possible, and also in a large-scale PlanetLab en-
vironment, which is known to exhibit route outages between
pairs of hosts.

7.1.1 NATed environment

To demonstrate the ability of IPOP to deal with heavily-
NATed environments, we deployed a P2P network of 1030
nodes involving 12 private networks (each containing 80
P2P nodes) behind port-restricted cone NATs, and a seed
network of 70 P2P nodes that was reachable from all other
P2P nodes.

Each node was configured to form connections with 3
neighbors on its immediate left and right. Of the total of
6180 structured near connections reported by all nodes,
about 4926 (70%) existed between nodes which were on dif-
ferent private networks. These connections were not possi-
ble without decentralized NAT traversal. The P2P ring was
100% consistent.

7.1.2 Incomplete underlying network

In this experiment, we built a network of 711 P2P nodes in-
crementally. Starting with a seed network of 71 nodes, we
bootstrapped another 640 P2P nodes on 16 hosts (each run-
ning 40 P2P nodes). Each P2P node was configured to use
a unique pre-defined UDP port number. Using IPtables, we
configured the firewall rules on the hosts to drop UDP pack-
ets such that the probability of setting up UDP-based con-
nection between any pair of P2P nodes was 0.95.

Once the P2P structure was formed, we observed there
were 35 pairs of adjacent nodes on the P2P ring that could
not setup a UDP connection because of firewall rules. These
pairs of nodes were however able to connect using tunnel
edges, thus rendering a complete P2P ring.

7.1.3 Wide-area deployment

In this experiment, we deployed a network of over 420 nodes
on PlanetLab with distinct hosts in North America, South
America, Asia, Europe and Australia. We observed that as
many as 9 adjacent pairs on P2P ring (in North America, Eu-
rope and Asia) could not communicate using TCP or UDP

252 Cluster Comput (2009) 12: 239–256

transports. Their inability to connect, which we observed in-
directly through the fact that tunnel edges had been created,
was verified directly by logging into each host and observ-
ing that ICMP messages (and SSH connections) to its peer
did not go through either.

To further evaluate the ability of tunnel edges to form,
we deployed additional 20 P2P nodes on hosts H1 and 20
nodes running on host H2. These nodes were configured to
use only UDP transports, and their hosts H1 and H2 were
configured to drop UDP packets between them, thus model-
ing a scenario where there is a routing outage between two
sites. We observed two instances where one of the adjacent
pairs was running on H1, while the other was running on
H2. Tunnel edges formed between these nodes in both cases,
again rendering a 100% consistent P2P ring. Without tunnel
edges, these nodes would have had inconsistent view of their
local neighborhoods (in identifier space), and the messages
addressed to them were likely to be misdelivered.

We measure the delay incurred by a new P2P node (on a
home desktop) to get connected with its left and right neigh-
bors on the ring using tunnel edges over several trials. The
average time to get connected with neighbors is less than
10 seconds, using UDP or TCP. The home desktop did not
have an Internet path to a few nodes on PlanetLab and every
time it became a neighbor to one of these nodes, it relied
on tunnel edges to get connected, which took 41 seconds on
average. Our current implementation delays creation of tun-
nel edges by an arbitrarily chosen interval of 15 seconds (to
accommodate for the delay in setting up TCP or UDP con-
nections due to hole-punching or packet losses). However,
we also observed cases where it took up to 124 seconds to
form tunnel edges with the neighbors. This delay in forming
tunnel edges is explained as follows.

The linking protocol for connection setup is executed
through one or more linkers; each linker sends link messages
using the different URIs of the remote node in parallel until
it starts receiving replies. Only one linker is active at a time,
during which it sends several link messages over a URI until
it starts receiving replies or gives up. Initially, the new node
does not have any connections to tunnel over and its tunnel
URI is empty. It does not observe a connection overlap with
its neighbor node (with which it has exchanged Connect To
Me messages) to successfully create a tunnel edge. Simi-
larly, the neighbor node also observes an empty tunnel URI
for the new node, and hence cannot create a tunnel edge.
The first linkers that are created at these nodes can thus only
succeed using TCP or UDP. When TCP or UDP communi-
cation is not possible, it takes several attempts for the linker
to finish, and the next linker to be activated. In some cases,
the linker containing a usable tunnel URI (created after the
node has acquired a few connections) is still waiting in the
queue.

We have now tuned our implementation of TunnelEdge-
Listener, such that instead of failing immediately when an

overlap of connections does not exist with a valid (non-
empty) tunnel URI of remote node, it retries after some
interval (multiple times) to check if an overlap is created.
In the meantime, the new node can acquire connections to
its other close neighbors that overlap with those listed in
the tunnel URI of its closest neighbor, and tunnel edge cre-
ation can succeed. With this enhancement, there is a greater
chance for tunnel edge creation to succeed through the first
linker that is created at the new node. By not waiting for sub-
sequent linkers to create a tunnel edge, we have been able
to reduce the average time to get connected with neighbors
from 41 seconds to less than 20 seconds.

7.2 Connectivity within a WOW

In this section, we study the impact of using annealing rout-
ing and tunnel edges with respect to improvements in con-
nectivity within a WOW-based Condor pool. Using a boot-
strap infrastructure of 20 P2P nodes, we created a WOW
consisting of 180 Condor worker nodes and 1 manager. We
measure the number of workers reported by the manager
(using the condor_status command), which is representative
of the achievable throughput of the Condor pool. Further-
more, once a worker has been chosen for job execution by
the Condor manager through matchmaking, the process of
job submission involves direct communication between the
submit node and the worker. We also report on the all-to-
all connectivity between worker nodes. We send 30 ICMP
ping messages from each worker to every other worker, and
counted a pair as not being connected if ping reported 100%
packet loss.

Initially P2P edges are allowed to form without con-
straints. The Condor manager reported all 180 workers, and
the workers were all-to-all connected. The P2P ring was
100% consistent. To create situations where direct com-
munication was not always possible, we configured the
UdpEdgeListener at each node to deny UDP-based connec-
tions with a probability 0.10. The probability of two nodes
being able to form a UDP-based connection is thus given by:
(1 − 0.10)2 = 0.902 = 0.81.

We then configured the P2P nodes to only use greedy
routing and no tunnel edges. The Condor manager reported
at most 160 nodes, i.e. only 88% of the worker nodes were
available. In addition, there were 6020 pair-wise worker
connections (out of 180 × 180) that could not form. In an-
other experiment, we configured the P2P nodes to use an-
nealing routing but no tunnel edges. The Condor manager
reported 177 worker nodes, and there were 859 pairs of
workers that could not communicate with each other.

Finally, we configured the P2P nodes to use both anneal-
ing routing and tunnel edges. The P2P ring consisting of 201
nodes (20 bootstrap, 1 manager and 180 workers) reported
40 tunnel edges, which formed when UDP communication

Cluster Comput (2009) 12: 239–256 253

was denied by one of the UdpEdgeListener between adja-
cent P2P nodes. We observed only one inconsistency on the
P2P ring, where a tunnel edge did not form because the P2P
nodes did not have any overlap on their UDP-based connec-
tions, the overlapping connections were already based on
tunnel edges and our existing implementation does not sup-
port recursive tunneling. The Condor manager reported all
180 workers, and there were only 7 pairs of workers that
could not communicate.

8 Discussion

Our current implementation of tunnel edges “passively” re-
lies on an overlap to exist between connections of two
nodes for forming an tunnel edge between them. Symmetric
NATed nodes can be difficult to handle using this implemen-
tation since they can only communicate with public nodes
(or nodes behind full cone-NATs).

Consider a scenario where we start at a perfectly formed
ring of P2P nodes, and there exists a sequence of 2K con-
secutive nodes (ni, ni+1, . . . , ni+2K−1, K is the number of
connections each node keeps on its either side) on the P2P
ring that are behind cone NATs. Now a new node Nnew is
bootstrapped with an identifier that lies within this range of
nodes (i.e. between ni+K−1 and ni+K). Node Nnew cannot
establish a direct connection with any of its K neighbors
on either side, as a result an overlap of connections with its
neighbors does not exist.3 Connection setup protocols will
hence fail with its immediate neighbors and one of more in-
consistencies will appear in the P2P ring.

We now present a protocol for creating tunnel edges that
incorporates detection of such cases where a “passive” over-
lap does not exist. The approach is to discover public nodes
in the network, create connections with common sets of such
nodes, and then use these connections to form tunnel edges.

8.1 Active tunnel edge creation protocol

A tunnel edge involving a node behind NAT and another
node behind a symmetric NAT has to involve a forward-
ing set consisting of public nodes. Therefore, the process
of tunnel edge creation is preceded by an additional step for
discovering common public nodes, and both nodes creating
connections to them. Each new node in the network is al-
ready initialized with URIs of a few public nodes in the seed
network. It is possible to use these nodes as the forward-
ing set for creating tunnel edges. However, in typical WOW

3It is possible that the new node can create tunnel edges with nodes at
the edge of this range, but since our implementation does not support
recursive tunneling, this overlap is not useful for creating a tunnel edge
with immediate neighbors, ni+K−1 and ni+K .

Fig. 12 Illustration of the use of bounded broadcast over a segment
of the P2P ring to search for public nodes. Left: a segment of the P2P
ring. Right: the resulting tree for a bounded broadcast on [n1, n10)

deployments, a common configuration file listing the nodes
in the seed network is available at each node. If all nodes
start using these bootstrap nodes for tunnel edge forward-
ing, as the WOW grows, tunnel edge forwarding can impose
a large load on the bootstrap nodes even if there are other
WOW nodes that may be public. Therefore, a mechanism is
required to discover other public nodes in the network. The
next section describes an efficient mechanism to run queries
on the structured P2P network.

8.1.1 Discovering public nodes

In the simplest case, it is possible to traverse the P2P ring
sequentially until a public node is discovered. For a network
of size n, this search runs in O(n) time and is inefficient
for large networks. It is possible to carry out the discovery
(in sub-linear time) as follows. The search algorithm builds
a tree consisting of P2P nodes within a segment of the P2P
ring [A,B), starting at the current node A (see Fig. 12). The
query is propagated down the tree in parallel all the way to
leaf nodes. Each node computes the local result (expressed
as a map function), and waits for the each child sub-tree to
return results. Leaf nodes immediately return their local re-
sults. As the results propagate up the tree, an aggregation
(expressed as a reduce function) is performed at each in-
termediate node. To compute the children at each node, the
following algorithm is used.

To broadcast over a region of ring starting at the current
node A and ending at a node B, the node determines all its
connections in the region [A,B), say c1, c2, c3, . . . , cm. The
node then assigns to ci , the segment [ci, ci+1]. The process
continues until the current node is the only node in its as-
signed range. It can be shown that given O(log(n)) con-
nections at each node, the maximum depth of the tree is
O(log(n)), for a range of size n. It is possible to terminate

254 Cluster Comput (2009) 12: 239–256

the query propagation earlier up in the tree if certain crite-
ria are met, expressed in map and reduce functions. Instead
of searching the entire ring, a node initially queries a small
segment of the ring, starting at itself. If the search fails, it
tries the next segment twice as big. This process is repeated
until the entire ring is searched or a set threshold is reached.

To discover public nodes, the map function returns a list
containing the local node’s P2P identifier (if it is a public
node), or an empty list otherwise. The reduce function sim-
ply performs list concatenation of child results. It is also pos-
sible to include other criteria such as the CPU load on the
host or network proximity to discover a forwarding nodes
through appropriately chosen map and reduce functions.

8.1.2 Tunnel edge creation

Once both nodes discover a set of public nodes, they can
exchange this information and create common connections
to these nodes. Both nodes create connections to common
nodes. These common nodes form the forwarding set of the
tunnel edge, and the EdgeRequest/EdgeResponse protocol,
as described in Sect. 6, can then work over this forwarding
set.

9 Related work

In [23], the authors describe the implementation of a Sockets
library that can be used by applications for communication
between nodes subject to a variety of constraints in wide-
area networks. Our work, on the other hand, investigates an
approach where applications can be deployed without any
modifications, by providing a virtual network with all-to-all
connectivity. Furthermore, our approach is self-configuring
and fully decentralized.

Structured P2P systems (Chord [30], Pastry [29], Bam-
boo [3], Kademlia [24]) have primarily focused on efficient
overlay topologies [17], reliable routing under churn [5, 27],
and improving latency of lookups through proximity-aware
routing [6]. In [12, 16], the authors describe the affect of a
few (5% broken pairs) Internet routing outages on wide-area
deployments of structured P2P systems. On the other hand,
our focus is to enable overlay structure maintenance when a
large majority of nodes are behind NATs, and several scenar-
ios hinder communication between nodes. The techniques
described in this paper facilitate correct structured routing,
even when many (up to 30%) pairs of nodes cannot commu-
nicate directly using TCP or UDP.

In [25], the authors present techniques to provide con-
tent/path locality and support for NATs and firewalls, where
instances of conventional overlays are configured to form
a hierarchy of identifier spaces that reflects administrative
boundaries and respects connectivity constraints among net-
works. In a Grid scenario, however, network constraints are

not representative of collaboration boundaries, as virtual or-
ganizations (VOs) are known to span across multiple admin-
istrative domains.

A technique similar to tunnel edges is also described
in [26], in the context of a P2P-based email system built
on top of Pastry. Our work, on the other hand, uses tun-
neling to improve all-to-all virtual-IP connectivity between
WOW nodes. We also quantify the impact of the described
techniques on structured routing through simulations, un-
der different edge probabilities between nodes. Unmanaged
Internet Protocol (UIP) [9] proposes to use tunneling in
Kademlia DHT to route between “unmanaged” mobile de-
vices and hosts in ad hoc environments, beyond the hierar-
chical topologies that make up the current Internet. How-
ever, our focus is to facilitate IP communication between
Grid resources in different “managed” Internet domains.

In [7], the authors describe an algorithm for providing
strong consistency of key-based routing (KBR) in dynamic
P2P environments, characterized by frequent changes in
membership due to node arrivals and departures. The im-
provements in eventual consistency by using the techniques
described in this paper can benefit the implementation of the
strongly consistent KBR. Similarly, [2] provide asymptotic
upper bounds on the number of hops taken by messages un-
der varying rates for link and node failures, and describe
heuristics to improve routing under those failures. However,
their work does not consider failures of links with neighbor
nodes and the subsequent impact on consistent structured
routing. To complement fault-tolerant routing, our work also
attempts to correct the overlay structure in presence of link
failures.

10 Conclusion and future work

In this work, we describe and evaluate two synergistic ap-
proaches for improving routing in structured P2P networks:
annealing routing and tunnel edges. Together, these ap-
proaches improve the all-to-all routability of a 1000-node
ring structured overlay from 90% to 99%, when pairs of
nodes in the underlying network only have a 70% chance of
being able to communicate. Furthermore, when only 30%
of the nodes in a 1000 node network are public, the de-
scribed techniques improve all-to-all routability of the net-
work from less than 95% to more than 99%. Probabilistic
analysis and simulation-based experiments suggest that tun-
nel edges are effective when each node maintains at least 3
neighbors on each side. Experiments with an implementa-
tion demonstrated the ability of IPOP to provide a consis-
tent P2P ring, even when adjacent pairs of node in identifier
space cannot communicate using TCP and UDP, in both syn-
thetic environments and a wide-area deployment. The con-
sistent structured P2P routing has also been shown to im-

Cluster Comput (2009) 12: 239–256 255

prove the virtual-IP connectivity within a WOW-based con-
dor pool experimentally.

References

1. Anderson, D.P., Cobb, J., Korpella, E., Lebofsky, M., Werthimer,
D.: Seti@home: an experiment in public-resource computing.
Commun. ACM 11(45), 56–61 (2002)

2. Aspnes, J., Diamadi, Z., Shah, G.: Fault-tolerant routing in peer-
to-peer systems. In: Proc. of the Symp. on Principles of Distrib-
uted Computing (PODC), Monterey, CA, July 2002

3. The bamboo dht—introduction. http://bamboo-dht.org/
4. Calder, B., Chien, A.A., Wang, J., Yang, D.: The entropia virtual

machine for desktop grids. In: CSE Technical Report CS2003-
0773, University of California, San Diego, San Diego, CA, Oct.
2003

5. Castro, M., Costa, M., Rowstron, A.: Performance and depend-
ability of structured peer-to-peer overlays. In: Proc. of the Conf.
on Dependable Systems and Networks, June 2004

6. Castro, M., Druschel, P., Hu, Y.C., Rowstron, A.: Topology-aware
routing in structured peer-to-peer overlay networks. In: Microsoft
Research MSR-TR-2002-82, Sep. 2002

7. Chen, W., Liu, X.: Enforcing routing consistency in structured
peer-to-peer overlays: should we and could we? In: Proc. of the
Workshop on Peer-to-Peer Systems (IPTPS), Santa Barbara, CA,
Feb. 2006

8. Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L., Wawr-
zoniak, M., Bowman, M.: Planetlab: an overlay testbed for broad-
coverage services. ACM SIGCOMM Comput. Commun. Rev.
33(3), 3–12 (2003)

9. Ford, B.: Unmanaged Internet Protocol: taming the edge network
management crisis. In: Proc. of the Workshop on Hot Topics in
Networks (HotNets), Cambridge, MA, Nov. 2003

10. Ford, B., Srisuresh, P., Kegel, D.: Peer-to-peer communication
across network address translators. In: Proc. of the USENIX An-
nual Technical Conference, Anaheim, California, April 2005

11. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid:
enabling scalable virtual organizations. Int. J. Supercomput. Appl.
15(3), 200–222 (2001)

12. Freedman, M.J., Lakshminarayanan, K., Rhea, S., Stoica, I.:
Non-transitive connectivity and DHTs. In: Proc. of the USENIX
WORLDS, San Francisco, CA, Dec. 2005

13. Ganguly, A., Agrawal, A., Boykin, P.O., Figueiredo, R.J.: IP over
P2P: enabling self-configuring virtual IP networks for grid com-
puting. In: Proc. of Intl. Parallel and Distributed Processing Symp.
(IPDPS), Rhodes, Greece, April 2006

14. Ganguly, A., Agrawal, A., Boykin, P.O., Figueiredo, R.J.: Wow:
self-organizing wide area overlay networks of virtual worksta-
tions. In: Proc. of Intl. Symp. on High Performance Distributed
Computing, Paris, France, June 2006

15. Ganguly, A., Wolinsky, D., Boykin, P.O., Figueiredo, R.J.: De-
centralized dynamic host configuration in wide-area overlays of
virtual workstations. In: Proc. of the Workshop on Desktop Grids
and Volunteer Computing Systems, with IPDPS, Long Beach, CA,
March 2006

16. Gerding, S., Stribling, J.: Examining the trade-offs of structured
overlays in dynamic non-transitive network, Dec. 2003. http://
pdos.lcs.mit.edu/~strib/doc/networking_fall2003.ps

17. Gummadi, K., Gummadi, R., Gribble, S., Ratnasamy, S., Shenker,
S., Stoica, I.: The impact of DHT routing geometry on resilience
and proximity. In: Proc. of ACM SIGCOMM, Karlsruhe, Ger-
many, Aug. 2003

18. Kleinberg, J.: Nature 406, 845 (2000)

19. Li, J., Stribling, J., Morris, R., Kaashoek, M.F., Gil, T.M.: A per-
formance vs. cost framework for evaluating DHT design tradeoffs
under churn. In: Proc. IEEE INFOCOM, 2005

20. Liang, J., Kumar, R., Ross, K.: The fasttrack overlay: a measure-
ment study. In: Computer Networks (Special Issue on Overlays),
2005

21. Litzkow, M., Livny, M., Mutka, M.: Condor—a hunter of idle
workstations. In: Proc. of Intl. Conference on Distributed Com-
puting Systems, June 1988

22. Lo, V., Zappala, D., Zhou, D., Liu, Y., Zhao, S.: Cluster computing
on the fly: P2P scheduling of idle cycles in the internet. In: Proc.
of the 3rd Intl. Workshop on Peer-to-Peer Systems (IPTPS), San
Diego, CA, Feb. 2004

23. Maassen, J., Bal, H.E.: Smartsockets: solving the connectivity
problems in grid computing. In: Proc. of Symp. on High Perfor-
mance Distributed Computing Symposium, Monterey Bay, CA,
June 2007

24. Maymounkov, P., Mazières, D.: Kademlia: a peer-to-peer infor-
mation system based on the xor metric. In: Proc. of the Workshop
on Peer-to-Peer Systems (IPTPS), Cambridge, MA, March 2002

25. Mislove, A., Druschel, P.: Providing administrative control and au-
tonomy in structured peer-to-peer overlays. In: Proc. of the Work-
shop on Peer-to-Peer Systems, San Diego, CA, Feb. 2004

26. Mislove, A., Post, A., Haeberlen, A., Druschel, P.: Experiences in
building and operating epost, a reliable peer-to-peer application.
In: Proc. of European Conf. on Computer Systems, Leuven, Bel-
gium, April 2006

27. Rhea, S., Geels, D., Roscoe, T., Kubiatowicz, J.: Handling churn
in a DHT. In: Proc. of USENIX Technical Conference, June 2004

28. Rhea, S., Godfrey, B., Karp, B., Kubiatowicz, J., Ratnasamy, S.,
Shenker, S., Stoica, I., Opendht, H.Yu.: A public DHT service and
its uses. In: Proc. of ACM SIGCOMM, Philadelphia, PA, Aug.
2005

29. Rowstron, A., Druschel, P.: Pastry: scalable, decentralized object
location and routing for large-scale peer-to-peer systems. In: Proc.
of the Intl. Conf. on Distributed Systems Platforms (Middleware),
Heidelberg, Germany, Nov. 2001

30. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R., Kaashoek,
M.F., Dabek, F., Balakrishnan, H.: Chord: a scalable peer-to-peer
lookup protocol for internet applications. IEEE/ACM Trans. Netw.
11(1), 17–32 (2003)

31. Universal plug and play in windows xp. http://technet.microsoft.
com/en-us/library/bb457049.aspx

32. Wolinsky, D., Agrawal, A., Boykin, P.O., Davis, J., Ganguly, A.,
Paramygin, V., Sheng, P., Figueiredo, R.: On the design of virtual
machine sandboxes for distributed computing in wide area over-
lays of virtual workstations. In: Proc. of the Workshop on Virtual-
ization Technology in Distributed Computing, with Supercomput-
ing, Tampa, FL, Nov. 2006

Arijit Ganguly received his Ph.D.
in Computer Science from Univer-
sity of Florida in 2008, and under-
graduate degree (B.Tech.) in Com-
puter Science from Indian Institute
of Technology, Guwahati (India) in
the year 2002. His research inter-
ests include Grid Computing, P2P
systems, autonomic computing, vir-
tual machines and networks. He cur-
rently works as a Software Develop-
ment Engineer for the Elastic Com-
pute Cloud (EC2) at Amazon.com
in Seattle. Previously, Arijit did
summer internships at VMware,

IBM Research and Microsoft in 2005, 2006 and 2007, respectively.

http://bamboo-dht.org/
http://pdos.lcs.mit.edu/~strib/doc/networking_fall2003.ps
http://pdos.lcs.mit.edu/~strib/doc/networking_fall2003.ps
http://technet.microsoft.com/en-us/library/bb457049.aspx
http://technet.microsoft.com/en-us/library/bb457049.aspx

256 Cluster Comput (2009) 12: 239–256

P. Oscar Boykin is an Assistant
Professor in the Department of Elec-
trical and Computer Engineering at
the University of Florida. He re-
ceived his Ph.D. in Physics from the
University of California at Los An-
geles. His research interests include
complex networks, P2P networking,
Grid Computing, and Quantum In-
formation Theory.

David I. Wolinsky received his
Bachelors of Science in Computer
Engineering in 2005 followed by
a Masters of Science in Electrical
Engineering in 2007 both from the
University of Florida. He is cur-
rently working towards a Doctor of
Philosophy in Electrical Engineer-
ing. He has had the privilege of
working on projects that include the
Grid Appliance, IPOP, Brunet, and
SocialVPN. His current research in-
terests are in distributed security and
data structures.

Renato J. Figueiredo is an Asso-
ciate Professor at the Department
of Electrical and Computer Engi-
neering of the University of Florida.
Dr. Figueiredo received the B.S. and
M.S. degrees in Electrical Engineer-
ing from the Universidade de Camp-
inas in 1994 and 1995, respectively,
and the Ph.D. degree in Electri-
cal and Computer Engineering from
Purdue University in 2001. From
2001 until 2002 he was on the fac-
ulty of the School of Electrical and
Computer Engineering of North-
western University at Evanston, Illi-

nois. His research interests are in the areas of virtualization, distributed
systems, overlay networks, computer architecture, and operating sys-
tems.

	Improving peer connectivity in wide-area overlays of virtual workstations
	Abstract
	Introduction
	Connectivity hazards in wide-area networks
	Impact of connectivity constraints
	Impact on core structured overlay routing
	Effect on all-to-all connectivity
	Effect on dynamic virtual IP configuration
	Effect on completion of DHT operations
	Effect on DHT dynamics

	Consistent P2P routing under connectivity constraints
	Annealing routing
	Tunnel edges
	Probabilistic analysis of tunnel edges

	Improvements in structured routing
	Simulation methodology
	Evaluating the impact of annealing routing
	Uniform edge likelihood
	Nodes behind symmetric NATs

	Evaluating the impact of tunnel edges
	Uniform edge likelihood
	Nodes behind symmetric NATs

	Tunnel edge implementation in IPOP
	TunnelEdgeListener

	Experiments
	Structure verification of P2P network
	NATed environment
	Incomplete underlying network
	Wide-area deployment

	Connectivity within a WOW

	Discussion
	Active tunnel edge creation protocol
	Discovering public nodes
	Tunnel edge creation

	Related work
	Conclusion and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

