
SOLARE: Self-Organizing Latency-Aware Resource Ensemble

Heungsik Eom*, David Isaac Wolinsky**, and Renato J. Figueiredo*

*Advanced Computing and Information Systems

Laboratory
Department of Electrical and Computer Engineering

University of Florida, Gainesville, USA
E-mail: eomhes@gmail.com, renato@acis.ufl.edu

**Department of Computer Science

Yale University
New Haven, USA

E-mail: isaac.wolinsky@gmail.com

Abstract— This paper proposes and evaluates Self-Organizing
Latency-Aware Resource Ensemble (SOLARE), a peer-to-peer
self-organizing and self-managing cluster system based upon
network coordinates and utility functions. In contrast to
previous works, SOLARE is a fully decentralized clustering
algorithm without any central units such as servers, super
peers, cluster heads or landmarks. Furthermore, SOLARE
allows for adaptability to dynamic network changes by
monitoring the utility of a cluster and migrating nodes to other
higher-utility clusters when the utility of an existing cluster is
low. Quantitative, simulation-driven evaluations show that
SOLARE is able to satisfy user demands expressed by utility
functions that integrate system parameters in terms of intra
cluster latencies and the number of cluster members. Also, we
verify the ability of SOLARE to adapt to dynamic network
changes through simulation based experiments that consider
the number of nodes which migrate into another cluster and
average utility value as nodes join SOLARE.

Keywords-Clustering, utility functions, latency-aware,
structured P2P networks.

I. INTRODUCTION
In recent years, the structures of large-scale network have

been extended from client-server architectures for traditional
web services to the distributed systems such as Peer-to-Peer
(P2P) networks and Distributed Hash Tables (DHTs) [28-
30]. Particularly, distributed systems have been increasingly
applied to applications including online gaming, content
distribution networks, and storage systems. One of the key
challenges posed by these systems is locating or connecting a
subset of nodes that satisfy user-demands with respect to
network proximity. In distributed online gaming services, for
example, players seek to organize clusters so that those in the
same cluster can experience low latency to each other and
enjoy the game without delay perceived by users. In
addition, the supply of powerful commodity computers and
the availability of high speed Internet have enabled grid
computing environments capabilities. In such environments,
latency-sensitive applications such as parallel processing
tasks and workflows benefit from proximity among workers,
and the ability to discover resources which satisfy job
demands and are bound by pair-wise latency constraints is
important. For such reasons, the inherent support for large-
scale systems to self-organize into clusters that guarantee a
certain degree of network proximity allows middleware and

applications to seamlessly discover resources that are close
in a network latency sense. With the approach described in
this paper, proximity-aware queries can be efficiently
performed through scalable P2P queries within the self-
organized cluster(s) that a node belongs to.

In this paper, we propose SOLARE, a peer-to-peer,
utility function based self-managing system that self-
organizes clusters in a proximity-aware structured overlay
topology. To do this, we rely on a structured P2P network as
underlying global overlay network and a self-organizing,
decentralized network coordinate system. As reviewed in the
next section, there have been a number of related approaches
whereby nodes are clustered based on certain criteria, but to
the best of our knowledge, this paper proposes the first
implementation which applies utility functions and network
coordinates for the clustering process. The main idea of
SOLARE is that each node searches and joins the highest
utility valued cluster. On the other hand, if there is no cluster
whose utility is greater than the user-defined threshold, the
node creates a new cluster declaring its own coordinate as
the virtual center of cluster. Furthermore, a node periodically
monitors the status of the cluster that it is currently a member
of in order to migrate to another cluster whenever the utility
is dropped below a threshold. In our system, migrating
clusters means changing the cluster membership rather than
physically moving from one cluster to another cluster. In
order to calculate the utility of clusters, we select the distance
to the virtual center of the cluster and the size of the cluster
(i.e., the number of cluster members) as utility properties. All
participants are located in a 2-dimensional space such that
each node has the ability to calculate the Euclidean distance
to any points of 2-dimensional space or other nodes using a
Vivaldi network coordinate system [2]. It is important to note
that SOLARE is independent of the network coordinate
system. In fact, even though we adopt the Vivaldi network
coordinate system, other related approaches such as GNP
[12] and PIC [13] can be used for the core of network latency
prediction of our cluster algorithm as well. While this paper
focuses on latency-based network coordinates, approaches
that consider a bandwidth-based coordinate systems, such as
Sequoia [11][31] can be also considered.

The rest of the paper is structured as follows. In Section
II, we overview previous works on clustering approaches for
distributed systems and utility functions in autonomic
systems. Section III presents the system model and basic
elements of SOLARE. Section IV describes the procedure of

2011 IEEE International Conference on High Performance Computing and Communications

978-0-7695-4538-7/11 $26.00 © 2011 IEEE

DOI 10.1109/HPCC.2011.38

229

the proposed clustering system and the performance
evaluation of our system is presented in Section V. Lastly,
Section VI concludes the paper.

II. RELATED WORK

A. Clustering approaches on distributed systems
Similar studies to our work have been done in order to

offer proximity-based routing protocols. In [19], the Plethora
routing core employs a two-level overlay architecture with
global overlay and local overlays. In particular, local
overlays rely on the organization of the Internet as a
collection of Autonomous Systems (ASs) so that they serve
as caches to provide data locality. IP-based clustering for
P2P networks has no need for active measurement of
latencies, minimizing system maintenance cost [23]. Instead,
the authors provide a simple method for the construction of
clusters based on static, readily available information (i.e., IP
address) proving the correlation among common IP prefix
length of communication nodes and latency. The above
approaches, however, use only static information without
any measurements, which makes it difficult to handle
dynamic network changes. Francois Cantin et al. [20] adopt
the Quality Threshold (QT) algorithm to propose a self-
organized clustering scheme which is built on an existing
Internet coordinate system. Also, they present two variants of
distributed clustering algorithm: one aims at reduction of the
clustering construction time, the other tries to minimize the
overhead of the clustering process. Nevertheless, each node
needs to perform the computation for QT algorithm as well
as calculating the distance between its first- and second-order
neighbors, introducing additional overheads. The novelty
which distinguishes our work from the above-mentioned
approaches is that our work is a fully decentralized and
autonomous approach, not relying upon any central units
such as servers, super peers, cluster heads or landmarks but
utilizing utility functions.

Clustering techniques have been also adopted in other
domains such as network modeling and performance
evaluation. In [22], the authors show that both geographical
and interest-based clustering properties inherently exist and
can be leveraged to improve the search mechanisms in file
sharing systems using P2P networks. Tian Bu et al. [27]
provide the Internet topology generator using the cluster
coefficient. Also, wireless sensor networks achieve
prolonging the lifespan and reducing the overhead via
cluster-based protocols [24-26].

B. Utility functions in autonomous systems
Utility functions provide a natural and advantageous

framework for achieving self-optimization in autonomic
computing [1]. In fact, applying utility functions to
autonomic systems has been done in various studies. In
[14][16], the authors have proposed utility-based resource
allocation system consisting of a number of logically
separated application environments each having an
independent utility function. Along with application
environments, a global resource arbiter performs the

allocation of resources optimizing the summation of utility
functions from application environments. Similar work has
been considered in [17]. In this work, however, utility is
described with respect to low-level resources such as CPU,
disk, and memory instead of system-level attributes. In [18],
the authors propose an energy efficient cooling system for
data centers applying utility functions. It formulates simple
utility functions that describe a tradeoff between energy and
temperature and shows how to optimize a setting of control
parameters, fan speeds and on/off state of air conditioners,
using utility functions. Paul de Grandis et al. [21] present
the fundamental steps of non-analytic approach on
leveraging utility functions at the application level. Also
they apply their approach to two different case studies, FTP
download and log explosion.

III. SYSTEM MODEL AND ARCHITECTURE
The main goal in SOLARE is to construct utility

functions-based, self-organizing and self-managing cluster
systems such that nodes join highest ranked cluster with
respect to its own preference expressed by a utility function.
The system assumes a global, large-scale structured P2P
overlay, from which virtual clusters are self-organized as
sub-overlays based on the SOLARE algorithm.

Figure 1. Self-Organizing Latency-Aware Resource Ensemble. Four nodes
(the shape of triangle) in Europe may want to organize a cluster along with
the others within a few tens of milliseconds. They participate in the self-
organizing and managing cluster system on top of global overlay network
and finally organize a cluster which satisfies their requirements.

Figure 1 illustrates the base concept of our system. In the

figure, three smaller-scale clusters self-organize as virtual
sub-overlays (triangle, circle, square) of the main global
overlay based on their network coordinates and utility
functions. Furthermore, each node monitors the cluster that it
is currently involved in, so if its utility value drops below a
threshold due to dynamic changes in network conditions, it
migrates to another cluster to improve cluster utility.
Consider, for example, nodes that are geographically
distributed and connected to a large-scale overlay with
millions of nodes. Assume a node wishes to connect to 100
nodes or more which are within 50 milliseconds of latency
(i.e., round trip time). This node specifies its desirable cluster
characteristics in terms of a utility function, and takes part in
SOLARE on top of global overlay network, requesting

230

information from existing clusters through a bounded-
multicast query mechanism which discovers which nodes
belong to clusters that would maximize the node's utility.
Finally, the node makes a decision on the best-suitable
cluster based on its requirements. These steps involve the
modules shown in Figure 1 (right). In this section, we
describe the main constituents of SOLARE.

A. Structured P2P network as global overlay
The global overlay network provides an underlying

substrate to place nodes in a network coordinate space and to
propagate query messages. As soon as nodes join the global
overlay network, they calculate their positions and send a
query message for cluster information. We choose
Symphony [7], a 1-dimensional Kleinberg small-world
network as underlying global overlay network, and build
upon the implementation of BruNet [6], a general P2P
software framework. Symphony organizes nodes in a ring
topology in which each node has a constant number of near
connections and log(N) number of shortcut connections,
where N is the number of nodes in the network.

B. Query propagation system
One of the essential features of a self-organizing cluster

system is how nodes locate a candidate set of clusters in an
efficient way, without missing high-quality clusters to join in
terms of the user demand. With the purpose of improving the
cluster searching quality with scalable query mechanism, we
employ Map and Reduce functions on a self-organizing
multicast tree [32]. This approach is based on a multicast tree
builder consisting of two parts: Map and Reduce functions
which process the propagation of query and merge the
results, and a multicast tree builder that is the recursive
algorithm to build a multicast tree. MapReduce is a software
framework associated with information processing on large
data sets [4]. The Map function works on a set of data to
generate intermediate value while Reduce function merges
all intermediate values associated with the identical
intermediate key.

Figure 2. Map and Reduce functions based multicast tree builder (a) Ring
topology of Symphony for 16 nodes (b) The multicast tree constructed by

Map and Reduce functions based multicast tree builder

In conjunction with Map and Reduce functions, the
multicast tree builder assists in propagating a message in a
scalable manner (with log(N) depth) by building a multicast
tree using structured shortcut and near connections [5]. This
approach can be applied recursively to sub-overlays [33]
such that the same mechanism used across the overlay to

discover candidate clusters to be joined, can also be used at
the application layer to discover nodes that satisfy
requirements within a proximity-aware cluster.

Figure 2 shows how Map and Reduce functions based
multicast tree builder creates the multicast tree and
propagates a query on top of symphony. Let us assume that
node A is an origin node which sends a message over the
entire network (or alternatively a bounded region of the
network, in this example the bounds are A and P). Node A
sends a message to nodes B, D, F, K, N and P (which are
referred as Node A’s child nodes) through its near
connections and shortcut connections by setting sub-
multicast range as [B,D), [D, F), [F, K), [K, N) , [N, P) and
[P, A-1) respectively. Nodes which receive the message send
the message to their neighbors within sub-multicast range.
Differently stated, node B has the responsibility of building
the multicast tree in range [B, D). In such a way, nodes
multicast the message until there is no connection and the
multicast tree is built as shown in Figure 2(b). Each node in
the tree computes a Map function, and results are back-
propagated through the tree, with each node computing a
Reduce function on the values they receive from its children.
The strength of Map and Reduce functions based multicast
tree builder lies in the ability to parallelize the map and
reduce functions, providing the ability to select a subset of
results based on utility functions, thereby bounding the
bandwidth used in such queries. With a reduce function that
bounds the number of results returned by a node by a
constant, the average per-node bandwidth consumed by a
query is constant [5][32].

C. Network coordinate system
A network coordinate system places nodes in some

synthetic network coordinate space such that each node can
predict the latency to other nodes. One example is Vivaldi,
which achieves this by modeling a spring system [2]. Due to
the triangle inequality of the network coordinate space,
Vivaldi network coordinate system attempts to minimize the
error between the predicted distance and actual latency
instead of exploiting accurate coordinates. Each node
involved in Vivaldi network coordinate system measures the
RTT (Round Trip Time) to its neighbor ni whose coordinate
is xi and computes the error e between measured RTT and
Euclidean distance of its coordinate and xi. Finally, it updates
its new coordinate as follows:

Coordinatenew = Coordinateprevious + δ × e × D

where δ is the timestep which quantifies the size of step
toward new coordinate and D is the direction to new
coordinate. An adaptive value of δ provides the control on
the fraction of the step so that each node converges towards
approximately accurate position quickly and precisely. The
Vivaldi system has been implemented on top of Brunet and
is used as a basis for the experiments in this paper. As soon
as each node joins the global overlay, it runs the Vivaldi
network coordinate system to obtain 2-dimensional
coordinates so as to predict the latency to the candidate
clusters as well as the neighbors.

231

IV. SOLARE MODULES AND ALGORITHMS

A. Utility functions
A self-organizing and self-managing system needs to

serve diverse requests from a number of users who have
different expectations on service quality. The challenge of
this task is not only to approximately satisfy the demands
from all the users but also to maximize the utilization of
entire system. In this work, we make use of utility functions
as a practical scheme of achieving self-organizing and self-
managing cluster system in which each node describes its
own preference on joining a cluster, and makes the best
decision given a set of clusters. To apply utility functions to
our system, first of all, we identify two attributes that nodes
attempt to optimize.

- Distance to the cluster (Di): means the Euclidean

distance between the coordinate of node and a virtual
center of a particular cluster, i.

- Size of cluster (Si): is the size of a cluster, that is the
number of cluster members which involve in a
particular cluster, i.

Next, we establish two utility functions, Udistance and Usize,

each expressing the preference on above two attributes.
Figure 3 illustrates utility functions Udistance and Usize we set
in our system. Note that we have two key parameters to
configure: maximum tolerance for distance to the virtual
cluster center (Dmax) and minimum preference for cluster size
(Smin). The former is the maximum distance to the cluster
which has positive utility value, while the latter means the
minimum size of the cluster which has maximum utility, 1,
regardless of the size of the cluster. Users can define their
own utility functions by differently setting these two
parameters.

Figure 3. The type of utility functions for (a)distance to the cluster (Dmax =
100) (b)size of the cluster (Smin = 100)

Finally, after adding the coefficients for each utility

function, we merge two utility functions into total utility
function as Eq(2) in which each node computes total utility
value for a cluster.

Utotal αsize × Usize + αdistance × Udistance

where αsize and αdistance are coefficients for Usize and Udistance,
respectively, such that the sum of two values is 1. Similar to

Dmax and Smin, coefficients for size and distance are user-
definable parameters so that each user presents the priority
among the attributes.

B. Self-organizing and managing clsuter process
As described in previous section, utility functions

represent user preference on selecting a cluster to join. In this
section, we describe how nodes can self-organize the cluster
architecture using utility functions. The main idea of our
clustering algorithm is that each node searches and joins the
highest utility valued cluster. On the other hand, if there is no
cluster whose utility is greater than the user defined
threshold, node creates new cluster declaring its own
coordinate as the virtual center of cluster. Furthermore, a
node periodically monitors the status of cluster that it is
currently involved in order to migrate to another cluster
whenever the utility is dropped below the threshold. The
clustering process is presented in Algorithm 1 and described
in detail as follows.

Upon joining the global network, a node computes its
coordinates in 2-dimentional Euclidean space using Vivaldi
network coordinate system. In order to avoid too frequent
cluster migrations on the way toward the accurate position,
the cluster process starts after the deviation of coordinate
update becomes relatively small. As soon as node initiates
the clustering process, it sends a request message including
its coordinates to find the highest utility valued one of
existing clusters through the multicast tree constructed by
Map and Reduce functions based multicast tree builder. As
the response for the request message, all the nodes calculate
the utility of its cluster using the coordinate of the query
origin node with Map function and compare the utility of its
cluster to the utilities from its child nodes using Reduce
function. Then, nodes send only the information of the
highest utility valued cluster to parent node of the multicast
tree. As a result, the query origin node receives only one
response from a child node, and it can find the highest utility
valued cluster with a lightweight comparison. It is worth
noticing that Map and Reduce functions at the response
phase help in reducing the number and the size of response
messages. After joining the highest utility valued cluster, the
node informs cluster members of its intent to join by
multicasting a join message. By counting this type of
message, cluster members keep the size of cluster up to date;
they can also periodically query the cluster for membership
count using a Map and Reduce functions multicast query
within the cluster sub-overlay. If utility values of all the
existing clusters do not satisfy the demand of the node
(which means that utility values are less than the user-
defined threshold), the node creates a new cluster.

Creating a new cluster is straightforward. A node
generates a random clusterID ranging from 0 to 2160-1 which
is identical to the node address space of Symphony. Also, the
node declares its current coordinates as the virtual center of
cluster. With doing this, the node can subsequently reply to
cluster requests from other nodes. After first joining the
cluster, the node starts a utility monitoring task. Network

232

Figure 4. Average latency of intra cluster (a)Smin = 50 (b)Smin = 100 (c)Smin = 200

status has the possibility to be changed due to the churn and
dynamic changes in traffic in the physical network. Such
changes in the network result in the fluctuation of the utility
value and nodes can take the potential advantage from the
ability to migrate from the current cluster to another cluster.
The self-managing cluster system needs to deal with this
problem. The utility arbiter checks whether utility value is
dropped below the threshold or not. To do this, nodes
periodically calculate the distance to the virtual center of
cluster and count the number of cluster members. If the
utility value is dropped below the threshold, nodes repeat
above cluster searching, joining or creating process.

Algorithm1 Self-organizing and managing cluster system
 1: define Parameters Dmax, Smin, αdistance, αsize, Uthreshold
 2: if Deviation of coordinate update < Dmax *1%
 3: Requests cluster information sending a query message
 via a multicast tree.
 4: Computes the utility with parameters Dmax, Smin, αdistance,
 αsize.
 5: if There are clusters that the utility > Uthreshold
 6: Joins the highest utility valued cluster.
 7: Starts utility monitor task.
 8: if The utility of the cluster that it currently joins <
 Uthreshold
 9: Migrates to another cluster repeating the process
 from line 3
10: else
11: Stays in current cluster.
12: else
13: Creates new cluster.
14: else
15: Keeps updating the network coordinates

The main contribution of this work is that the clustering

algorithm has a fully decentralized feature which does not
rely upon any central units such as servers, super peers,
cluster heads or landmarks; hence it is robust against the
single point of failure. Because each node holds the
information of its own cluster locally, it is unlikely that node
failures or leave affects the performance of the whole
system. Also, the destruction of cluster which does not have
any cluster members at all is done without additional

process. The departure of last cluster member means that the
cluster does not exist in the network.

V. PERFORMANCE EVALUATION
In this section, we present results from simulation based

analyses for SOLARE. In this evaluation, we use BruNet in
event-driven simulation mode [15] and configure simulated
latencies using King data set [3] with 1740 nodes. BruNet
simulator uses simulated virtual time based upon an event-
driven scheduler instead of real time. While existing
simulators such as p2psim [8], NS2 [9], and netmodeler [10]
are algorithm-oriented simulators which aim to evaluate
algorithm validation, BruNet simulator has the ability to
simulate the deployed system stack as well as algorithm
using a specialized transport layer to avoid the overhead of
using TCP or UDP on the host system. The specialized
transport uses datagrams to pass messages between nodes,
thus from an individual node’s perspective, it is very similar
to a UDP transport and can simulate both latency and packet
dropping.

A. Intra-cluster latencies
Since Dmax is the maximum distance to the virtual cluster

center that a node expects when it searches a cluster to join,
we can refer Dmax as the radius of cluster. Therefore, upon
joining a particular cluster, nodes are able to expect at most
2×Dmax of the latency between cluster members. To evaluate
the performance of our clustering algorithm, we measure
intra-cluster latencies – the latency between cluster members
in the same cluster. We set Dmax to 50ms, 100ms, and 200ms,
and Smin to 50, 100, and 200, respectively. Also, αdistance is
varied with 0.3, 0.5, and 0.7 (i.e., αsize is 0.7, 0.5, and 0.3).
Figure 4(a), (b), and (c) show the average and standard
deviation of intra cluster latency with various parameters
setup. First of all, we observe that all the combinations of the
parameters satisfy 2×Dmax in terms of the average latency of
intra cluster. Specially, even in all cases that Dmax is 50ms,
the average latency is less than 2×Dmax, 100ms. From this
result, we note that even though nodes only measure the
distance to the virtual center of cluster, it does not prevent
nodes from getting neighbors who are mostly within Dmax.

Second, by comparing three bars which have different
colors in each group, we observe that the larger coefficient

233

Figure 4. Percentage of nodes having more cluster member than Smin (a)Smin = 50 (b)Smin = 100 (c)Smin = 200

for distance, αdistance is, the smaller average intra-cluster
latency is. In the case that Dmax is 50ms in figure 4(a), the
average intra-cluster latency with αdistance of 0.7 is reduced by
11% and 2% compared with αdistance of 0.3 and 0.5
respectively. Such this difference becomes much clearer as
Dmax increases showing 35.9% and 14.4% of decrease
compared the case of αdistance of 0.7 with the cases of 0.3 and
0.5 and Dmax of 200ms. The standard deviation when αdistance
is set to 0.7 is also decreased by 38.7% and 17.2% compared
to αdistance of 0.3 and 0.5 in the group1 of figure 4(a).
Furthermore, we observe that the minimum preference for
cluster size, Smin does not affect the average intra-cluster
latency by observing the same pattern of average latency
regardless of Smin in figure 4(b) and (c) even though there is a
slight trend upward of average latency as Smin increases.

Figure 5. The number of created clusters and the population of clusters

Simulation A: Dmax 200ms, Smin 200, αdistance 0.3, αsize 0.7
Simulation B: Dmax 100ms, Smin 100, αdistance 0.5, αsize 0.5

Simulation C: Dmax 50ms, Smin 50, αdistance 0.7, αsize 0.3

B. The number of cluster members
In addition to intra-cluster latencies, we measure the

cluster size which takes the other part of total utility
function. To measure the cluster size, we took snapshots of
the number of created clusters and cluster members for each
node when all nodes join a cluster. Due to the limitation of
space, the results from only three simulations of all the
simulations we performed are represented in Figure 5
depicting the number of created clusters and the population
of clusters. Firstly, in simulation A, we observe that only 16

clusters are created and 98.5% of nodes are included in only
one cluster. In fact, for this simulation set, Dmax and αsize are
set to 200ms and 0.7 which is most likely to organize the
largest cluster of all the simulations. However, as Dmax and
αsize decrease, the number of created cluster increases and the
population is also distributed throughout the created clusters.
Particularly, for the case of simulation C in which nodes
require relatively small cluster size but much closer cluster
members, 155 clusters are created and nodes join clusters
more evenly than simulation A or B. Furthermore, each
result from three simulations shows one big cluster including
at least 58% of nodes which is caused by the type of utility
function for cluster size we used. From Section IV-A, recall
the baseline of utility function for cluster size in such that
nodes prefer larger cluster size without an upper limit. If we
consider another type of utility function which defines upper
limit of cluster size, one major cluster may disappear and the
population of cluster should become more even.

To summarize the evaluation of quantitative
performance, as shown in Figure 6(a), (b) and(c), we
consider the percentage of nodes which have more cluster
member than Smin. Figure 6(a) shows that as Dmax and αsize
become larger, more nodes can obtain same or more cluster
members than Smin. Although, indeed, only 54% of nodes
have more cluster members than Smin with 50ms of Dmax and
0.3 of αsize, in the case with 200ms of Dmax and 0.7 of αsize,
almost 98% of nodes satisfy the minimum preference for
cluster size, Smin. Regardless of setting of Smin, the same trend
is observed in Figure 6(b) and (c) where Smin is set to 100ms
and 200ms with more than 97% and 98% of nodes satisfied
with Smin. Thus, we can confirm the correctness of our
clustering system with the result of the number of cluster
members.

C. Adaptability to dynamic network conditions
Finally, we discuss the adaptability of SOLARE.

Network status can be changed dynamically due to the node
joining, leaving, and the change of network latencies.
Therefore, nodes should adapt to dynamic network status for
the ability to self-manage the cluster system. After a node
joins the cluster, it periodically updates the utility for its
cluster, so if utility is dropped below the threshold, a node
repeats the cluster joining procedure to migrate into another
high utility-valued cluster. To evaluate the adaptability of

234

this system, we observe the percentage of the number of
nodes which need the cluster migration and average utility
value over the entire network. Instead of directly modifying
network latency at the simulation environment, we assume
that new joining in global network can cause the change of
nodes’ position in the network coordinate space. Figure 7(a)
shows the percentage of the number of nodes which need to
migrate from current cluster into another cluster due to the
negative utility value. Because 1740 nodes sequentially join
in global network with 500 milliseconds of interval in our
simulation scenario, all nodes complete joining the global
network around 15 minutes after starting the simulation. In
the case of simulation A where Dmax and Smin are set to 50ms
and 50 respective, cluster migrations happen most
frequently. In fact, because parameters for simulation C
imply the smallest cluster, it is most likely that cluster
migrations occur by slight change of the coordinate.
However, after all nodes join the global network and step
into correct position, the occurrence of migrations decreases
and the percentage of nodes which migrate to another cluster
is dropped below 5% after 30 minutes from starting the
simulation.

Figure 6. (a) Percentage of the number of nodes which need to migrate into
another cluster (b) Average utility value. Setting parameters for simulation
A, B, and C are identical to Figure 5.

Such a pattern of the occurrence of migrations is

observed in the case of simulation B with Dmax = 100ms and
Smin = 100, but the percentage of nodes which migrate into
another cluster is less than simulation C because of the
parameters set which means bigger cluster than the case of
simulation C. Especially, in simulation A where the biggest
cluster is set, nodes barely migrate, because the change of
nodes’ coordinates occur within a cluster. Also, we can
observe from Figure 7(b) that after the percentage of nodes
which migrate is saturated or dropped drastically, the
average utility value over the entire network is also saturated
which means that the majority of nodes place at correct
position and stay in current cluster. Note that the difference
of the utility value saturated can be inferred from Figure 5
and 6. Because most of nodes with simulation A, about
98.5%, are in the same cluster, it is easy to gain higher utility
value for cluster size than other cases. On the other hand, in
the case of simulation C, nodes are distribute among many
clusters, and only 59% of nodes have more cluster members
than Smin. Consequently, it results in the lowest utility value
for cluster size and total average utility value.

VI. CONCLUSIONS
In this paper, we introduced SOLARE to provide a

proximity-aware topology by showing the ability to self-
organize and self-manage the clustering system. All
participants compute themselves the utility for existing
clusters and join highest utility valued cluster. On the other
hand, if there is no cluster whose utility is greater than the
user defined threshold, nodes create a new cluster declaring
their own coordinate as the virtual center of cluster. To
establish utility functions, we select the distance to the
cluster and the size of cluster as utility properties.
Furthermore, our cluster system provides the adaptability for
dynamic network status while each node monitors the cluster
that it is currently joining. After describing the self-
organizing and managing clustering procedure, we evaluated
its performance in terms of latencies of intra cluster and the
number of cluster members. Based on our evaluation, we
confirmed that setting of parameters, which form utility
functions, can control the properties of clusters such as
latencies of intra cluster and the population of clusters.
Additionally, by measuring the percentage of the number of
nodes which need to migrate into another cluster and average
utility value, we presented the adaptability of our system.

As a future work, we can extend this work by considering
different Internet measures like bandwidth as mentioned in
the introduction. Unlike using latency to express the network
proximity, higher bandwidth is considered as closer distance
and the distance for two end hosts is the lowest bandwidth
link, we should adopt a different coordinate space rather than
the Euclidean distance space. Especially, our future work can
be inspired by Sequoia which uses the tree metric to predict
the end-to-end bandwidth.

ACKNOWLEDGMENT
This work was partially supported by the National

Science Foundation under Grant No.0855123. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

REFERENCES
[1] Jeffrey O. Kephart, and Rajarshi Das, “Achieving Self-Management

via Utility Functions,” IEEE Internet Computing, Vol. 11, No. 1, pp.
40-48, Jan. 2007.

[2] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A
Decentralized Network Coordinate System,” In Proc. Of ACM
SIGCOMM Conference, Portland, Oregon, USA, Aug. 2004.

[3] K.P. Gummadi, S. Saroiu, and S.D. Gribble, “King: Estimating
latency between arbitrary Internet end hosts,” In Proc. Of SIGCOMM
IMW2002, Marseille, France, Nov. 2002.

[4] Jeffrey Dean and Sanjay Ghemawat, “MapReduce: Simplified Data
Processing on Large Clusters,” In Proc. Of the 6th Conference on
Symposium on Operating Systems Design & Implementation, San
Francisco, CA, USA, Dec. 2004.

[5] Tae Woong Choi and P. Oscar Boykin, “Deetoo: Scalable
unstructured search built on a structured overlay,” In Proc. Of IPDPS
Workshops, Atlanta, Georgia, USA, Apr. 2010.

[6] P.O. Boykin and et al., “A symphony conducted by brunet,”
http://arxiv.org/abs/0709.4048. 2007.

235

[7] G. Manku, M. Bawa, and P. Raghavan, “Symphony: Distributed
hashing in a small world,” In Proc. Of the 4th USENIX symposium
on Internet Technologies and Systems, Seattle, Washington, USA,
Mar. 2003.

[8] A simulator for peer-to-peer protocols,
http://www.pdos.lcs.mit.edu/p2psim/index.html.

[9] The Network Simulator, NS2, http://www.isi.edu/nsnam/ns/.
[10] Netmodeler: a c++ package for analyzing complex networks,

http://boykin.acis.ufl.edu/wiki/index.php/Netmodeler.
[11] V. Ramasubramanian, D. Malkhi, F. Kuhn, I. Abraham, M.

Balakrishnan, A. Gupta, A. Akella, “A Unified Network Coordinate
System for Bandwidth and Latency,” Technical Report MSR-TR-
2008-124, Microsoft Research, Sep. 2008.

[12] E. Ng and H. Zhang, “Predicting Internet Network Distance with
Coordinates-Based Approaches,” In Proc. Of INFOCOM, New York,
NY, USA, Jun. 2002.

[13] N. Hu, L.E. Li, Z.M. Mao, P. Steenkiste, andJ. Wang, “A
Measurement Study of Internet Bottlenecks,” In Proc. Of INFOCOM,
Miami, FL, USA, Mar. 2005.

[14] William E. Walsh, Gerald Tesauro, Jeffrey O. Kephart, and Rajarshi
Das, “Utility Functions in Autonomic Systems,” In Proc. Of 1st
International Conference on Autonomic Computing, New York, NY,
USA, May. 2004.

[15] David I. Wolinsky, K.Y. Lee, P. Oscar Boykin, and Renato
Figueiredo, “On the Design of Autonomic, Decentralized VPNs,” In
Proc. Of 6th International ICST Conference on Collaborative
Computing: Networking, Applications and Worksharing, Chicago,
Illinois, USA, Oct. 2010.

[16] David M. Chess, Alla Segal, Ian Whalley, and Steve R. White,
“Unity: Experiences with a Prototype Autonomic Computing
System,” In Proc. Of 1st International Conference on Autonomic
Computing, New York, NY, USA, May. 2004.

[17] Terence Kelly, “Utility-Directed Allocation,” In Proc. Of 1st
Workshop on Algorithms and Architectures for Self-Managing
Systems, San Diego, CA, USA, Jun. 2003.

[18] Rajarshi Das, Jeffrey O. Kephart, Jonathan Lenchner, and Hendrik
Hamann, “Utility-Function-Driven Evergy-Efficient Cooling in Data
Centers,” In Proc. Of 7th International Conference On Autonomic
Computing, Washington, DC, USA, Jun. 2010.

[19] R.A. Ferreira, S. Jagannathan, and A. Grama, “Locality in structured
peer to peer networks,” Journal of Parallel and Distributed
Computing, Vol. 66(2), pp. 257-273, 2007.

[20] Francois Cantin, Bamba Gueye, Mohamed Ali Kaafar, and Guy
Leduc, “A Self-Organized clustering Scheme for overlay networks,”
In Proc. Of 3rd International Workshop on Self-Organizing Systems,
Vienna, Austria, Dec. 2008.

[21] Paul de Grandis, and Giuseppe Valetto, “Elicitation and utilization of
application-level utility functions,” In Proc. Of 6th International
Conference On Autonomic Computing, Barcelona, Spain Jun. 2009.

[22] F. Le Fessant, S. Handurukande, A.M. Kermarrec, and L. Massoulie,
“Clustering in Peer-to-Peer File Sharing Workloads,” In Proc. Of 3rd
International Workshop on Peer-to-Peer Systems, San Diego, CA,
USA, Feb. 2004.

[23] P. Karwaczynski, “IP-based clustering for peer-to-peer overlays,”
Journal of Software, Vol. 2, No. 2, pp 30-37, 2007

[24] Sajid Hussain, and Abdul W. Matin, “Hierarchical Cluster-based
Routing in Wireless Sensor Networks,” In Proc. Of 5th International
Conference on Information Processing In Sensor Networks,
Nashville, TN, USA, Jul. 2006.

[25] Adeel Akhtar, Abid Ali Minhas, and Sohail Jabbar, “Energy Aware
Intra Cluster Routing for Wireless Sensor Networks,” International
Journal of Hybrid Information Technology, Vol. 3, No. 1, Jan. 2010.

[26] Qing Cao, Tarek Abdelzaher, Tian He, and Robin Kravets, “Cluster-
Based Forwarding for Reliable End-to-End Delivery in Wireless
Sensor Networks,” In Proc. Of INFOCOM, Anchorage, AK, USA,
Mar. 2007.

[27] Tian Bu, and Don Towsley, “On Distinguishing between Internet
Power Law Topology Generators,” In Proc. Of INFOCOM, New
York, NY, USA, Jun. 2002.

[28] I. Stoica, R. Morris, D. Liben-Nowell, D.R. Karger, M.F. Kaashoek,
F. Dabek, andH. Balakrishnan, “Chord: a scalable peer-to-peer
lookup protocol for internet applications,” IEEE/ACM Trans.
Network, Vol. 11, No. 1, pp. 17-32, 2003.

[29] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
scalable content addressable network,” In Proc. Of ACM SIGCOMM
2001, San Diego, CA, USA, Aug. 2001.

[30] B.Y. Zhao, L. Huang, S.C. Rhea, J. Stribling, A.D. Joseph, and J.D.
Kubiatowicx, “Tapestry: A global-scale overlay for rapid service
deployment,” IEEE J-SAC, Vol. 22, No. 1, pp. 41-53, Jan. 2004.

[31] V. Ramasubramanian, D. Malkhi, F. Kuhn, M. Balakrishnan, A.
Gupta, and A. Akella, “On the Treeness of Internet Latency and
Bandwidth,” In Proc. Of 11th International Joint Conference on
Measurement and Modeling of Computer Systems, Seattle, WA,
USA, Jun. 2009.

[32] Kyungyong Lee, Tae Woong Choi, Arijit Ganguly, David I.
Wolinsky, P. Oscar Boykin, and Renato J. Figueiredo, “Parallel
Processing Framework on a P2P System Using Map and Reduce
Primitives,” In Proc. Of 8th International Workshop on Hot Topics in
Peer-to-Peer Systems, Anchorage, AK, USA, May. 2011.

[33] David I. Wolinsky, Pierre St. Juste, P. Oscar Boykin, and Renato J.
Figueiredo, “Addressing the P2P Bootstrap Problem for Small
Overlay Networks,” In Proc. Of 10th IEEE International Conference
on Peer-to-Peer Computing, Delft, Netherlands, Aug. 2010.

236

