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Abstract— This paper proposes and evaluates Self-Organizing 
Latency-Aware Resource Ensemble (SOLARE), a peer-to-peer 
self-organizing and self-managing cluster system based upon 
network coordinates and utility functions. In contrast to 
previous works, SOLARE is a fully decentralized clustering 
algorithm without any central units such as servers, super 
peers, cluster heads or landmarks. Furthermore, SOLARE 
allows for adaptability to dynamic network changes by 
monitoring the utility of a cluster and migrating nodes to other 
higher-utility clusters when the utility of an existing cluster is 
low. Quantitative, simulation-driven evaluations show that 
SOLARE is able to satisfy user demands expressed by utility 
functions that integrate system parameters in terms of intra 
cluster latencies and the number of cluster members. Also, we 
verify the ability of SOLARE to adapt to dynamic network 
changes through simulation based experiments that consider 
the number of nodes which migrate into another cluster and 
average utility value as nodes join SOLARE. 

Keywords-Clustering, utility functions, latency-aware, 
structured P2P networks. 

I.  INTRODUCTION 
In recent years, the structures of large-scale network have 

been extended from client-server architectures for traditional 
web services to the distributed systems such as Peer-to-Peer 
(P2P) networks and Distributed Hash Tables (DHTs) [28-
30]. Particularly, distributed systems have been increasingly 
applied to applications including online gaming, content 
distribution networks, and storage systems. One of the key 
challenges posed by these systems is locating or connecting a 
subset of nodes that satisfy user-demands with respect to 
network proximity. In distributed online gaming services, for 
example, players seek to organize clusters so that those in the 
same cluster can experience low latency to each other and 
enjoy the game without delay perceived by users. In 
addition, the supply of powerful commodity computers and 
the availability of high speed Internet have enabled grid 
computing environments capabilities. In such environments, 
latency-sensitive applications such as parallel processing 
tasks and workflows benefit from proximity among workers, 
and the ability to discover resources which satisfy job 
demands and are bound by pair-wise latency constraints is 
important. For such reasons, the inherent support for large-
scale systems to self-organize into clusters that guarantee a 
certain degree of network proximity allows middleware and 

applications to seamlessly discover resources that are close 
in a network latency sense. With the approach described in 
this paper, proximity-aware queries can be efficiently 
performed through scalable P2P queries within the self-
organized cluster(s) that a node belongs to. 

In this paper, we propose SOLARE, a peer-to-peer, 
utility function based self-managing system that self-
organizes clusters in a proximity-aware structured overlay 
topology. To do this, we rely on a structured P2P network as 
underlying global overlay network and a self-organizing, 
decentralized network coordinate system. As reviewed in the 
next section, there have been a number of related approaches 
whereby nodes are clustered based on certain criteria, but to 
the best of our knowledge, this paper proposes the first 
implementation which applies utility functions and network 
coordinates for the clustering process. The main idea of 
SOLARE is that each node searches and joins the highest 
utility valued cluster. On the other hand, if there is no cluster 
whose utility is greater than the user-defined threshold, the 
node creates a new cluster declaring its own coordinate as 
the virtual center of cluster. Furthermore, a node periodically 
monitors the status of the cluster that it is currently a member 
of in order to migrate to another cluster whenever the utility 
is dropped below a threshold. In our system, migrating 
clusters means changing the cluster membership rather than 
physically moving from one cluster to another cluster. In 
order to calculate the utility of clusters, we select the distance 
to the virtual center of the cluster and the size of the cluster 
(i.e., the number of cluster members) as utility properties. All 
participants are located in a 2-dimensional space such that 
each node has the ability to calculate the Euclidean distance 
to any points of 2-dimensional space or other nodes using a 
Vivaldi network coordinate system [2]. It is important to note 
that SOLARE is independent of the network coordinate 
system. In fact, even though we adopt the Vivaldi network 
coordinate system, other related approaches such as GNP 
[12] and PIC [13] can be used for the core of network latency 
prediction of our cluster algorithm as well. While this paper 
focuses on latency-based network coordinates, approaches 
that consider a bandwidth-based coordinate systems, such as 
Sequoia [11][31] can be also considered. 

The rest of the paper is structured as follows. In Section 
II, we overview previous works on clustering approaches for 
distributed systems and utility functions in autonomic 
systems. Section III presents the system model and basic 
elements of SOLARE. Section IV describes the procedure of 
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the proposed clustering system and the performance 
evaluation of our system is presented in Section V. Lastly, 
Section VI concludes the paper. 

II. RELATED WORK 

A. Clustering approaches on distributed systems 
Similar studies to our work have been done in order to 

offer proximity-based routing protocols. In [19], the Plethora 
routing core employs a two-level overlay architecture with 
global overlay and local overlays. In particular, local 
overlays rely on the organization of the Internet as a 
collection of Autonomous Systems (ASs) so that they serve 
as caches to provide data locality. IP-based clustering for 
P2P networks has no need for active measurement of 
latencies, minimizing system maintenance cost [23]. Instead, 
the authors provide a simple method for the construction of 
clusters based on static, readily available information (i.e., IP 
address) proving the correlation among common IP prefix 
length of communication nodes and latency. The above 
approaches, however, use only static information without 
any measurements, which makes it difficult to handle 
dynamic network changes. Francois Cantin et al. [20] adopt 
the Quality Threshold (QT) algorithm to propose a self-
organized clustering scheme which is built on an existing 
Internet coordinate system. Also, they present two variants of 
distributed clustering algorithm: one aims at reduction of the 
clustering construction time, the other tries to minimize the 
overhead of the clustering process. Nevertheless, each node 
needs to perform the computation for QT algorithm as well 
as calculating the distance between its first- and second-order 
neighbors, introducing additional overheads. The novelty 
which distinguishes our work from the above-mentioned 
approaches is that our work is a fully decentralized and 
autonomous approach, not relying upon any central units 
such as servers, super peers, cluster heads or landmarks but 
utilizing utility functions. 

Clustering techniques have been also adopted in other 
domains such as network modeling and performance 
evaluation. In [22], the authors show that both geographical 
and interest-based clustering properties inherently exist and 
can be leveraged to improve the search mechanisms in file 
sharing systems using P2P networks. Tian Bu et al. [27] 
provide the Internet topology generator using the cluster 
coefficient. Also, wireless sensor networks achieve 
prolonging the lifespan and reducing the overhead via 
cluster-based protocols [24-26]. 

B. Utility functions in autonomous systems 
Utility functions provide a natural and advantageous 

framework for achieving self-optimization in autonomic 
computing [1]. In fact, applying utility functions to 
autonomic systems has been done in various studies. In 
[14][16], the authors have proposed utility-based resource 
allocation system consisting of a number of logically 
separated application environments each having an 
independent utility function. Along with application 
environments, a global resource arbiter performs the 

allocation of resources optimizing the summation of utility 
functions from application environments. Similar work has 
been considered in [17]. In this work, however, utility is 
described with respect to low-level resources such as CPU, 
disk, and memory instead of system-level attributes. In [18], 
the authors propose an energy efficient cooling system for 
data centers applying utility functions. It formulates simple 
utility functions that describe a tradeoff between energy and 
temperature and shows how to optimize a setting of control 
parameters, fan speeds and on/off state of air conditioners, 
using utility functions. Paul de Grandis et al. [21] present 
the fundamental steps of non-analytic approach on 
leveraging utility functions at the application level. Also 
they apply their approach to two different case studies, FTP 
download and log explosion. 

III. SYSTEM MODEL AND ARCHITECTURE 
The main goal in SOLARE is to construct utility 

functions-based, self-organizing and self-managing cluster 
systems such that nodes join highest ranked cluster with 
respect to its own preference expressed by a utility function. 
The system assumes a global, large-scale structured P2P 
overlay, from which virtual clusters are self-organized as 
sub-overlays based on the SOLARE algorithm.  
 

 
Figure 1. Self-Organizing Latency-Aware Resource Ensemble. Four nodes 
(the shape of triangle) in Europe may want to organize a cluster along with 
the others within a few tens of milliseconds. They participate in the self-
organizing and managing cluster system on top of global overlay network 
and finally organize a cluster which satisfies their requirements. 

 
Figure 1 illustrates the base concept of our system. In the 

figure, three smaller-scale clusters self-organize as virtual 
sub-overlays (triangle, circle, square) of the main global 
overlay based on their network coordinates and utility 
functions. Furthermore, each node monitors the cluster that it 
is currently involved in, so if its utility value drops below a 
threshold due to dynamic changes in network conditions, it 
migrates to another cluster to improve cluster utility. 
Consider, for example, nodes that are geographically 
distributed and connected to a large-scale overlay with 
millions of nodes. Assume a node wishes to connect to 100 
nodes or more which are within 50 milliseconds of latency 
(i.e., round trip time). This node specifies its desirable cluster 
characteristics in terms of a utility function, and takes part in 
SOLARE on top of global overlay network, requesting 
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information from existing clusters through a bounded-
multicast query mechanism which discovers which nodes 
belong to clusters that would maximize the node's utility. 
Finally, the node makes a decision on the best-suitable 
cluster based on its requirements. These steps involve the 
modules shown in Figure 1 (right). In this section, we 
describe the main constituents of SOLARE.  

A. Structured P2P network as global overlay 
The global overlay network provides an underlying 

substrate to place nodes in a network coordinate space and to 
propagate query messages. As soon as nodes join the global 
overlay network, they calculate their positions and send a 
query message for cluster information. We choose 
Symphony [7], a 1-dimensional Kleinberg small-world 
network as underlying global overlay network, and build 
upon the implementation of BruNet [6], a general P2P 
software framework. Symphony organizes nodes in a ring 
topology in which each node has a constant number of near 
connections and log(N) number of shortcut connections, 
where N is the number of nodes in the network. 

B. Query propagation system 
One of the essential features of a self-organizing cluster 

system is how nodes locate a candidate set of clusters in an 
efficient way, without missing high-quality clusters to join in 
terms of the user demand. With the purpose of improving the 
cluster searching quality with scalable query mechanism, we 
employ Map and Reduce functions on a self-organizing 
multicast tree [32]. This approach is based on a multicast tree 
builder consisting of two parts: Map and Reduce functions 
which process the propagation of query and merge the 
results, and a multicast tree builder that is the recursive 
algorithm to build a multicast tree. MapReduce is a software 
framework associated with information processing on large 
data sets [4]. The Map function works on a set of data to 
generate intermediate value while Reduce function merges 
all intermediate values associated with the identical 
intermediate key.  
 

 
Figure 2. Map and Reduce functions based multicast tree builder (a) Ring 
topology of Symphony for 16 nodes (b) The multicast tree constructed by 

Map and Reduce functions based multicast tree builder 
 

In conjunction with Map and Reduce functions, the 
multicast tree builder assists in propagating a message in a 
scalable manner (with log(N) depth) by building a multicast 
tree using structured shortcut and near connections [5]. This 
approach can be applied recursively to sub-overlays [33] 
such that the same mechanism used across the overlay to 

discover candidate clusters to be joined, can also be used at 
the application layer to discover nodes that satisfy 
requirements within a proximity-aware cluster. 

Figure 2 shows how Map and Reduce functions based 
multicast tree builder creates the multicast tree and 
propagates a query on top of symphony. Let us assume that 
node A is an origin node which sends a message over the 
entire network (or alternatively a bounded region of the 
network, in this example the bounds are A and P). Node A 
sends a message to nodes B, D, F, K, N and P (which are 
referred as Node A’s child nodes) through its near 
connections and shortcut connections by setting sub-
multicast range as [B,D), [D, F), [F, K), [K, N) , [N, P) and 
[P, A-1) respectively. Nodes which receive the message send 
the message to their neighbors within sub-multicast range. 
Differently stated, node B has the responsibility of building 
the multicast tree in range [B, D). In such a way, nodes 
multicast the message until there is no connection and the 
multicast tree is built as shown in Figure 2(b). Each node in 
the tree computes a Map function, and results are back-
propagated through the tree, with each node computing a 
Reduce function on the values they receive from its children. 
The strength of Map and Reduce functions based multicast 
tree builder lies in the ability to parallelize the map and 
reduce functions, providing the ability to select a subset of 
results based on utility functions, thereby bounding the 
bandwidth used in such queries. With a reduce function that 
bounds the number of results returned by a node by a 
constant, the average per-node bandwidth consumed by a 
query is constant [5][32]. 

C. Network coordinate system 
A network coordinate system places nodes in some 

synthetic network coordinate space such that each node can 
predict the latency to other nodes. One example is Vivaldi, 
which achieves this by modeling a spring system [2]. Due to 
the triangle inequality of the network coordinate space, 
Vivaldi network coordinate system attempts to minimize the 
error between the predicted distance and actual latency 
instead of exploiting accurate coordinates. Each node 
involved in Vivaldi network coordinate system measures the 
RTT (Round Trip Time) to its neighbor ni whose coordinate 
is xi and computes the error e between measured RTT and 
Euclidean distance of its coordinate and xi. Finally, it updates 
its new coordinate as follows: 

Coordinatenew = Coordinateprevious + δ × e × D

where δ is the timestep which quantifies the size of step 
toward new coordinate and D is the direction to new 
coordinate. An adaptive value of δ provides the control on 
the fraction of the step so that each node converges towards 
approximately accurate position quickly and precisely. The 
Vivaldi system has been implemented on top of Brunet and 
is used as a basis for the experiments in this paper. As soon 
as each node joins the global overlay, it runs the Vivaldi 
network coordinate system to obtain 2-dimensional 
coordinates so as to predict the latency to the candidate 
clusters as well as the neighbors.  
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IV. SOLARE MODULES AND ALGORITHMS 

A. Utility functions 
A self-organizing and self-managing system needs to 

serve diverse requests from a number of users who have 
different expectations on service quality. The challenge of 
this task is not only to approximately satisfy the demands 
from all the users but also to maximize the utilization of 
entire system. In this work, we make use of utility functions 
as a practical scheme of achieving self-organizing and self-
managing cluster system in which each node describes its 
own preference on joining a cluster, and makes the best 
decision given a set of clusters. To apply utility functions to 
our system, first of all, we identify two attributes that nodes 
attempt to optimize. 

 
- Distance to the cluster (Di): means the Euclidean 

distance between the coordinate of node and a virtual 
center of a particular cluster, i. 

- Size of cluster (Si): is the size of a cluster, that is the 
number of cluster members which involve in a 
particular cluster, i. 

 
Next, we establish two utility functions, Udistance and Usize, 

each expressing the preference on above two attributes. 
Figure 3 illustrates utility functions Udistance and Usize we set 
in our system. Note that we have two key parameters to 
configure: maximum tolerance for distance to the virtual 
cluster center (Dmax) and minimum preference for cluster size 
(Smin). The former is the maximum distance to the cluster 
which has positive utility value, while the latter means the 
minimum size of the cluster which has maximum utility, 1, 
regardless of the size of the cluster. Users can define their 
own utility functions by differently setting these two 
parameters. 
 

 
Figure 3. The type of utility functions for (a)distance to the cluster (Dmax = 
100) (b)size of the cluster (Smin = 100) 

 
Finally, after adding the coefficients for each utility 

function, we merge two utility functions into total utility 
function as Eq(2) in which each node computes total utility 
value for a cluster.  

Utotal αsize × Usize + αdistance × Udistance

where αsize and αdistance are coefficients for Usize and Udistance, 
respectively, such that the sum of two values is 1. Similar to 

Dmax and Smin, coefficients for size and distance are user-
definable parameters so that each user presents the priority 
among the attributes. 

B. Self-organizing and managing clsuter process 
As described in previous section, utility functions 

represent user preference on selecting a cluster to join. In this 
section, we describe how nodes can self-organize the cluster 
architecture using utility functions. The main idea of our 
clustering algorithm is that each node searches and joins the 
highest utility valued cluster. On the other hand, if there is no 
cluster whose utility is greater than the user defined 
threshold, node creates new cluster declaring its own 
coordinate as the virtual center of cluster. Furthermore, a 
node periodically monitors the status of cluster that it is 
currently involved in order to migrate to another cluster 
whenever the utility is dropped below the threshold. The 
clustering process is presented in Algorithm 1 and described 
in detail as follows. 

Upon joining the global network, a node computes its 
coordinates in 2-dimentional Euclidean space using Vivaldi 
network coordinate system. In order to avoid too frequent 
cluster migrations on the way toward the accurate position, 
the cluster process starts after the deviation of coordinate 
update becomes relatively small. As soon as node initiates 
the clustering process, it sends a request message including 
its coordinates to find the highest utility valued one of 
existing clusters through the multicast tree constructed by 
Map and Reduce functions based multicast tree builder. As 
the response for the request message, all the nodes calculate 
the utility of its cluster using the coordinate of the query 
origin node with Map function and compare the utility of its 
cluster to the utilities from its child nodes using Reduce 
function. Then, nodes send only the information of the 
highest utility valued cluster to parent node of the multicast 
tree. As a result, the query origin node receives only one 
response from a child node, and it can find the highest utility 
valued cluster with a lightweight comparison. It is worth 
noticing that Map and Reduce functions at the response 
phase help in reducing the number and the size of response 
messages. After joining the highest utility valued cluster, the 
node informs cluster members of its intent to join by 
multicasting a join message. By counting this type of 
message, cluster members keep the size of cluster up to date; 
they can also periodically query the cluster for membership 
count using a Map and Reduce functions multicast query 
within the cluster sub-overlay. If utility values of all the 
existing clusters do not satisfy the demand of the node 
(which means that utility values are less than the user-
defined threshold), the node creates a new cluster. 

Creating a new cluster is straightforward. A node 
generates a random clusterID ranging from 0 to 2160-1 which 
is identical to the node address space of Symphony. Also, the 
node declares its current coordinates as the virtual center of 
cluster. With doing this, the node can subsequently reply to 
cluster requests from other nodes. After first joining the 
cluster, the node starts a utility monitoring task. Network 
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Figure 4. Average latency of intra cluster (a)Smin = 50 (b)Smin = 100 (c)Smin = 200  
 
status has the possibility to be changed due to the churn and 
dynamic changes in traffic in the physical network. Such 
changes in the network result in the fluctuation of the utility 
value and nodes can take the potential advantage from the 
ability to migrate from the current cluster to another cluster. 
The self-managing cluster system needs to deal with this 
problem. The utility arbiter checks whether utility value is 
dropped below the threshold or not. To do this, nodes 
periodically calculate the distance to the virtual center of 
cluster and count the number of cluster members. If the 
utility value is dropped below the threshold, nodes repeat 
above cluster searching, joining or creating process.  

 
Algorithm1 Self-organizing and managing cluster system 
  1: define  Parameters Dmax, Smin, αdistance, αsize, Uthreshold  
  2: if  Deviation of coordinate update < Dmax *1% 
  3:     Requests cluster information sending a query message  
          via a multicast tree. 
  4:     Computes the utility with parameters Dmax, Smin, αdistance,           
          αsize. 
  5:     if  There are clusters that the utility > Uthreshold 
  6:          Joins the highest utility valued cluster. 
  7:          Starts utility monitor task. 
  8:          if  The utility of the cluster that it currently joins <               
                    Uthreshold 
  9:              Migrates to another cluster repeating the process   
                   from line 3 
10:          else 
11:              Stays in current cluster. 
12:     else  
13:          Creates new cluster.              
14: else  
15:     Keeps updating the network coordinates          

 
The main contribution of this work is that the clustering 

algorithm has a fully decentralized feature which does not 
rely upon any central units such as servers, super peers, 
cluster heads or landmarks; hence it is robust against the 
single point of failure. Because each node holds the 
information of its own cluster locally, it is unlikely that node 
failures or leave affects the performance of the whole 
system. Also, the destruction of cluster which does not have 
any cluster members at all is done without additional 

process. The departure of last cluster member means that the 
cluster does not exist in the network. 

V. PERFORMANCE EVALUATION 
In this section, we present results from simulation based 

analyses for SOLARE. In this evaluation, we use BruNet in 
event-driven simulation mode [15] and configure simulated 
latencies using King data set [3] with 1740 nodes. BruNet 
simulator uses simulated virtual time based upon an event-
driven scheduler instead of real time. While existing 
simulators such as p2psim [8], NS2 [9], and netmodeler [10] 
are algorithm-oriented simulators which aim to evaluate 
algorithm validation, BruNet simulator has the ability to 
simulate the deployed system stack as well as algorithm 
using a specialized transport layer to avoid the overhead of 
using TCP or UDP on the host system. The specialized 
transport uses datagrams to pass messages between nodes, 
thus from an individual node’s perspective, it is very similar 
to a UDP transport and can simulate both latency and packet 
dropping. 

A. Intra-cluster latencies 
Since Dmax is the maximum distance to the virtual cluster 

center that a node expects when it searches a cluster to join, 
we can refer Dmax as the radius of cluster. Therefore, upon 
joining a particular cluster, nodes are able to expect at most 
2×Dmax of the latency between cluster members. To evaluate 
the performance of our clustering algorithm, we measure 
intra-cluster latencies – the latency between cluster members 
in the same cluster. We set Dmax to 50ms, 100ms, and 200ms, 
and Smin to 50, 100, and 200, respectively. Also, αdistance is 
varied with 0.3, 0.5, and 0.7 (i.e., αsize is 0.7, 0.5, and 0.3). 
Figure 4(a), (b), and (c) show the average and standard 
deviation of intra cluster latency with various parameters 
setup. First of all, we observe that all the combinations of the 
parameters satisfy 2×Dmax in terms of the average latency of 
intra cluster. Specially, even in all cases that Dmax is 50ms, 
the average latency is less than 2×Dmax, 100ms. From this 
result, we note that even though nodes only measure the 
distance to the virtual center of cluster, it does not prevent 
nodes from getting neighbors who are mostly within Dmax. 

Second, by comparing three bars which have different 
colors in each group, we observe that the larger coefficient 
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Figure 4. Percentage of nodes having more cluster member than Smin (a)Smin = 50 (b)Smin = 100 (c)Smin = 200 
 

for distance, αdistance is, the smaller average intra-cluster 
latency is. In the case that Dmax is 50ms in figure 4(a), the 
average intra-cluster latency with αdistance of 0.7 is reduced by 
11% and 2% compared with αdistance of 0.3 and 0.5 
respectively. Such this difference becomes much clearer as 
Dmax increases showing 35.9% and 14.4% of decrease 
compared the case of αdistance of 0.7 with the cases of 0.3 and 
0.5 and Dmax of 200ms. The standard deviation when αdistance 
is set to 0.7 is also decreased by 38.7% and 17.2% compared 
to αdistance of 0.3 and 0.5 in the group1 of figure 4(a). 
Furthermore, we observe that the minimum preference for 
cluster size, Smin does not affect the average intra-cluster 
latency by observing the same pattern of average latency 
regardless of Smin in figure 4(b) and (c) even though there is a 
slight trend upward of average latency as Smin increases. 
 

 
Figure 5. The number of created clusters and the population of clusters 

Simulation A: Dmax 200ms, Smin 200, αdistance 0.3, αsize 0.7  
Simulation B: Dmax 100ms, Smin 100, αdistance 0.5, αsize 0.5  

Simulation C: Dmax 50ms, Smin 50, αdistance 0.7, αsize 0.3 

B. The number of cluster members 
In addition to intra-cluster latencies, we measure the 

cluster size which takes the other part of total utility 
function. To measure the cluster size, we took snapshots of 
the number of created clusters and cluster members for each 
node when all nodes join a cluster. Due to the limitation of 
space, the results from only three simulations of all the 
simulations we performed are represented in Figure 5 
depicting the number of created clusters and the population 
of clusters. Firstly, in simulation A, we observe that only 16 

clusters are created and 98.5% of nodes are included in only 
one cluster. In fact, for this simulation set, Dmax and αsize are 
set to 200ms and 0.7 which is most likely to organize the 
largest cluster of all the simulations. However, as Dmax and 
αsize decrease, the number of created cluster increases and the 
population is also distributed throughout the created clusters. 
Particularly, for the case of simulation C in which nodes 
require relatively small cluster size but much closer cluster 
members, 155 clusters are created and nodes join clusters 
more evenly than simulation A or B. Furthermore, each 
result from three simulations shows one big cluster including 
at least 58% of nodes which is caused by the type of utility 
function for cluster size we used. From Section IV-A, recall 
the baseline of utility function for cluster size in such that 
nodes prefer larger cluster size without an upper limit. If we 
consider another type of utility function which defines upper 
limit of cluster size, one major cluster may disappear and the 
population of cluster should become more even. 

To summarize the evaluation of quantitative 
performance, as shown in Figure 6(a), (b) and(c), we 
consider the percentage of nodes which have more cluster 
member than Smin. Figure 6(a) shows that as Dmax and αsize 
become larger, more nodes can obtain same or more cluster 
members than Smin. Although, indeed, only 54% of nodes 
have more cluster members than Smin with 50ms of Dmax and 
0.3 of αsize, in the case with 200ms of Dmax and 0.7 of αsize, 
almost 98% of nodes satisfy the minimum preference for 
cluster size, Smin. Regardless of setting of Smin, the same trend 
is observed in Figure 6(b) and (c) where Smin is set to 100ms 
and 200ms with more than 97% and 98% of nodes satisfied 
with Smin. Thus, we can confirm the correctness of our 
clustering system with the result of the number of cluster 
members.  

C. Adaptability to dynamic network conditions 
Finally, we discuss the adaptability of SOLARE. 

Network status can be changed dynamically due to the node 
joining, leaving, and the change of network latencies. 
Therefore, nodes should adapt to dynamic network status for 
the ability to self-manage the cluster system. After a node 
joins the cluster, it periodically updates the utility for its 
cluster, so if utility is dropped below the threshold, a node 
repeats the cluster joining procedure to migrate into another 
high utility-valued cluster. To evaluate the adaptability of 
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this system, we observe the percentage of the number of 
nodes which need the cluster migration and average utility 
value over the entire network. Instead of directly modifying 
network latency at the simulation environment, we assume 
that new joining in global network can cause the change of 
nodes’ position in the network coordinate space. Figure 7(a) 
shows the percentage of the number of nodes which need to 
migrate from current cluster into another cluster due to the 
negative utility value. Because 1740 nodes sequentially join 
in global network with 500 milliseconds of interval in our 
simulation scenario, all nodes complete joining the global 
network around 15 minutes after starting the simulation. In 
the case of simulation A where Dmax and Smin are set to 50ms 
and 50 respective, cluster migrations happen most 
frequently. In fact, because parameters for simulation C 
imply the smallest cluster, it is most likely that cluster 
migrations occur by slight change of the coordinate. 
However, after all nodes join the global network and step 
into correct position, the occurrence of migrations decreases 
and the percentage of nodes which migrate to another cluster 
is dropped below 5% after 30 minutes from starting the 
simulation. 

 

 
Figure 6. (a) Percentage of the number of nodes which need to migrate into 
another cluster (b) Average utility value. Setting parameters for simulation 
A, B, and C are identical to Figure 5. 

 
Such a pattern of the occurrence of migrations is 

observed in the case of simulation B with Dmax = 100ms and 
Smin = 100, but the percentage of nodes which migrate into 
another cluster is less than simulation C because of the 
parameters set which means bigger cluster than the case of 
simulation C. Especially, in simulation A where the biggest 
cluster is set, nodes barely migrate, because the change of 
nodes’ coordinates occur within a cluster. Also, we can 
observe from Figure 7(b) that after the percentage of nodes 
which migrate is saturated or dropped drastically, the 
average utility value over the entire network is also saturated 
which means that the majority of nodes place at correct 
position and stay in current cluster. Note that the difference 
of the utility value saturated can be inferred from Figure 5 
and 6. Because most of nodes with simulation A, about 
98.5%, are in the same cluster, it is easy to gain higher utility 
value for cluster size than other cases. On the other hand, in 
the case of simulation C, nodes are distribute among many 
clusters, and only 59% of nodes have more cluster members 
than Smin. Consequently, it results in the lowest utility value 
for cluster size and total average utility value.  

VI. CONCLUSIONS 
In this paper, we introduced SOLARE to provide a 

proximity-aware topology by showing the ability to self-
organize and self-manage the clustering system. All 
participants compute themselves the utility for existing 
clusters and join highest utility valued cluster. On the other 
hand, if there is no cluster whose utility is greater than the 
user defined threshold, nodes create a new cluster declaring 
their own coordinate as the virtual center of cluster. To 
establish utility functions, we select the distance to the 
cluster and the size of cluster as utility properties. 
Furthermore, our cluster system provides the adaptability for 
dynamic network status while each node monitors the cluster 
that it is currently joining. After describing the self-
organizing and managing clustering procedure, we evaluated 
its performance in terms of latencies of intra cluster and the 
number of cluster members. Based on our evaluation, we 
confirmed that setting of parameters, which form utility 
functions, can control the properties of clusters such as 
latencies of intra cluster and the population of clusters. 
Additionally, by measuring the percentage of the number of 
nodes which need to migrate into another cluster and average 
utility value, we presented the adaptability of our system. 

As a future work, we can extend this work by considering 
different Internet measures like bandwidth as mentioned in 
the introduction. Unlike using latency to express the network 
proximity, higher bandwidth is considered as closer distance 
and the distance for two end hosts is the lowest bandwidth 
link, we should adopt a different coordinate space rather than 
the Euclidean distance space. Especially, our future work can 
be inspired by Sequoia which uses the tree metric to predict 
the end-to-end bandwidth. 
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