
DESIGN, IMPLEMENTATION, AND APPLICATIONS OF
PEER-TO-PEER VIRTUAL PRIVATE NETWORKS

FROM GRIDS TO SOCIAL NETWORKS

By

DAVID ISAAC WOLINSKY

A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

2011

c⃝ 2011 David Isaac Wolinsky

2

I dedicate this to family and those whose have supported me.

3

ACKNOWLEDGMENTS

Over the past 5 years, there has been many constants and many changes, soon

there will be only changes. Though through it all, I have been surrounded by wonderful

people who have helped and encouraged me to succeed and can only hope that the

relationship was beneficial for them as well. To begin naming names, I will begin with my

advisor, Professor Renato Figueiredo. I greatly appreciate the time he has invested into

me and his wisdom shared with me. I am greatly blessed to have worked so closely with

a professor whom I work so well with. That leads me into Professor P. Oscar Boykin,

the other head of the ACIS P2P Group, who along with Professor Figueiredo, molded

me into the bold Ph.D. I am today. Professor Boykin also helped enrich my design

and development skills, for which, I am extremely grateful. Rounding out the ACIS

professors, leads to Professor Jose Fortes, who has always been a good source of

wisdom and encouragement. As leader of the ACIS lab, Professor Fortes has always

been very generous in providing both his time, which is why I am very appreciative

to have him as a member on my Ph.D. committee. I would also like thank Professors

Shigang Chen and Y. Peter Sheng for their time investments in my research and whose

comments have been invaluable in shaping my dissertation.

My peers and family have also been critical sources of support, encouragement,

and wisdom. I am thankful to the members of the ACIS P2P group, both past and

present, namely, Tae Woong Choi, Heung Sik Eom, Arijit Ganguly, Kyungyong Lee,

Yonggang Liu, Pierre St. Juste, and Jiangyan Xu, whose comments and contributions

have paved the way for my research. I am thankful to members of my sports groups,

both the Larsen-Benton Basketball Association and the Badminton Group for their

friendships, as they provided a means to redirect frustrations developed along the

way. I appreciate the hard work and dedication of my fellow Archer colleague, Girish

Venkatasubramanian. My gratitude goes to the kind office ladies who assisted me so

much, Catherine Reeves, Janet Sloan, and Dina Stoeber. I am thankful for the time

4

put forth by my Grid Appliance colleagues, Panoat Chuchaisri and Arjun Prakash.

My lab experience would have been much more difficult without the expertise and

kindness of Sumalatha Adabala, Matthew Collins, Andrea Matsunaga, and Mauricio

Tsugawa. I would like to thank Priya Bhatt, Bingyi Cao, Xin Fu, Selvi Kadrivel, and

Prapaporn Rattanatamrong for their kind hearts and encouragement and, in some

cases, their spicy food. I would like to thank Donna Gimbert for her support and

encouragement throughout the years, likewise, I have been blessed to have parents

that have encouraged me to press forward and achieve my goals in life and a son who

provides me immense amounts of happiness.

Research is a collaborative effort that, for me at least, involves both professional

and home life. My success has largely been the result of the quality individuals that I

have been fortunate enough to have in my life. It is for those already mentioned and

those remembered that this dissertation is owed. Thank you so much.

5

TABLE OF CONTENTS

page

ACKNOWLEDGMENTS . 4

LIST OF TABLES . 10

LIST OF FIGURES . 11

ABSTRACT . 13

CHAPTER

1 INTRODUCTION . 17

1.1 Virtual Private Network Basics . 20
1.2 Computer Network Architectures . 23
1.3 Structured Overlays . 25
1.4 Network Asymmetries . 28
1.5 Contributions . 30

2 VIRTUAL NETWORK CONFIGURATION AND ORGANIZATION 34

2.1 Network Configuration . 35
2.1.1 Centralized VPN Systems . 35
2.1.2 Centralized P2P VPN Systems . 36
2.1.3 Decentralized VPN Systems . 37
2.1.4 Unstructured P2P VPN Systems 37
2.1.5 Structured P2P VPN Systems . 37

2.2 Local Configuration . 39
2.2.1 Local VPN Architecture . 41
2.2.2 Address Resolution . 44
2.2.3 Address Allocation . 46
2.2.4 Domain Name Servers and Services 48

2.3 Supporting Migration . 48
2.4 Evaluation of VPN Network Configuration 52
2.5 Evaluation of VPN Local Configuration . 54

2.5.1 On the Grid . 56
2.5.2 In the Clouds . 60

3 BOOTSTRAPPING PRIVATE OVERLAYS . 65

3.1 Current Bootstrap Solutions . 69
3.2 Core Requirements . 71

3.2.1 Reflection . 71
3.2.2 Relaying . 73
3.2.3 Rendezvous . 74

3.3 Implementations . 75

6

3.3.1 Using Brunet . 76
3.3.2 Using XMPP . 78

3.4 Evaluating Overlay Bootstrapping . 80
3.4.1 Deployment Experiments . 80
3.4.2 Deployment Experiences . 82

4 FROM OVERLAYS TO SECURE VIRTUAL PRIVATE NETWORKS 86

4.1 Experimental Environment . 87
4.2 Towards Private Overlays . 88

4.2.1 Time to Bootstrap a Private Overlay 89
4.2.2 Overhead of Pathing . 92

4.3 Security for the Overlay and the VPN . 92
4.3.1 Implementing Overlay Security . 93
4.3.2 Overheads of Overlay Security . 96

4.3.2.1 Adding a Single Node . 97
4.3.2.2 Bootstrapping an Overlay 97

4.3.3 Discussion . 98
4.4 Handling User Revocation . 99

4.4.1 DHT Revocation . 100
4.4.2 Broadcast Revocation . 100
4.4.3 Evaluation of Broadcast . 100
4.4.4 Discussion . 101

4.5 Managing and Configuring the VPN . 102
4.6 Leveraging Trust from Online Social Networks 104

4.6.1 Architecture . 105
4.6.2 Leveraging Trust From Facebook 106
4.6.3 Leveraging Trust from XMPP . 107
4.6.4 Address Allocations and Discovery 107

4.7 Related Work . 108
4.7.1 VPNs . 108
4.7.2 P2P Systems . 109

5 EXTENSIONS TO P2P OVERLAYS AND VIRTUAL NETWORKS 111

5.1 Built-in Self-Simulation . 111
5.1.1 Time-Based Events . 112
5.1.2 Network Communication . 113
5.1.3 User Actions . 115
5.1.4 The Rest of the System . 116
5.1.5 Optimizations . 116

5.2 Efficient Relays . 118
5.2.1 Motivation for Relays in the Overlay 119
5.2.2 Comparing Relay Selection . 121

5.3 Policies for Establishing Direct Connections 122
5.3.1 Limitations . 122

7

5.3.2 On-Demand Connections . 123
5.4 Broadcasting IP Broadcast and Multicast Packets Via the Overlay 126
5.5 Full Tunnel VPN Operations . 127

5.5.1 The Gateway . 128
5.5.2 The Client . 129
5.5.3 Full Tunnel Overhead . 131

6 AD-HOC, DECENTRALIZED GRIDS . 133

6.1 WOWs . 137
6.1.1 P2P Overlays . 137
6.1.2 Virtual Private Networks . 138
6.1.3 Virtual Machines in Grid Computing 139

6.2 Architectural Overview . 140
6.2.1 Web Interface and the Community 142
6.2.2 The Organization of the Grid . 144

6.2.2.1 Selecting a Middleware 145
6.2.2.2 Self-Organizing Condor 146
6.2.2.3 Putting It All Together . 146

6.2.3 Sandboxing Resources . 147
6.2.3.1 Securing the Resources 147
6.2.3.2 Respecting the Host . 148
6.2.3.3 Decentralized Submission of Jobs 148

6.3 Deploying a Campus Grid . 149
6.3.1 Background . 150
6.3.2 Traditional Configuration of a Campus Grid 151
6.3.3 Grid Appliance in a Campus Grid 152
6.3.4 Comparing the User Experience 154
6.3.5 Quantifying the Experience . 154

6.4 Lessons Learned . 156
6.4.1 Deployments . 156
6.4.2 Towards Unvirtualized Environments 157
6.4.3 Advantages and Challenges of the Cloud 157
6.4.4 Stacked File Systems . 159
6.4.5 Priority in Owned Resources . 160
6.4.6 Timing in Virtual Machines . 161
6.4.7 Selecting a VPN IP Address Range 161
6.4.8 Administrator Backdoor . 162

6.5 Related Work . 163

7 SOCIAL PROFILE OVERLAYS . 165

7.1 Related Works . 167
7.2 Social Overlays . 169

7.2.1 Finding Friends . 169
7.2.2 Making Friends . 171

8

7.2.3 The Profile Overlay . 172
7.2.4 Event Based Message Notification 173
7.2.5 Active Peers . 174
7.2.6 Groups . 175

7.3 User Interaction . 175
7.4 Challenges . 178

8 CONCLUSIONS . 180

APPENDIX: STRUCTURED OVERLAY BROADCAST 183

REFERENCES . 185

BIOGRAPHICAL SKETCH . 194

9

LIST OF TABLES

Table page

2-1 VPN classifications . 35

2-2 Qualitative comparison of the three deployment models 40

2-3 WAN results for inter-cloud networking . 60

2-4 LAN results performed at GoGrid . 61

2-5 Virtual network comparison . 62

3-1 Time in seconds for various private overlay operations 81

3-2 Public and research overlays . 83

4-1 Pathing overheads . 92

5-1 Relay comparison . 121

5-2 Full tunnel evaluation . 131

6-1 Grid middleware comparison . 141

10

LIST OF FIGURES

Figure page

1-1 A typical VPN client . 21

1-2 1-D ring structured overlay . 26

1-3 Communication between a peer behind a NAT and one with a public address . 29

2-1 Three VN approaches: router, interface, and hybrid 40

2-2 The state diagram of a self-configuring VN . 42

2-3 VN interface . 43

2-4 VN router . 43

2-5 VN hybrid . 44

2-6 ARP request/reply interaction . 45

2-7 DHCP client/server interaction . 46

2-8 VN router migration . 52

2-9 VN router migration evaluation . 53

2-10 System transaction rate for various VPN approaches 54

2-11 System bandwidth for various VPN approaches 55

2-12 Grid evaluation setup . 57

2-13 Grid Netperf bandwidth (TCP STREAM) evaluation 57

2-14 Grid Netperf latency (TCP RR) evaluation . 58

2-15 Grid SPECjbb evaluation with Netperf TCP STREAM load 58

2-16 Grid SPECjbb evaluation with Netperf TCP RR load 59

3-1 Bootstrapping a P2P system using an existing (generic) overlay 66

3-2 Bootstrapping a P2P system using Brunet . 78

4-1 CDF of private overlay bootstrap time . 92

4-2 Security filter . 95

4-3 DTLS handshake . 96

4-4 A single node joining an insecure and secure overlay 98

11

4-5 Simulataneous bootstrapping of a secure and an insecure overlay 99

4-6 Overlay broadcast time . 101

4-7 Bootstrapping a new GroupVPN . 104

5-1 Creating relays . 119

5-2 A comparison of all-to-all overlay routing, two-hop relay, and direct connection
in Brunet . 120

5-3 Latency in PlanetLab deployment compared to iPlane 124

5-4 Drop rate in PlanetLab deployment compared to iPlane 124

5-5 Time to form a direct connection . 126

5-6 An example of both full and split tunnel VPN modes 128

5-7 The contents of a full tunnel Ethernet packet 129

6-1 Grid Appliance middleware . 135

6-2 Grid Appliance deployment scenario . 143

6-3 A collection of various computing resources at a typical university 150

6-4 Time to construct a grid . 155

6-5 Time to run a job on a grid . 155

6-6 Grid Appliance stackable file system . 159

7-1 An example OverSoc social overlay network . 167

7-2 Alice requests and receives a friendship from Bob 169

7-3 Alice, already a friend of Bob, connects to his social overlay 171

A-1 Tree-based overlay broadcast . 183

12

Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

DESIGN, IMPLEMENTATION, AND APPLICATIONS OF
PEER-TO-PEER VIRTUAL PRIVATE NETWORKS

FROM GRIDS TO SOCIAL NETWORKS

By

David Isaac Wolinsky

August 2011

Chair: Renato Figueiredo
Major: Electrical and Computer Engineering

Virtual private networks (VPNs) enable existing network applications to run

unmodified in insecure and constrained environments by creating an isolated and

secure virtual environment providing all-to-all connectivity for VPN members. While

there exist both centralized and distributed VPN implementations, current approaches

lack self-configuration and organization capabilities that would reduce management

overheads and minimize efforts by non-experts. Recent use of peer-to-peer (P2P)

techniques have focused on alleviating pressure placed upon infrastructure nodes

by allowing peers to form direct connections for communication purposes, while

infrastructure nodes are used for handling session management and supporting indirect

communication by relaying traffic when NAT (Network Address Translation) or firewall

traversal fails. In terms of decentralized, P2P-based VPN solutions, the mechanisms

explored thus far in related works employ unstructured P2P systems, which can have

significant scalability limitations. This thesis constructs a novel decentralized P2P

VPN that addresses the following core aspects that are integral to user-friendliness:

bootstrapping, discovery, security, and endpoint configuration.

A resource joining a distributed system goes through a bootstrapping process.

The target environment for VPNs include small systems with many if not all users

behind NATs and firewalls making the bootstrapping process challenging. Centralized

13

systems address the bootstrapping problem by using a common resource for peer

registration, discovery, and connection establishment. Centralized systems, however,

come with additional costs in deploying and managing a dedicated resource with a

public Internet address and the capability to handle demands placed upon it by clients. I

have investigated, implemented, and evaluated decentralized means to bootstrap private

P2P overlays for connectivity-constrained resources, with an approach that supports

a recursive overlay organization or the use of third-party free-to-join public overlay

infrastructures using technologies such as XMPP (Extensible Messaging and Presence

Protocol).

Bootstrapping helps establish connectivity into an overlay; however, many systems

including P2P VPNs require a means for discovery specific peers. Existing VPNs either

rely on large tables hosted on infrastructure nodes or overlay broadcast techniques to

find a resource. As a system grows in capacity, these approaches have their limitations,

especially in VPNs where all IP (Internet Protocol) addresses are independent of their

location inside the VPN. I have employed distributed hash tables to efficiently establish

decentralized IP address allocation and discovery seamlessly providing scalability and

resilience.

In a VPN, other peers are typically either trusted directly by the peer, or indirectly

through a trusted third-party. While users may trust a third-party to assist them in

creating network links to other peers, they do not desire to have intermediaries that

are able to read or modify their IP packets. Unfortunately, most VPNs only encrypt

messages on a point-to-point (PtP) basis allowing these intermediaries privileged

access to their identity and their messages. In these cases, end-to-end (EtE) security

relies on out-of-bound exchanges and applications. To transparently handle security at

both PtP and EtE layers across a wide spectrum of communication transports, I have

developed a novel security filter, which has been demonstrated to support existing Public

14

Key Infrastructure based security systems (such as DTLS (Datagram Transport Layer

Security)) for both PtP and EtE traffic inside connectivity-constrained environments.

While security primitives enable private and authenticated communication, the

configuration and management overheads involved in establishing trust and maintaining

secure connections in VPNs are a significant hindrance to usability and adoption. In my

approach, all security links are established from exchanged certificates, so each peer is

uniquely identifiable. My approach uniquely handles administrative and user aspects of

certificates automatically through the use of online social networking features such as

peer relationships and groups.

The above self-organizing mechanisms to create VPN links need to be complemented

with approaches that support effective bindings to endpoints from which messages are

captured/injected from/to the VPN. In a typical approach, called the interface model,

each resource in the VPN has a local binding to the VPN by locally installed software.

Unfortunately, this introduces significant overheads when two or more such systems

are running inside the same trusted LAN (Local Area Network). Alternatively, if all

resources in a LAN connect to a common VPN, such as in a grid or for cloud computing

environments, the resources can share a common entry point to the VPN through a

router model. Unfortunately, existing approaches do not transparently configure the

router and connected resources. Additionally, the router model does not work well on

shared networks, where there are either untrusted users or some resources should not

be accessible through the VPN. I have shown herein how all of these considerations

can be handled without the introduction of new protocols by utilizing existing services

commonly provided by network stacks, primarily DHCP (Dynamic Host Control Protocol)

and ARP (Address Resolution Protocol), which enables a new type of VPN model that

balances the benefits of the interface and router models.

The premise for this work is to enhance the usability of VPN systems enabling

wider adoption by non-expert users in home, small/medium business, and education

15

environments. The concepts for this work have been carefully designed, implemented,

and evaluated and then demonstrated through the implementation of novel systems

(SocialVPN, GroupVPN, and Grid Appliance) accessed by real users. The SocialVPN

creates user-centric VPNs so that peers only have VPN links with their social network

friends, whereas the GroupVPN employs a group infrastructure to manage VPN

members and distribute VPN configuration. A free GroupVPN bootstrapping environment

relying on PlanetLab hosted resources has been available for over three years and has

been accessed by over hundreds of users including several universities and commercial

entities, whereas the SocialVPN has over 80 active members online at any given time.

The Grid Appliance uses the GroupVPN to form ad-hoc and distributed computing

pools, facilitating computer architecture research in the Archer project. The Archer

project has been accessed by student at several universities and has accumulated over

500,000 CPU hours in a little less than three years. Furthermore, the Grid Appliance

has been used as both a teaching tool in distributed computing classrooms as well as

by external users to create their own grids. The challenges faced in these deployments

have opened the door for other avenues of research into built-in self-simulation, P2P

connection establishment, efficient IP broadcasting and multicasting, and decentralized

establishment of Internet gateways.

16

CHAPTER 1
INTRODUCTION

A Virtual Private Network (VPN) provides the illusion of a local area network

(LAN) spanning a wide area network (WAN) infrastructure by creating encrypted and

authenticated, secure1 communication links amongst participants. Common uses of

VPNs include secure access to enterprise network resources from remote/insecure

locations, connecting distributed resources from multiple sites, and establishing virtual

LANs for multiplayer video games over the Internet. VPNs in this context differ from

others that provide “‘emulation of a private WAN facility using IP (Internet Protocol)

facilities’ (including the public Internet or private IP backbones). ” [47]. This style of

VPN is used to connect large sets of machines behind routers to a virtual private WAN,

whereas this dissertation focuses on the approach of connecting individual resources

into a private LAN.

As a tool enabling collaborative environments, VPNs can be useful for various

applications. If friends and family require computer assistance and their computer guru

no longer lives nearby, the guru can remotely log into the machine using a VPN running

over the Internet despite networking constraints between the two parties. When traveling

abroad, a user may wish that their Internet traffic be kept private from the local network.

A VPN can be used to route all Internet packets securely through the user’s home or

office network, ensuring the user’s privacy. Many computer and video games have

multiplayer networking components that require direct connectivity. Most of these games

rely on centralized servers for bootstrapping limiting their lifespan. Players of these

games can continue playing through VPNs. Small and medium businesses may find

VPNs useful for connecting desktops and servers across distributed sites securing traffic

1 For the remainder of this document, unless explicitly stated otherwise, security
implies encryption and mutual authentication between peers.

17

to enterprise networked resources. Independent organizations that each have limited

resources can combine together their resources through a VPN to create a powerful

computing grid.

The utility of the VPN described herein is illustrated by a collaborative grid

computing project, Archer [37]. Archer consists of over 700 core resources as well

as voluntary resources from the community to provide a dynamic and decentralized

grid environment for computer architecture researchers to share and access compute

cycles. Use of centralized systems would limit the scope of Archer and require dedicated

administration, whereas existing decentralized solutions require manual configuration of

links between peers, which is beyond the scope of Archer’s target users. Current P2P

(peer-to-peer) virtual network (VN) approaches either lack scalability or proper security

components to be considered VPNs; whereas my approach applies naturally to such

systems.

There are various VPN architectures that attempt to deal with the challenges

presented in these use cases. In some, certain VPN approaches may work, where

others are not applicable, and in others scenarios, no current VPN approach is

applicable. In general, successful deployment and use of VPNs face the following

challenges:

• Overlay Configuration. Peers must be able to find each other in order to
bootstrap into the overlay and to establish links with specific users inside the
overlay.

• Connectivity. Network asymmetries created by firewalls, NAT (network address
translation), and Internet router outages motivate the use for VPNs. One approach
is to route all traffic through a third party, but this incurs overheads. There also
exist approaches to allow two peers behind NAT devices to communicate directly
and falling back to a relay if the two peers are behind too restrictive networks.

• Peer Management. To ensure reliability and trust, a distributed system should
employ security. Peer management involves providing and obtaining security
credentials as well as preventing misbehaving peers from communicating with a
user’s resource or excluding them entirely from the system.

18

• Privacy. The original intention for VPNs was network security, thus all communication
between peers is private. Many VPNs only secure traffic between hops and
are thus susceptible to man-in-the-middle attacks. Unfortunately, establishing
end-to-end privacy can be challenging as it requires additional out-of-band
exchanges.

• Endpoint Configuration. Applications transfer packets through a network
interface. Endpoint configuration is necessary to enable sending and receiving
packets from userspace through the VPN.

Collaborative environments can strongly benefit from a VPN that is both user-friendly

as well as scalable. A system that is only user-friendly will initially attract interest but

frustrate users in the long run, while systems lacking user-friendliness may have limited

user adoption. By applying these requirements to the aforementioned challenges leads

to the following goals: a collaborative VPN should be easy to configure, such that users

should be able to deploy and use them without being experts in operating systems

(O/Ss) or networks; the system should not require additional resources to support more

users; adding new users and resources should be straight-forward using approaches

familiar to common users; peers should be able to connect to each other directly if and

when possible; and all communication, not just hop-by-hop, should be secure.

While existing VPNs are able to meet some of these requirements, they are unable

to meet them all. Centralized approaches (e.g. OpenVPN R⃝ [120]) by their very nature

require dedicated infrastructures and do not allow direct communication between

peers, though when configured to do so are able to guarantee all-to-all communication

regardless of NAT and firewall conditions. P2P based approaches (e.g. Hamachi R⃝ [67],

Wippien [79], Gbridge R⃝ [66], PVC [85]) solve the issue of direct communication, though

they are vulnerable to man-in-the-middle attacks when session management is handled

by an external provider, rely on a central resource for the creation of VPN links, and

require managed relays if direct peer communication across NATs and firewalls fails.

Distributed approaches (e.g., ViNe [108], Violin [53], VNET [106], tinc [100]) require

manual configuration of links between members of the virtual network. Existing P2P

19

overlay approaches lack scalability (N2N [29] and P2PVPN [46]) or are difficult to

configure and lack privacy (I3 [103]).

My work culminates in a novel design and implementation of a VPN from endpoint

configuration to overlay construction and organization resulting in an autonomic VPN

that bridges the gap between user-managed VPNs and those hosted by third-party

services. The VPN builds on top of a P2P system used to transparently handle network

asymmetries and support address allocation and resolution. The P2P system organizes

into a structured overlay, which supports scalable, distributed data sharing via a

distributed hash table (DHT). Peers search for each other by querying the DHT and

then use constructs provided by the P2P layer to form direct links or relays with remote

peers. Peer management is handled through common social networking interfaces

such as dedicated group infrastructures or relationships based upon XMPP (Extensible

Messaging and Presence Protocol) or Facebook R⃝. Both the VPN and the overlay are

secured by a common security filter framework, which can be decentrally located and

bootstrapped through existing overlays. Finally, through various VPN models, users

and system administrators can take the same VPN software and install it in various

environments with minimal configuration overhead.

1.1 Virtual Private Network Basics

VPNs consist of two components: clients and servers 2 . Clients discover other

clients by means of servers or overlays. Depending on the VPN style, clients will then

either communicate with each other through servers or use them to establish direct links

with each other. While setup may be different amongst the various VPNs, during run

2 The definition of a server is VPN dependent, the general concept is a resource or
set of resources that maintain state in the system. It might be a centralized resource, an
overlay, or even a client in the case of P2P systems.

20

Figure 1-1. A typical VPN client

time, the environment provided by a VPN client is the same regardless of how the server

or overlay is implemented.

Figure 1-1 abstracts the common features of all VPNs clients, a service and a

virtual network (VN) device providing communication with the VPN system and host

integration, respectively. During initialization, the VPN service authenticates with the

overlay by means of a centralized or distributed service, independently with each peer,

or some other means; then, optionally, querying for information about the network,

such as network address space, address allocations, and domain name service (DNS)

servers. At which point, the VPN enables secure communication amongst participants.

Clients can authenticate with the overlay using a variety of methods. A system can

be setup quickly by using null (no) authentication or a shared secret such as a key or

a password. Using accounts and passwords with or without a shared secret provides

individualized authentication, allowing an administrator to block all users if the shared

secret is compromised or individual users who act maliciously. Using unique private

keys with corresponding signed certificates provide a more secure approach, because

21

it eliminates the feasibility of brute force attacks. The trade-offs in the approaches come

in terms of security, usability, and management. While the use of signed certificates

provides better security than shared secrets, certificates require more configuration

and maintenance. In a system comprising of non-experts, like many university VPNs,

the usual setup uses a shared secret and individual user accounts. Secrets can be

packaged with the VPN application, so long as it is distributed through secure channels

such as authenticated HTTPS (hypertext transfer protocol secure).

A VN device as presented in Figure 1-1 allows networking applications to

communicate transparently over the VPN. The VN device provides mechanisms for

injecting incoming packets into and retrieving outgoing packets from the networking

stack, enabling the use of common network APIs such as Berkeley Sockets, allowing

existing applications to work over the VPN without modification. While there are many

different types of VN devices, TAP [63] stands out from the rest due to its open source

and pervasive nature. TAP allows the creation of one or more Virtual Ethernet and / or

IP devices and is available for almost all modern operating systems including Windows,

Linux, Mac OS/X, BSD, and Solaris. A TAP device presents itself as a character device

providing read and write operations. Incoming packets from the VPN are written to the

TAP device and the networking stack in the OS delivers the packet to the appropriate

socket. Outgoing packets from local sockets are read from the TAP device.

VN devices are no different than any other network device. They can be configured

manually through command-line tools or OS’ APIs (application programming interface)

or dynamically by the universally supported dynamic host configuration process

(DHCP) [4, 31]. Upon the VN device obtaining an IP address, the system adds a

new rule to the routing table that directs all packets sent to the VPN address space

to be directed to the VN device. Packets read from the TAP device are encrypted

and sent to the overlay via the VPN client. The overlay delivers the packet to another

client or a server with a VN stack enabled. Received packets are decrypted, verified

22

for authenticity, and then written to the VN device. In most cases, the IP layer header

remains unchanged, while VPN configuration determines how the Ethernet header is

handled.

1.2 Computer Network Architectures

All models for computer communication in distributed systems fall under two

categories: centralized and decentralized. Sub-classes of these categories include

hybrid systems with centralized session management and decentralized communication

and self-configuring, dynamic P2P systems. The architectures commonly used for

implementing VPN systems are centralized organization and communication, centralized

organization and decentralized communication, decentralized communication with

manual organization, and decentralized communication with automatic organization.

Systems with Centralized organization and communication consist of clients and

servers where all distributed peers are clients discovering and connecting, or organizing,

through a dedicated centralized resource. Clients never communicate with each other

directly, but rather every message between two clients must traverse the server. For

instance, most online social networks (OSNs) are representative of these type of

systems. Users of OSNs like Facebook R⃝ [36] and MySpace R⃝ [74] communicate

through centralized environments, never directly to each other’s computers. OpenVPN R⃝ [120]

represents this VPN approach. These systems rely on dedicated resources. In the

situation that a server goes offline or becomes overwhelmed by the clients, the system is

rendered useless.

Centralized organization and decentralized communication systems include the

first set of popular P2P systems, such as the original Napster R⃝, Kazaa R⃝, and VPNs

like Hamachi R⃝ [67]. Similar to the client-server model, clients connect to a server to

find other clients, though instead of communicating through the server, the clients form

direct connections with each other. These approaches are limited by network address

translation (NAT) and firewalls that may prevent peers from communicating with each

23

other. In these cases, the central server may act as a relay allowing the two clients

to communicate through it. Unlike systems using centralized communication, these

systems are less susceptible to being overwhelmed by client traffic and even if the

server goes offline existing client links remain active, though new connections cannot be

established.

Systems employing decentralized communication with manual organization address

the issues of a central system going offline, because clients are configured to connect

to any number of distributed servers forming an overlay. In these systems, servers

are explicitly configured to communicate with other servers. Though this approach

improves upon the performance and availability issues inherent to completely centralized

architectures, if a server goes offline any systems communicating through it will no

longer be connected to the rest of the system until the administrator creates additional

links or the server becomes active again. Clients in these systems do not typically

form direct links with each other; rather, they route packets through the overlay.

This approach has been used to create scalable VPNs, like ViNe [108], VNET [106],

Violin [53], and Layer 2 Tunneling Protocol based VPNs [107].

In automatic organization-based decentralized communication systems, there is

no distinction amongst peers as they act as both client and servers, i.e., a P2P system

or overlay. P2P systems are usually distributed with a list of common peers. A peer

attempting to bootstrap into the P2P overlay randomly selects peers on this list until

it is able to connect with one. This connection is then used to form connections with

other peers currently in the overlay. The overlay can be organized in two different forms:

randomly or deterministically creating unstructured or structured overlays, respectively.

In an unstructured overlay, links are formed arbitrarily, thus a peer searches for another

peer by broadcasting the message or using stochastic techniques. In structured

overlays, peers organize into topologies by deterministically forming connections

with peers nearby in the overlay address space creating structures such as ring and

24

hybercubes. Peers can be found deterministically using greedy routing approaches in

usually log(N) time. Gnutella [87] file sharing system and Skype R⃝ [99] are popular

examples of unstructured systems, while P2PSIP [14] and distributed hash tables

(DHTs) [104] are popular in structured systems. A challenge in unstructured systems

is finding data objects in reasonable amount of time, while structured systems suffer

when large amount of peers join or leave the system, known as churn [86]. In general,

both approaches are difficult to secure depending on the nature of the application and

deployment. When used in private environments though, they have been shown to be

very useful, exemplified by Dynamo [28] or BigTable [22].

This dissertation uses structured overlays as the foundation in building scalable,

decentralized VPNs, the following section reviews structured overlays.

1.3 Structured Overlays

Structured P2P overlays provide distributed querying systems with guaranteed

search time. Unlike unstructured systems [19], which rely on global knowledge/broadcast

or stochastic techniques such as random walks that take O(N) time to guarantee finding

data in the overlay, structured overlays organize into well-defined geometries with

support to resolve queries within O(log(N)) There exists a plethora of structured

systems found both in research and in available applications [13, 71, 72, 82, 94, 104].

In order to obtain guaranteed search time, structured systems self-organizing into well

defined topologies, such as a ring (pictured in Figure 1-2) or a hypercube. Peers joining

an overlay typically follow these abstracted steps:

1. generate or obtain a unique identification number (node ID) within the overlay’s
address space, usually on the order of 128-bits to 256-bits;

2. attempt to connect to one or more random addresses from a pre-shared list of
well-known endpoints, dedicates resources from a service provider or users with
high uptime;

3. become connected to at least one peer in this list (leaf connection, bootstrap peer);

4. find the set of peers in the address space closest to the node’s ID;

25

Figure 1-2. 1-D ring structured overlay

5. establish connections or exchange connection information with those peers
(neighbor or near connections);

6. and finally connect to other nodes in the overlay outside the set of near connections
to enable quickly traversing the address space (shortcut or far connections).

All nodes are required to have a unique node ID. Address collisions can cause

inconsistencies in the overlay, where one or both of the nodes will not be able to properly

connect to the overlay. Furthermore, having uniformly distributed node IDs enhances

the utility of the shortcut connections. To obtain a good distribution of node IDs, either

a central server can provide the ID or each node independently of others can use a

26

cryptographically strong random number generator. The former approach can be used

to create a trusted overlay by having the third-party sign each node IDs [20].

In a ring, each node must be connected to closest neighbors in the node ID address

space, that is the node immediately before and after it. Optimizations for fault tolerance

suggest that for ring topologies the amount should be at least 2 and up to log(N) on

both sides. Consider the case when there is overlay disconnectivity potentially due to

churn; a peer receives a packet but cannot route it closer to the destination than itself

because it does not have a connection with that peer. The message may either be

locally consumed or thrown away never arriving at its intended destination. Increasing

the number of near neighbor peers reduces the likelihood chances of packets being lost

due to churn, especially if peers leave suddenly without warning.

As mentioned, shortcuts or far connections enable efficient routing in ring-based

and similarly designed structured overlays. The various shortcut selection methods

include: maintaining large tables without using connections and only verifying usability

when routing messages [72, 94], maintaining a connection with a peer at specific

locations in the P2P address space [104], or using locations drawn from a harmonic

distribution in the node address space [71].

Structured overlays support decentralized query systems that can be used to build

distributed data structures such as a distributed hash table (DHT) by mapping keys via a

hash function to node IDs in an overlay. The data associated with the key is then stored

at the node closest to the node ID of the key and for fault tolerance can be stored by

other nodes nearby or more keys can be generated by recursively hashing the original

key. Using the DHT primitives, Past [95] and Kosha [17] projects have designed more

complex distributed data stores.

The actual mechanism for querying nodes or routing in a P2P overlay can be either

iterative or recursive. In iterative routing, the querying node iteratively contacts nodes

closer and closer to the address until finding the closest node at which point it makes

27

the request directly to that node. In more detail, the querying node directly queries the

node closest to the destination, that node returns back one or more network (IP) and

P2P addresses of closer peers, the querying node queries these peers, and the process

continues until determining there exists no closer node. Alternatively in recursive

routing, a querying peer sends the message to the peer closest to the destination from

its perspective, repeating the process until the message has arrived at the closest

peer to the address or the destination. Compared to recursive routing, iterative can

be implement more easily though with considerable overhead as each overlay query

will cause log(N) connections to form. NATs further complicate the use of iterative

routing as peers attempting to connect with another peer behind a NAT will need the

assistance of a third-party, whereas recursive routing maintains active connections and

messages, seamlessly traversing NAT links and non-NAT links since the connections are

established prior to message transmission.

1.4 Network Asymmetries

Naive P2P systems assume network symmetry, that is any peer can communicate

directly with any other peer using the underlying infrastructure. Unless the software

is run inside a LAN or an environment where the network topology is well controlled

and defined, symmetry cannot be guaranteed. P2P used in wide area systems often

relies on the Internet. Besides the potential routing outages on the Internet, significant

amount of resources which are not directly accessible are connected to it. The issue is

only further pressed by the current means of connecting to the Internet: IPv4 (Internet

Protocol version 4) with its limited address space of only 232 (approximately 4 billion).

With the Earth’s population at over 6.8 billion and each individual potentially having

multiple Internet-capable devices, these limitations become more apparent.

Currently the two approaches addressing IPv4 limitations are: the use of NATs

to enable many machines and devices to share a single IP address but preventing

bidirectional connection initiation and IPv6 (Internet Protocol version 6) which supports

28

192.168.1.1 77.23.192.67128.212.33.44SRC: 192.168.1.1:1000DST: 77.23.192.67:20000 SRC: 128.212.33.44:2100DST: 77.23.192.67:20000SRC: 77.23.192.67:20000DST: 192.168.1.1:1000 SRC: 77.23.192.67:20000DST: 128.212.33.44:2100Private Network NAT Device Public Network
Figure 1-3. Communication between a peer behind a NAT and one with a public address

2128 addresses. The use of NATs, as shown in Figure 1-3, complicates the bootstrapping

of P2P systems as it prevents peers from simply exchanging addresses with each

other to form connections, as the addresses may not be public. In addition, firewalls

may prevent peers from receiving incoming connections. Thus, while the eventual

widespread use IPv6 may eliminate the need for address translation, it does not

deal with the issue of firewalls preventing P2P applications from communicating as

well as routing outages, and it is not clear that IPv6 users will not continue to rely

on NAT/firewall devices to provide a well-defined boundary of isolation for their local

networks.

When a machine, A, behind a typical NAT, B, sends out a packet to an Internet

host, C, the NAT device translates the packet so that it appears it is coming from the

NAT device making the NAT device a gateway. When the packet is sent from A to C, the

source and destination are listed as IP : port pairs, where the source and destination are

IPA : PortA and IPC : PortC , respectively. A forwards the packet to B who transforms the

source from IPA : PortA to IPB : PortB , where PortA may or may not be equal to PortB .

This creates a NAT mapping so that incoming packets from IPC : PortC to IPB : PortB are

translated and forwarded to IPA : PortA.

There are a handful of recognized NAT devices [93, 101]. The following list focuses

on the more prevalent types:

• Full Cone. All requests from the same internal IP and port are mapped to a static
external IP and port, thus any external host can communicate with the internal host
once a mapping has been made.

29

• Restricted Cone. Like a full cone, but it requires that the internal host has sent a
message to the external host before the NAT will pass the packets.

• Port Restricted Cone. Like a restricted cone, but it requires that the internal host
has sent the packet to the external hosts specific port, before the NAT will pass
packets.

• Symmetric. Each source and destination pair have no relation, thus only a
machine receiving a message from an internal host can send a message back.

Of the various scenarios involving peers and NATs, so long as one peer is on any of

the cone NATs and there are no firewalls, it can receive incoming connection requests.

Challenges to this approach exist when firewalls are introduced or both peers are

behind symmetric NATs. Firewalls may traffic that would otherwise allow NAT traversal,

whereas symmetric NATs require complex mechanisms in an attempt to have incoming

connection requests. These types of systems typically rely on a third-party to pass

messages between the peers.

1.5 Contributions

The resulting expectations of a collaborative environment that addresses the

challenges listed in the introduction are self-configuring environments enabling even

non-experts to setup, deploy, and manage their own VPNs; peers should communicate

with each other directly when possible or through efficient indirect paths when

constrained; and the system should be reliable and ensure the privacy of its users

To address these requirements, I propose a novel GroupVPN using structured overlays

consisting of the following novel contributions:

Secure Overlays. Typical overlays are secured using heuristics that limit the effects

of malicious users. Challenges of using secure sessions for instituting trust or security

into an overlay depends on the communication path ways. If the goal for the system is

to support asymmetries on the network, then the system will have to make significant

use of datagram technologies. This work proposes a unique filter mechanism to support

30

encrypting any form of communication between two parties and examines the overheads

of deploying it in simulated and real environments.

Bootstrapping Ad-Hoc, Decentralized Systems. Secure overlays present a

challenge when there is a one to one mapping between overlay and VPN in order to

securely isolate a VPN. This stems from the fact that at any given time, peers may or

may not be connected to the overlay. When used in small groups, most or all members

may be behind NATs or remain online for short periods of time, creating a situation

where not a single user on a publicly addressable resource will be online, limiting the

use of private overlays. To address this issue, I propose the reusing of public free-to-join

overlays to bootstrap into a private overlay. Peers use the public overlay to find each

other and exchange connection information using secure messages. Only peers with

appropriate security credentials are able to join the private overlay.

Decentralized Relays. In collaborative environments, most peers are behind NATs

and potentially firewalls as well. While in general most NATs are traversable through

existing approaches, not all are. Firewalls only complicate the matter. While these peers

may be able to communicate through the overlay, as the overlay grows, this latency can

become a hinderace to usability and interactivity. To improve this situation, I propose the

creation of autonomic 2-hop relays between the peers.

Using Social Infrastructures For Management and Distribution of Security

Credentials. In order to simplify the management and access to a VPN, this component

explores the use of social networks in terms of both groups and peers to facilitate trust

establishment for a VPN. Beyond the contribution of uniquely using social networks

to establish VPN trust, this work shows how systems can leverage trust in an existing

environments for use in another.

Self-Configuring VPN Architectures. Many existing VPN approaches require the

users to setup their environment and do not provide a plug and play system. In addition,

different environments call for different types of VPNs, explicitly, individual users connect

31

via their own VPN connections, while clusters may benefit from a shared VPN or may

desire fault tolerance of having many but do not want the communication overhead

when talking to VPN peers on the LAN. I address this issue with a self-configuring

VPN approach that can be applied to various local environments scaling from a single

computer to many.

PP2P VPN Enabled Internet Traffic Tunneling. When in insecure environments

such as browsing private information in a coffee shop, users may desire to prevent

local users and administrators from sniffing their traffic. Traditional VPNs support

this behavior, but the approach is difficult to implement in P2P systems due to their

dynamic nature. Currently, no decentralized VPN supports the ability to perform this

behavior. I propose a method that not only works for decentralized and P2P systems but

ensures a greater level of security than existing approaches by securing other non-VPN

communication between the peer and gateway resources.

Applications in Ad-Hoc, Distributed Systems. The value in a complex system

like the one proposed herein can be realized when tied together for the creation of

ad-hoc, distributed systems. The type of system focused on in this dissertation is a grid.

While there are many grid topologies, approaches that share resources amongst users

and even most that are used by a single user require a user with expertise in operating

systems, networks, and middleware. This dissertation shows the applicability of P2P

VPN methods and techniques that can be used to create a trusted, ad-hoc, distributed

grid that requires little if any expertise in the underlying technology being utilized.

Decentralized Social Networks. Traditional approaches to social networks, such

as Facebook R⃝ and MySpace R⃝, requires trust in a third-party entity. These third-parties

mine users information for advertisements, potentially violating user’s privacy. This

dissertation presents a decentralized social network that addresses real problems

by taking advantage of the P2P system described herein by providing each user in a

32

social network their own private overlay whose members constitute the friends of that

individual.

Improved Models For Direct Connection Establishment. Originally, direct links

in the P2P VN were based upon packet flow passing a threshold. Through the use

of profiling real systems and published results of Internet behavior, I have concluded

that this model does not scale well and have design and implemented a model that

satisfactorily solves this problem.

The rest of this dissertation is organized as follows. Chapter 2 overviews existing

VN and VPN approaches and discusses configuration and organization of the

VPN including end-point configuration. In Chapter 3, I review the challenges to

bootstrapping overlays and present my solution that reuses existing overlays to

bootstrap smaller, ad-hoc overlays. This leads into Chapter 4, which discusses security

issues in structured overlays and addresses the means to boot private and secure

VPNs. Chapter 5 covers extensions to the VPN based upon practical demands and

experiences. Chapters 6 describes the Grid Appliance, the target application for my

research. Chapter 7 presents a proposed idea on how to use the technology discussed

thus far to create a decentralized online social network. Finally, I conclude in Chapter 8

by discussing the value in my contributions and challenges that were revealed but not

addressed in this body of work, thus motivating future work.

33

CHAPTER 2
VIRTUAL NETWORK CONFIGURATION AND ORGANIZATION

VPNs enable seamless communication in distributed computing particularly

when combinging large sets of remote resources or connecting to centralized or

personel resources. Similar use cases can be extrapolated onto other collaborative

environments such as multiplayer games, merging home networks over a VPN

(virtual private network), or accessing a work computer remotely. Each application

has different requirements and in review of related research [29, 41, 46, 53, 55, 57,

66, 67, 79, 85, 100, 106–108, 120] not a single approach efficiently supports these

dynamic environments. Certainly, ISP (Internet service providers) large scale VPNs

such as Multiprotocol Label Switching [88] (MPLS) do not as well due to the manual

configuration and expertise required. An overview of these and the one described herein

are presented in Table 2-5.

The organization of a VPN has a direct effect on the amount of user effort required

to connect multiple sites. In this regard there are two components of a VPN, the local

organization and the remote or network organization. The setup of the virtual network in

order to have be a destination and recognized source for remote packets constitute the

local organization, whereas the routing of the packets amongst peers is handled by the

network organization. Prior research works primarily focused on the latter issue, while

ignoring the former. This left users to setup their own address allocations either through

manually configuring each environment or dealing with the problems caused by DHCP

(dynamic host control protocol) servers in cross domain network construction, as well as

their own security distribution systems. In addition, organizing a network can be an even

more complicated task than locally configuring the network, because it may require the

cooperation of many administrators at the various sites. This chapter presents a novel

approach to VPNs that achieves both local and network self-configuration.

34

Table 2-1. VPN classifications
Type Description
Centralized Clients communicate through one or more servers which are

statically configured
Centralized Servers
/ P2P Clients

Servers provide authentication, session management, and
optionally relay traffic; peers may communicate directly with
each other via P2P links if NAT traversal succeeds

Decentralized
Servers and Clients

No distinction between clients and servers; each member
in the system authenticates directly with each other; links
between members must be explicitly defined

Unstructured P2P No distinction between clients and servers; members either
know the entire network or use broadcast to discover routes
between each other

Structured P2P No distinction between clients and servers; members are
usually within O(logN) hops of each other via a greedy
routing algorithm; use distributed data store for discovery

2.1 Network Configuration

The key to communicating in a VPN is creating links to the VPN and finding the

peer in the VPN. The different architectures for VPN link creation are based on the

methods described in Table 2-1. These approaches are described in more detail below.

2.1.1 Centralized VPN Systems

OpenVPN R⃝ is an open and well-documented platform for deploying centralized

VPNs. In this dissertation, it is used as the basis for understanding centralized VPNs as

it represents features common to most centralized VPNs.

In centralized VPN systems, clients forward all VPN related packets to the server.

Client responsibilities are limited to configuring the VN (virtual network) device

and authenticating with the VPN server, whereas the servers are responsible for

authentication and routing between clients and providing access to the servers’ local

resources and the Internet (full tunnel). Likewise, broadcast and multicast packets also

must pass through the central server.

35

Centralized VPNs can support multiple servers: upon starting, the client can

randomly select from a list of known servers, implementing a simple load balance. Once

connected, the servers provide the client an IP (Internet Protocol) address in the VPN

address space. Depending on configuration, this allows a client to communicate with

other clients, resources on the server’s network, or Internet hosts via the VPN. Servers

require additional configuration to communicate with each other.

All inter-client communication flows through a central server. By default, a client

encrypts a packet and sends it to the server. Upon receiving the packet, the server

decrypts it, determines where to relay it, encrypts it, and then sends the packet to

its destination. This model allows a server to eavesdrop on communication. While a

second layer of encryption is possible through a shared secret, it requires out-of-band

communication and increases the computing overhead on communication.

2.1.2 Centralized P2P VPN Systems

Hamachi R⃝ [67] is the first well-known centralized VPN that used the ambiguous

moniker “P2P VPN”. In reality, these systems are better classified as centralized

VPN servers with P2P (peer-to-peer) links. Similar VPNs include Wippien [79],

Gbridge R⃝ [66], PVC [85], and P2PVPN1 [46]. The P2P in these systems is limited

to direct connectivity between clients orchestrated through a central server: in Wippien

it is a chat server, while P2PVPN uses a BitTorrent R⃝ tracker. If NAT (network address

translation) traversal or firewalls prevent direct connectivity, the central server can act

as a relay. Each approach uses their own security protocols with most using a server to

verify the authenticity and setup secure connections between clients. In regards to the

P2PVPN, long term goals involve the creation of an unstructured, which would provide a

method of decentralized organization.

1 Due to the similarities between the name P2PVPN and focus of this dissertation,
“P2PVPN” refers to [46] and “P2P VPN” to to the use of P2P in VPNs.

36

2.1.3 Decentralized VPN Systems

Some examples of systems that assist in distributing load in VPN systems are

tinc [100], CloudVPN [34], ViNe [108], VNET [106], and Violin [53]. These systems

are not autonomic and require explicit specification of links between resources. This

means that, like OpenVPN R⃝, these systems can suffer VPN outages when nodes go

offline, thus administrators must maintain the VPN connection table. Unlike OpenVPN R⃝,

these approaches typically do not require all-to-all direct connectivity for all-to-all

communication. Users can either setup out-of-band NAT traversal or route through

relays. Links are manually configured.

2.1.4 Unstructured P2P VPN Systems

Unlike centralized and decentralized systems, P2P environments require the user

to connect to the overlay, which then automatically configures links. The simplest form

of overlays are unstructured, where peers form random connections with each other

and use broadcast and stochastic (e.g. random walks) techniques to find information

and other peers; however, due to its unstructured nature, the system cannot guarantee

distance and routability between peers. The only example of an unstructured VPN is

N2N [29]. In N2N, peers first connect to a super node and then, to find another peer,

they broadcast discovery messages to the entire overlay. In the case that peers cannot

form direct connection, peers can route to each other over the N2N overlay. In the realm

of VPNs, all client VPNs are also servers performing authentication though neither

approach deals with decentralized address allocation.

2.1.5 Structured P2P VPN Systems

To address the scalability concerns in unstructured systems, this work uses

structured P2P overlays. As described in the first chapter, structured P2P overlays

provide distributed look up services with guaranteed search time with in log(N) time

in contrast to unstructured systems with N time. In general, structured systems are

able to make these guarantees by self-organizing a structured topology, such as a

37

one-dimensional (1-D) ring or a hypercube, deterministically by randomly generated

node identifiers.

The primary feature used by structured overlays is a distributed data store known

as a distribute hash table (DHT), which stores key, value pairs. In the overlay, the key

is an overlay address, where the value is stored. The peer closest to the key’s overlay

address is responsible for maintaining the value. Cryptographic hashes like SHA

(Secure Hash Algorithm) and MD5 (Message-Digest algorithm 5) can be used to obtain

the key’s overlay address from a string or some other byte array.

Ganguly et al. [44] and Stoica et al. [103] describe methods for address allocation

using a DHT (distributed hash table). Each VPN has a unique name or namespace,

when a peer requests an IP address, a mapping of hash(namespace, IP) to the peers

overlay address is atomically written to the DHT. A success implies that the writer was

the first writer to that value and other peers reading that value will be able to identify

that peer as owner of that IP address in that namespace. Likewise when a peer wants

to route a packet to a remote VPN peer, they query the DHT using the mapping, which

returns the overlay address. The IP packet is then sent to the overlay destination.

Unicast messages are sent between two end points on the overlay using normal

overlay routing mechanisms. Direct overlay links can be used to improve performance

between end points. Ganguly et al. [41] describes a method by which peers can form

autonomic direct connections with each other using an unstructured overlay. As IP traffic

increases over a period of time, a direct connection to bypass the overlay is initiated by

the receiver of the packets. Alternatively, a VPN may wish to form all-to-all connections

with VPN peers [38].

To support broadcast and multicast in an overlay, all members of a subnet associate

through the DHT by placing their overlay address at a specific key, i.e., namespace :

broadcast. Then when such a packet is received, it is sent to all addresses associated

38

with that key. It is up to the VN at each site to filter the packet. This is sufficient to

support deployments where multicast or broadcast is not relied upon extensively.

2.2 Local Configuration

At first order, there are two approaches to local VPN configuration: a single VN

endpoint per a host, Interface, and a VN router endpoint for many hosts on the same

LAN (local area network), router. The components differing between the two approaches

are:

• Software Location. Interfaces execute the software on each VPN connected
resource, whereas any machine connected to the same LAN as a Router will be
able to access the VPN. The Router requires a dedicated resource.

• Network Configuration. Since the Interface software runs on each machine, it
is able to directly configure networking parameters, whereas a Router must use
external methods to configure the resources.

• Communication on a LAN. When two peers on a LAN using a VPN Interface to
communicate, all traffic must pass through the VPN adding unnecessary overhead,
though in a Router the two peers have a merged physical and virtual network
between them and the traffic is able to bypass the VPN.

• Fault Tolerance. The Router only has a single instance running, when it goes
offline, all resources will lose their VPN access, whereas each individual resource
has their own Interface and is responsible for their own VPN connectivity.

• Communication Over the WAN. Performing encryption can be expensive and
may limit the bandwidth available due to CPU (central processing unit) constraints.
A Router may struggle to use all the available bandwidth, whereas enough
Interfaces will eventually be able to use all the bandwidth. Although each additional
VPN Interface also has idle traffic, potentially reducing usable bandwidth.

This dissertation identifies methods by which a single software stack can be

implemented to support self-configuration and resource migration in a way that is

platform independent. This method lends itself to a new architecture known as Hybrid,

allowing an instance to be run on each VPN resource but enabling direct communication

amongst peers on a LAN [116]. The architectures are shown communicating via

an overlay in Figure 2-1 and compared in Table 2-2. The two aspects that need

configuration in the local configuration beyond the VPN architecture are address

39

Table 2-2. Qualitative comparison of the three deployment models
Interface Router Hybrid

Host LAN No assumption Ideally, VLAN No assumption, though
may have duplicate address
allocation in the same subnet
for different namespaces.2

Host
software

IPOP, tap End node: none.
Router: IPOP, tap,
bridge

IPOP, tap, VETH, bridge

Host
overhead

CPU, memory End node: none.
Router: CPU,
memory

CPU, memory

LAN traffic Through IPOP Bypasses IPOP* Bypasses IPOP*
Migration Handled by

node
Involves source and
target routers

Handled by node

Tolerance to
faults

Nodes are
independent

Router fault affects
all LAN nodes

Nodes are independent

Figure 2-1. Three VN approaches: router, interface, and hybrid

40

allocation, obtaining and setting an IP address on a resource, and address resolution,

determining where to route a VPN packet. The keys to creating this environment involve

the use of standard network protocols implemented uniformly across operating systems,

including DHCP and ARP (address resolution protocol). Many applications make use

of names instead of IP addresses to resolve peers, as such a naming system, like DNS

(domain name service) is almost as important as address resolution and allocation.

A state machine representation of this architecture is shown in Figure 2-2. In this

representation, a VN interface is identical to a VN router with the caveat that the TAP

device is not bridged, thus isolating the VN traffic. The “Should Handle” with dashed

lines is a feature that is specific to the VN hybrid; that is, a VN hybrid must be configured

to communicate for a single network device.

2.2.1 Local VPN Architecture

As described in the introduction, the TAP device is the glue by which the local

resources communicate with the VPN. Each approach relies on the TAP device though

in different configurations. In the Interface (Figure 2-3), the TAP device is used directly

by the user as any other network device. In short, packets are written to the TAP

device by the O/S (operating system) sockets and read by the VPN software to send

to the remote location, packets received by the VPN are written to the TAP device and

delivered to sockets by the O/S. The Router (Figure 2-4) bridges the TAP device to a

LAN, thus packets can be routed to it and sent through the VPN. TAP device virtualizes

a bridge to other physical networks.

Finally, the Hybrid (Figure 2-5) like the Router connects to the LAN but only allows

configuration from the local host. In Linux this is possible through the use of a VETH

pseudo device that provides a virtual Ethernet pair, so that one end can be bridged

with the TAP device and LAN while the other provides another interface that can be

configured on the LAN, which will be used by the VPN. The reason for this lies in the

nature of the state of the interfaces connected to the bridge, which go into promiscuous

41

Figure 2-2. The state diagram of a self-configuring VN

mode, so that all packets sent to them are forwarded on as if they are on a wire as if

there were only a single network interface. In non-promiscuous mode, the network card

will drop packets that are not destined for that network card. So in that case, it is not

possible to assign more than one IP address to a bridge, because it and all devices

connected to it are viewed as one big network interface. Connecting the VETH device

allows an additional uniquely identifiable Ethernet addresses and thus additional IP

addresses. In contrast, aliasing a Ethernet card only provide additional IP addresses

42

Figure 2-3. VN interface

Figure 2-4. VN router

43

Figure 2-5. VN hybrid

and services that rely on layer 2 networking. In this case, some services may not work,

for example, DHCP does not work on aliased network cards.

2.2.2 Address Resolution

IP is a layer 3 protocol. Layer 2 devices such as switches, bridges, and hubs are

not aware of IP addresses. When a system wants to send a layer 3 packet over a layer

2 network, it first uses ARP to find the layer 2 address owning the layer 3 address. This

process, as shown in Figure 2-6, begins by the sending of a layer 2 broadcast message

which contains an ARP request, asking all members in the LAN that the node owning

the target IP address respond to the sender of the request. If a node owns the target IP

address, it responds with an ARP reply, making themselves the sender and the original

sender is the message recipient. The Ethernet header consists of the source address

being the sender and the target being the destination. By listening to these requests,

layer 2 devices such as a switch can autonomously learn the location of nodes holding

44

Figure 2-6. ARP request/reply interaction

Ethernet addresses are and can forward packets through appropriate ports as opposed

to broadcasting or dropping them.

In a typical IP subnet, all machines talk directly with each other through switches.

As such, they must learn each other’s Ethernet address. The VN model used herein

focus on a large, flat subnet spanning across all nodes connected to the VPN. To

accomplish this, the VN provides the ability to virtualize a bridge, similar to proxy

ARPs [80] used to implement a transparent subnet gateway [18]. In this scenario, the

VN would need to respond to the ARP packets with a fake layer 2 address. Layer 2

devices in the system would then route all packets destined for that layer 2 address to

the VN.

As shown in the state machine (Figure 2-2), ARPs are only responded to if (a) they

are inquiring about a VN IP address, (b) the VN address is not locally allocated, and (c)

there is a P2P:IP mapping. If all those are true, then an ARP response is sent back to

the sender. ARPs are occasionally sent out during the course of communication and

thus if a machine migrates to a VN router, the VN router will no longer respond with

ARPs. An ARP response sent by the VN requires a source Ethernet address, bridges

and switches will see the response and will forward all traffic towards the TAP device

for that Ethernet address. A VN device can use the same Ethernet address for remote

entities.

Prior to the introduction of the VN hybrid, the VNs used the Ethernet address

FE:FD:00:00:00:00 to refer to remote entities. If each VN hybrid used this address,

there would be layer 2 collision causing a single hybrid to have all traffic sent to it. In

45

Figure 2-7. DHCP client/server interaction

hybrid mode, each VN must generate a unique “remote” Ethernet address at run time.

Experience and research has led to the following solution: (1) use FE:FD for the first two

bytes as they tend to be unallocated and (2) assign random values to the 4 remaining

bytes. Applying the birthday problem in this context, the expected probability of address

collisions is small for typical LAN environments (less than 50% if the average number of

VN hybrid nodes on the same L2 network is 65,000).

The key difference from the Hybrid and Router is that the Hybrid routes for only a

single node, say “A”, and thus must ignore messages that do not originate from “A”. The

Hybrid model does not necessarily know about the existence of all machines in a LAN,

because it does not own them. So when an ARP request of some remote machine, say

“B”, is sent by “A”, the Hybrid must send out a matching request with the result being

sent back to the pseudo-entity of the transparent subnet gateway so that the VPN can

determine if “B” exists locally. If no message is returned after a set amount of time (the

reference implementation used 2 seconds), then assuming that there is a peer in the

overlay with the IP address, the original ARP will be responded to with the pseudo-entity

being the target.

2.2.3 Address Allocation

IP addresses are traditionally allocated in one of three ways: 1) statically, 2)

dynamically through DHCP, or 3) through pseudo-random link-local addressing. This

model focuses on static and dynamic addressing.

46

The network components configurable by DHCP [4, 31] that are interesting to a

VPN are addresses, routing, and other networking related features. While many different

client and servers exist, they all tend to support the basic features of allowing the server

to specify to a client and IP address, a gateway address, and domain name servers. As

shown in Figure 2-7, the steps in DHCP are:

1. Client sends Discover packet requesting address.

2. Server receives the packet, allocates an address, and sends an Offer of the
address and other network configuration.

3. Client receives and acknowledges the Offer by sending a Request message to
accept the Offer.

4. Server receives Request message and returns an ACK message containing the
same details as the Offer.

During the DHCP phase, the VPN communicates with a DHCP server for the

VPN, which will allocate an address for the requester. Similarly, a VN model can

review packets coming into the VPN, review the sender IP address, and request and

notify the server of this allocation. Treating static addresses like DHCP enables easier

configuration of the VPN, though it is difficult to handle address conflicts. In this model,

this is done by the server ignoring the duplicate requests, and it is up to the user to

configure for a new address. Thus DHCP provides a more reliable method in these

systems.

To support scalable address allocation in decentralized systems, the DHCP server

is a virtual entity, parsing DHCP packets and interacting with an overlay based DHT.

This approach does not need to be limited to structured overlay based VPNs but can be

introduced as an added value component.

An important aspect of DHCP is that after a machine has received an IP address

from the DHCP server, it always checks to ensure that the address has not been

allocated, as such the VPN should never respond to address resolutions for local IP

addresses.

47

If an overlay allocates an address to the VN, then the VN owns it. The other

address that the VN owns is the null address, 0.0.0.0, which is sent during DHCP to

indicate that the machine has no address prior to the request.

2.2.4 Domain Name Servers and Services

Name services allow machines to be addressed with names that are more

meaningful to users than numeric addresses. Certain applications and services require

domain name checking, such as Condor. To support DNS, this requires that the O/S

be programmed with the VN’s DNS servers IP, typically the lowest available IP address

in a subnet. In static configuration, this process requires the user to manually add this

address, though through DHCP this is set automatically.

In the state representation of the VN (Figure 2-2), the VN checks the IP packet to

ensure that the destination IP and port match that of the virtual DNS server and the

well-known DNS port, 53. In the event of a match, the packet is passed to the VN’s

handler for domain names. Names are typically used for the following purposes: 1)

because applications require it, and 2) to assist users in finding resources. To deal with

1), the DNS can deterministically maps IP addresses to names, such as 10.250.5.5

maps to C250005005. 2) can be solved by using the DHT and placing key:value pairs of

the form hash(namespace:hostname) to IP address and hash(namespace:IP address)

to hostname.

2.3 Supporting Migration

There has been a rapid increase in the deployment of Virtual Machines (VMs)

for use in resource consolidation in the server industry as well as the domain of cloud

computing. Providers of cloud computing services have adopted virtual machines as the

unit of granularity for providing services and service level agreement to the users. Users

are billed according to the number of VMs and their uptime. Major cloud-computing

providers including Amazon R⃝ EC2 (Elastic Cloud 2) and Go-Grid have adopted Xen as

48

the virtualization platform for their services and sell compute resources in the form of

virtual machines.

Apart from advantages like performance isolation, security, and portability, one of

the significant advantages of using VMs is the capability to migrate the VM with its entire

software stack from one physical host to another. This migration may be performed in a

stop-restart manner, where the VM is paused, migrated to another host and restarted, or

in a live mode, which attempts to minimize down time to reduce interruption of services

running on the VM.

VMs including Xen [61], VMware ESX [75] and KVM [81] support migration with

two critical requirements: (1) file systems (disk images) must be on a shared storage

system (i.e. network file systems or storage area networks) and (2) to maintain network

connectivity, the migration must occur within an IP subnet. In order to retain network

connectivity after migration, the VMM (virtual machine manager) must notify the LAN of

the VM’s new location. The new VMM host generates an unsolicited ARP reply which

broadcasts to the entire network the VM’s new location.

The VN Interface and Hybrid models support migration of the virtual address

using techniques previously described by Ganguly et al. [41]. This is a product of

the decentralized, isolated overlay approach where each overlay end point has a

one-to-one mapping to VN end point, e.g., P2P to IP. When a VN Interface or Hybrid

model migrates, the overlay software must reconnect to the overlay, at which point,

packets will begin to be routed to the VN endpoint again, completing migration.

Unlike Interface and Hybrid models, the VN Router does not support a one-to-one

mapping. In fact, a VN router tends to have one P2P address for many IP addresses.

When a machine with a VN IP wants to migrate, it cannot also take its P2P address with

it otherwise it would end connectivity for the rest of the members of the VN router shared

overlay end point. A solution to this problems requires the ability to delete IP-to-P2P

mappings in the DHT, detect new addresses on the network, and inform senders that

49

an IP is no longer located at that overlay end point. With these capabilities, transparent

migration can be achieved for the VN router model as follows.

The VMM initiates a migration on a source node. Until the migration completes,

the VN router at the source continues to route virtual IP packets for the VM. Upon

completion of migration, the VN router at the target learns about the presence of the

migrated VM by either receipt of an unsolicited ARP or by proactively issuing periodic

broadcast ICMP (Internet Control Message Protocol) messages on its LAN. The VN

router attempts to store (Put) the IP:P2P address mapping in the DHT, and queries

for the existence of other IP:P2P mapping(s). If no previous mappings are found, the

VN router assumes responsibility for the IP address. Otherwise, the VN router sends a

migration request to each P2P address returned by the DHT. The VN router receiving a

migration request confirms the existence of the IP address in its routing table and that

if there is that there is no response to ARP requests sent to the IP address. If these

conditions hold, it deletes its IP:P2P mapping from the DHT and returns true to the

migration request; otherwise, it returns false. If the migration request returns true, the

VN router at the target LAN starts routing for the virtual IP address; if it returns, false,

the VN router does not route for the virtual IP address until the previous IP:P2P mapping

expires from the DHT.

In addition to VN routers synchronizing ownership of the migrated virtual IP

address, any host that is connected to that machine must be informed of the new

P2P host. Over time, this will happen naturally as ARP cache entries expire and the

IP:P2P mapping is looked up from the DHT. Additionally, the VN router at the source

may keep forwarding rules for the migrated IP address for a certain period of time, akin

to mobile IP but not on a permanent basis. A more direct approach, as implemented

in the prototype, involves the VN router notifying the connected host of a change in

ownership, resulting in the host querying the DHT for the updated P2P end point. An

50

evaluation of trade offs in the migration design, while interesting, is outside the scope of

this dissertation.

A static address allocation is similar to a migration without there being an IP:P2P

value in the DHT, though without querying the DHT, the situation is unclear. Systems

that use DHCP only must have some method for detecting new addresses, because

there is no guarantee that a DHCP will occur immediately following migration, in fact,

depending on the lease time that is highly unlikely. Using an insecure DHT that supports

deletes is sketchy as it would be relatively easy for machines to perform man in the

middle attacks by deleting keys which they do not own. Even the use of passwords

mentioned in DHT literature is not sufficient as it is not immune to collusion, or Sybil,

attacks.

VN router migration was analyzed through the use of two Xen-based VMware VMs

co-located on the same quad-core Xeon 5335 2 GHz machine each with 1 GB memory

allocated using a minimally configured O/S with a SSH (secure shell) server. The

evaluation attempts to understand overlay overheads of the approach. The experiment,

as shown in Figure 2-8, involved migrating a Xen guest VM between two Xen host

VMMs running in VMware. Although they are hosted in the same infrastructure, the two

domains are connected to two separate VLANs, and thus isolated. The resource

information is stored in a DHT running on top of PlanetLab. Thus the migration

overheads in the experiment capture the cost of wide-area messaging in a realistic

environment. During the course of the experiment, over 50 different IP addresses were

migrated 10 times each in an attempt to gain some insights in the cost of using the DHT

with support for deletes and VN router messages as a means to implement migration.

The result, presented in Figure 2-9 gathered from the experiment was how long the VN

IP was offline, measured by means of ICMP ping packets. On average, the overhead of

VN migration was 20 seconds. This overhead is in addition to the time taken to migrate a

VM, since the VN routers begin to communicate only after migration finishes.

51

Figure 2-8. VN router migration

2.4 Evaluation of VPN Network Configuration

This experiments explores bandwidth and latency in a distributed VPN system to

motivate the usage of P2P links in a VPN. The VPNs used are include the prototype,

which extends from IPOP; OpenVPN R⃝; and Hamachi R⃝. OpenVPN R⃝ represents a

typical centralized VPN, while Hamachi R⃝ represents a well-tuned P2P-link VPN. The

evaluation was performed on Amazon R⃝ EC2 using small instance sized Ubuntu i386

instances to create various sized networks ranging from 1 to 32. OpenVPN R⃝ uses an

additional node as the central server and Hamachi R⃝ has an upper bound of 16 due

52

Figure 2-9. VN router migration evaluation

to limitations in the Linux version at the time of this evaluation. To perform bandwidth

tests, the instances are booted and query an NFS for the list virtual IP addresses, peers

are ordered such that half the peers are act as clients and the other half the peers

creating a 1 to 1 mapping between all sets. Latency and bandwidth tests are performed

using netperf’s request-reply and streaming tests respectively. Prior to the start of the

tests, peers have no knowledge of each other, except the virtual IP addresses, thus

connection startup costs are included in the test. Test are run for 10 minutes diluting the

connection initiation overhead but represent an example of real usage. Results from the

clients are polled at all locations and averaged together, though the OpenVPN R⃝ server

is measured separately. IPOP and OpenVPN R⃝ use authenticated 128-bit AES, while

53

Figure 2-10. System transaction rate for various VPN approaches

Hamachi R⃝ does not allow configuration of the security parameters and uses the default

Hamachi R⃝ settings.

Figure 2-10 and 2-11 present the results for latency and bandwidth respectively.

Latency is measured in transactions of successful request/reply messages. In the

latency test, it is obvious that having the central server increases the delay between

the client and server and the results degrade more quickly as additional peers are

added to the system. In small systems, OpenVPN R⃝ shines probably due to optimized

software, though as the system grows, the system bandwidth does not. By the time 8

peers have entered into the system, both decentralized approaches perform better than

the OpenVPN R⃝ solution. To summarize, decentralized VPN approaches provide better

scalability, which can be immediately noticed by low latency times and, as the system

grows, available bandwidth.

2.5 Evaluation of VPN Local Configuration

This section presents an evaluation of the different VN models, using prototype

implementations built upon IPOP. The grid evaluation simulates a client/server

environment and investigate CPU / networking overheads related with each approach.

54

Figure 2-11. System bandwidth for various VPN approaches

In addition a cloud deployment shows a proof of concept that connects multiple cloud

and local resources as well as evaluation of overhead of the different approaches

in WAN and LAN environments. In all WAN experiments, a wide-area IPOP overlay

network with approximately 500 overlay nodes distributed across the world on PlanetLab

resources is used to bootstrap VN connections and to support DHT-based storage and

P2P messaging.

The proposed VN models place varying demands on the resources of the systems

involved. The evaluation focuses on CPU as experience suggest that this is the most

significant limiting factor. As will be presented, the CPU load offered by these models

depends on the bandwidth of the underlying network link, since a larger bandwidth

requires more processing of packets. The tools for evaluating these VN models are

Netperf and SPECjbb R⃝.

Netperf [54] is used to estimate the latency and bandwidth of the different VN

models. The latency is measured by deploying Netperf in the TCP RR mode, which

measures the number of 1-byte request-receive transactions that can be completed

in a second. The bandwidth is estimated by running Netperf in the TCP STREAM

55

mode, which is a bulk transfer mode. It should be noted that in situations where the link

bandwidths were asymmetric, Netperf is deployed in both directions. Since both latency

and bandwidth are dependent on the CPU comparison, evaluations that include CPU

utilization tasks require creating a baseline first where only Netperf is the only active

workload.

SPECjbb R⃝ [102] simulates a three-tier web application with all the clients, the

middle tier, and the database running on a single system in a single address space

(inside a Java virtual machine). On completion, the benchmark provides the metric in

terms of business of operations per second (bops). The bops score of the system under

test depends on both the CPU and the memory in the system, as the entire database for

the benchmark is held in memory. This benchmark generates negligible disk activity and

no network activity.

2.5.1 On the Grid

The initial evaluation involves testing a client-server environment. The baseline

hardware consisted of quad-core 2.3GHz 5140 Xeon with 5 GB memory and Gigabit

network connectivity. Each VM was allocated 512 MB of RAM and ran Debian 4.0 using

a Linux 2.6.25 kernel. The client side consisted of 4 VMs on 5 machines. The server

side consisted of 5 VMs on one machine with 4 acting as servers and 1 acting as a

gateway, which was necessary to control bandwidth into the system, done through

the Linux utility tc [52], traffic control. In this environment, each server had 5 clients

communicating with it. The setup is shown in Figure 2-12. The VM “Servers” ran

SPECjbb R⃝ and were also the site for the collection of the netperf benchmarks. All the

VM “Servers” were connected through the TC Gateway through host-only networking to

the VM “Clients”. All traffic for the VM “Servers” passes through the TC Gateway, which

also doubled as the Router in the Router experiments.

All the evaluations presented in Figures 2-13, 2-14, 2-15, and 2-16 are marked up

in the same fashion. The evaluations were performed with and without a SPECjbb R⃝

56

Figure 2-12. Grid evaluation setup

0

100

200

300

400

500

600

1 10 100 1000

Bandwidth Limit, Mbps

M
e

a
s

u
re

d
 B

a
n

d
w

id
th

,
M

b
p

s

no spec.interface no spec.phys no spec.router

spec.interface spec.phys spec.router

Figure 2-13. Grid Netperf bandwidth (TCP STREAM) evaluation

load. Lines are of the form (no spec, spec).(phys, interface, router). Where “spec”

indicates SPECjbb R⃝ benchmark is active, while “no spec” indicates that SPECJbb is

inactive. “phys” implies the absence of IPOP with benchmarks occurring directly over the

“physical” network card. “interface” and “router” present the results for VN interface and

Router respectively.

The maximum bandwidth of 600 Mbps is achieved when neither virtual network nor

traffic shaping are enabled (“no spec.phys” at 1000 Mbps limit in Figure 2-13), which

is only 60% of the theoretical maximum. This limit is most likely the cost of VMMs,

specifically the time required for a packet to traverse both VMMs networking stack

as well as the hosts networking stack. Another observation was that transactions per

second (Figure 2-16) do not improve significantly for tc bandwidth limit above 25 Mbps

in all cases; thus focus is on only the relevant data up to this limit.

57

0

5000

10000

15000

20000

25000

30000

1 2 5 10 20 25

Bandwidth Limit in Mbps
T

ra
n

s
a
c
ti

o
n

s
/s

no spec.interface no spec.phys no spec.router

spec.interface spec.phys spec.router

Figure 2-14. Grid Netperf latency (TCP RR) evaluation

10000

15000

20000

25000

30000

35000

40000

1 10 100 1000

Bandwidth Limit in Mbps

S
P

E
C

jb
b

 S
c

o
re

 (
b

o
p

s
)

spec.interface spec.phys spec.router spec.control

Figure 2-15. Grid SPECjbb evaluation with Netperf TCP STREAM load

Distinguishing features of the different VN models include the following. Figure 2-13

shows that bandwidth in all VN models is comparable with traffic control limit up to 75

Mbps. Beyond this point, the interface model achieves better bandwidth than the Router

(VN processing is distributed across multiple processes); the spec/no spec ratio in

the router model is smaller than in the interface model because there is less resource

contention caused by VN processing on end nodes. For the same reason, the Router

tends to achieve better SPEC results (Figure 2-15) than the interface. Figure 2-14

shows that the Router performs poorly compared to the interface model in terms of

transactions/second, though it achieves a better ratio of SPECjbb R⃝ score (Figure 2-16)

to transactions than the interface at constrained bandwidths (less than 5 Mbps).

The hybrid method was tested, and results were nearly identical to those of the

interface, from the point of view of the WAN part of the VN, it is the same architecture.

58

15000

20000

25000

30000

35000

40000

1 2 5 10 20 25

Bandwidth Limit in Mbps

S
P

E
C

jb
b

 S
c

o
re

 (
b

o
p

s
)

spec.interface spec.phys spec.router spec.control

Figure 2-16. Grid SPECjbb evaluation with Netperf TCP RR load

These results are not reported in the plots as they add little value and further obfuscate

the results.

The bandwidth cap observed in the Router approach reflects the performance

achieved by the current prototype of the router, subject to VM overheads. The use of

VM is an assumption that is valid in the domain of cloud computing where all resources

run in a VM. This experiment focused on the interplay between resource consumption

by overlay routers and application performance. Optimized user-level overlay routers

running on dedicated physical machines have been reported to achieve performance

near Gbit/s in related work [109].

One thing that left unevaluated that may provide more interesting data would

be providing the VN router dedicated hardware. In the test environments, this was

infeasible, because all but one of the machines in the lab run VMware Server 1, which

has a bug with setting the virtual network card in promiscuous mode. This effectively

makes it impossible for a VM to be a VN router as no packets will ever make their

way into the VM, as the VMM will reject all packets. As such, the machines hosting

the servers had VMware Server 2, which does allow setting a network interface into

promiscuous mode.

59

Table 2-3. WAN results for inter-cloud networking
EC2 / UF EC2 / GoGrid R⃝ UF / GoGrid R⃝

Stream Phys (Mbs) 89.21 35.93 30.17
Stream VN (Mbs) 75.31 19.21 25.65
RR Phys (Trans. / s) 13.35 11.09 9.97
RR VN (Trans. / s) 13.33 10.69 9.76

2.5.2 In the Clouds

The goal of this experiment is to demonstrate the feasibility of connecting multiple

cloud providers as well as local resources together through virtual networking. The sites

chosen for evaluation were local resources at University of Florida and cloud resources

provided by Amazon R⃝ EC2 and GoGrid R⃝. A qualitative observation here was that

the differences in the networking infrastructure exposed by different cloud providers

reinforce the importance of the virtual network to allow flexibility in how end nodes are

connected. Specific network configurations for the clouds were as follows:

• Amazon R⃝ EC2 provides static IP networking (public and private), no Ethernet
connectivity, and no ability to reconfigure IP addresses for network. Currently, only
the VN interface model is supported.

• GoGrid R⃝ provides 3 interfaces (one public, statically configured, and two private,
which can be configured in any manner); the 2 private interfaces are on separate
VLANs supporting Ethernet connectivity. The VN interface, router, and hybrid
models are supported.

This experiment narrows down the performance evaluation to focus on WAN

and LAN performance of VNs in cloud environments and consider Netperf single

client-server interactions only. Amazon R⃝ only supports Interface mode, thus it is only

evaluated in the WAN experiment. It has been observed that, within Amazon R⃝, the VN

is able to self-organize direct overlay connections [42]. Each test was run 5 times for 30

seconds, the standard deviation for all results was less than 1. Because of this, only the

average is presented in Table 2-3.

60

Table 2-4. LAN results performed at GoGrid
VN Interface VN Router VN Hybrid Physical

Stream (Mbs) 109 325 324 327
RR (Trans. / s) 1863 2277 2253 3121

It can be seen in Table 2-3 that the VN adds little overhead in the Netperf-RR

experiment. Between UF and GoGrid R⃝ as well as between UF and Amazon R⃝ EC2,

the overhead for the Stream experiment was about 15%. This may be attributed to the

additional per-packet overhead of the VN and the small MTU set for the VN interface

(1200). The MTU, or maximum transmission unit, is the largest packet that is sent from

an interface. IPOP conservatively limits the VN MTU to 1200 down from the default

1500 to allow for overlay headers and to work properly with poorly configured routers,

which has encountered in practical deployments. A more dynamic MTU, which will

improve performance, is left as future work. The EC2 / GoGrid R⃝ experiment had

greater overhead which could possibly be attributed to by the VM encapsulation of cloud

resources.

Table 2-4 shows that some of the performance expectations for the different models

in a LAN were accurately predicted while others were not so clear. Stream results

match the expectation that VN models hybrid and router bypass virtualization and get

near physical speeds, whereas interface does not. Interestingly, RR had rather poor

results for Router and Hybrid though further testing seems to indicate that this is an

issue of using the VLAN connected network interfaces as opposed to the public network

connected interface.

61

Table 2-5. Virtual network comparison

Overlay Routing Configuration Miscellaneous
IPOP Structured P2P

overlay with
log(N) routing
hops, where N
is the size of
P2P network.
Self-optimizing
shortcuts and
STUN-based NAT
traversal.

Mapping stored in
DHT resolves virtual
IP address to P2P
address. Virtual
network packets
are routed to cor-
responding P2P
address.

Each machine runs
P2P VPN software
with a dynamic IP
address in a com-
mon subnet. Com-
mon configuration
shared amongst all
hosts.

Supports encrypted
P2P links and end-
to-end VPN tunnels
(unpublished work).
Migration possi-
ble; routes self-
configure without
user intervention,
product of the P2P
overlay.

N2N Unstructured P2P
network, super
nodes provide
control paths,
forms direct con-
nections for data.

Broadcast for discov-
ery and overlay for
control. No organiza-
tion, no guarantees
about routing time.

Requires N2N
software at each
host, must connect
to a super node.
Supports layer 2
Ethernet network.

Supports shared
secrets to create
private tunnels
between edges.
Migration not dis-
cussed, but poten-
tially free due to
layer 2 approach.

OCALA Not tied to any
specific overlay,
layer 3 middle-
ware.

Based upon chosen
overlay.

Requires OCALA
stack, overlay con-
figuration, and IP to
overlay mapping.

Security is overlay
based or SSH tun-
nels. Migration not
mentioned.

SoftUDC
VNET

Decentralized
with explicitly con-
figured overlay
routes.

Broadcast for discov-
ery.

Requires software
on each host and
one proxy per site.
Layer 2 networking.

Security is not
discussed nor is
wide-area migra-
tion.

ViNe ViNe authority
configures global
network descrip-
tor table (GNDT)
explicitly at each
router. Supports
proxying to one
location through
another and NAT
traversal.

GNDT provides
overlay routes for all
routers in overlay.

Each subnet is al-
located a single
router. Each host
must be configured
for regular and ViNe
networks, but no VN
software needed on
host.

Supports encrypted
tunnels between
ViNe routers, migra-
tion not discussed.

Violin Decentralized net-
work with statically
configured overlay
routes.

Broadcast discovery
for Ethernet, static
routes for IP subnet.

Virtual hosts con-
nect VMs to the VN.
Hosts connect to
virtual switches or
proxies (gateways).
Switches connect
to proxies. Sites
are typically allo-
cated an IP address
space.

Security potentially
through the use
of SSH Tunnels.
Migration possible;
requires reconfigu-
ration of switches.

62

Table 2-5. Continued
Overlay Routing Configuration Miscellaneous

Virtuoso
VNET

Decentralized
with explicitly con-
figured overlay
routes.

Broadcast for discov-
ery. Bridging learns
paths after initial
discovery. Virtual
network packets
are routed between
VNET proxies. Can
be configured manu-
ally.

Each site runs a
proxy providing
Ethernet bridge to
other proxies. VM
hosts forward pack-
ets to local proxy.
Proxies configured
to connect to other
proxies.

Security through
the use of SSL
and SSH Tunnels.
Layer 3 migration,
product of layer 2
virtualization.

OpenVPN R⃝ Centralized Central server Servers manu-
ally configured to
connect with each
other. Clients ran-
domly select server
from pre-shared list

All communication
traverses central
server, end to end
traffic by default is
not protected from
central server

Tinc and
CloudVPN

Decentralized
with explicitly con-
figured overlay
routes

Broadcast for dis-
covery, messages
traverse overlay

Manual configura-
tion

NAT traversal
through relays
only

Hamachi R⃝ Centralized Dis-
covery, P2P links

Peers establish se-
curity links and end
point information
from a central server,
attempt to form di-
rect connections, if
fails, relay through
central server

Select a network to
join or create and
specify a password,
communicates with
a centralized server
to manage the VPN

Lacks portability,
Linux version out
of date, inability to
run external relay
servers, UDP NAT
traversal

GBridge Centralized Dis-
covery, P2P links

Peers establish se-
curity links and end
point information
from a central server,
attempt to form di-
rect connections, if
fails, relay through
central server

Select a network to
join or create and
specify a password,
communicates with
a centralized server
to manage the VPN

Lacks portability
and inability to
run external relay
servers, uses TCP
NAT traversal

Wippien Centralized Dis-
covery, P2P links

Peers discover and
authenticate each
other through XMPP
chat server, security
provided unknown,
peers attempt to
form direct con-
nections with each
other, if that fails, no
communication

All peers must be
members of as-
sociated XMPP
chat rooms and be
connected to the
chat

Requires a GUI,
difficulty penetrating
NATs, claims to be
open source though
most of the code is
unavailable, Linux
client out of date
and does not sup-
port NAT traversal

63

Table 2-5. Continued
Overlay Routing Configuration Miscellaneous

P2PVPN Centralized Dis-
covery, P2P links

Peers discover each
other through a
BitTorrent R⃝ tracker
and attempt to form
direct links with each
other, attempts to
form all-to-all con-
nectivity, if direct
links are unavailable,
indirect links can
be used to forward
packets

Peers must join
the same tracker
and use common
shared secret

Work in progress
to make more un-
structured, currently
a cross between
centralized and
decentralized

64

CHAPTER 3
BOOTSTRAPPING PRIVATE OVERLAYS

While P2P overlays provide a scalable, resilient, and self-configuring platform

for distributed applications, their adoption rate for use across the Internet has been

slow outside of large-scale systems, such as data distribution and communication.

General use of decentralized, P2P (peer-to-peer) applications targeting homes and

small/medium businesses (SMBs) has been limited in large part due to difficulty in

decentralized discovery of P2P systems, the bootstrap problem, further inhibited by

constrained network conditions due to firewalls and NATs (network address translators).

While these environments could benefit from P2P, many of these users lack the

resources or expertise necessary to bootstrap private1 P2P overlays particularly when

the membership is unsteady and distributed across wide-area network environments

where a significant amount of (or all) peers may be unable to initiate direct communication

with each other due to firewalls and NAT (network address translation).

Examples of large-scale P2P systems include Skype R⃝, BitTorrent R⃝, and Gnutella.

Skype R⃝ is a voice over P2P system, whereas BitTorrent R⃝ and Gnutella are used for file

sharing. The bootstrapping in these systems typically relies on overlay maintainers using

high availability systems for bootstrapping, bundling their connection information with the

application distribution. The application then uses theses servers during the initialization

phase to connect with other peers in the system. Alternatively, some services constantly

crawl the network and place peer lists on dedicated web sites. A new peer wishing to

join the network queries the web site and then attempts to connect to the peers on this

list.

1 In the context of this chapter, private implies that the overlay’s purpose is not for
general use. Once established, such overlays can support privacy in communication;
however, overlay security is beyond the scope of this chapter and covered in more depth
in Chapter 4.

65

2A) Reflection request Overlay Service Providers We are using P2P AppY!2B) List of mapped public addresses3A) Rendezvous, I am interested in AppY, is anyone else?3B) List of remote public addresses4A) Relay, connect to me at these addresses4D) Connect to me at these addresses 4B) Connect to me at these addresses4C) Connect to me at these addresses5. Connected – Let’s use our application!
I want to use P2P AppY!

Relay Service ProvidersRendezvous Service ProvidersReflection Service Providers
Figure 3-1. Bootstrapping a P2P system using an existing (generic) overlay

In smaller-scale systems, P2P interests focus on decentralization. For example,

users may desire to run an application at many distributed sites, but the application

lacks dedicated central servers to provide discovery or rendezvous service for peers. In

contrast, dedicated, centralized P2P service providers, such as LogMeIn’s Hamachi R⃝, a

P2P VPN (virtual private network), may collect usage data, which the users may wish to

remain private, or are not free for use.

Many applications make sense for small-scale overlay usage, including multiplayer

games, especially those that lack dedicated online services; private data sharing;

and distributed file systems. Clearly, a small P2P system could be bootstrapped by

one or more users of the system running on public addresses, distributing addresses

out-of-band, instructing their peers to add that address to their P2P application, and then

initiate bootstrapping; but these types of situations are an exception and not the norm.

Ultimately, the users would be enhanced significantly through approaches that can make

decentralized bootstrapping transparent through minimal and intuitive interaction with

the P2P component.

The basic bootstrapping process can be broken down into two components: finding

and connecting to an active peer in the system. When a node starts, it contacts various

bootstrap servers, until it successfully connects with one, upon which they exchange

66

information. The bootstrap server may inquire into the overlay for the best set of peers

for the new peer and respond with that information or it may respond with its existing

neighbor set. At which point, the peer attempts to connect with those peers. This

process continues aggressively until the peer arrives at a steady state, either connecting

with a specific set of or a number of peers. Afterwards, the P2P logic becomes passive,

only reacting to churn from new incoming or outgoing peers.

Overlay support for constrained peers, i.e., those behind NATs and restrictive

firewalls, requires additional features to support all-to-all connectivity for peers in

the overlay. The instantiation of P2P systems for private use could become overly

burdensome, potentially relying on significant human interaction to bootstrap them,

for example, by relaying connection information through phone calls and e-mail.

Even if this is feasible, this sort of interaction is undesirable. P2P systems should

be self-discovering, minimizing the amount of work users need to do in order to take

advantage of them, a feature stressed by ad-hoc systems. In addition, these approaches

may rely on centralized components; if they become unavailable, which is a possibility

since most users lack the expertise in configuring highly available systems, the system

will not be accessible.

To address this, I have explored the possibility of using existing public overlays

as a means to bootstrap private overlays. There are many existing public overlays

with high availability, such as Skype R⃝, Gnutella, XMPP (Extensible Messaging and

Presence Protocol), and BitTorrent R⃝; by leveraging these systems, system integrators

can easily enable users to seamlessly bootstrap their own private P2P systems. In the

preceding paragraphs, I have identified the components necessary for bootstrapping a

homogeneous system; in the following, I will expand them for environments to support

the bootstrapping of a private overlay from a public overlay with consideration for

network constrained peers. The public overlay must support the following mechanisms

as illustrated in Figure 3-1:

67

• Reflection. A method for obtaining global application and IP addresses or
identifier for a peer that can be shared with others to enable direct communication.

• Relaying. A method for peers to exchange arbitrary data, when a direct IP link is
unavailable.

• Rendezvous. A method for identifying peers interested in the same P2P service.

This work motivates from the belief that while small-scale P2P systems are

attractive for decentralized systems, the overheads relating to creating and maintaining

bootstrap services make them unfeasible. A public overlay can be used to transparently

bootstrap a private overlay with minimal user interaction.

The requirements are presented and verified in the context of two prototype

implementations: a XMPP / Jabber [96] and Brunet [13]. XMPP-based overlays are

commonly used as chat portals, such as GoogleTalk and Facebook R⃝ Chat. XMPP

also supports an overlay amongst servers forming through the XMPP Federation,

which allows inter-domain communication amongst chat peers, so that users from

various XMPP servers can communicate with each other. Brunet provides generic

P2P abstractions as well as an implementation of the Symphony structured overlay.

I present the architecture for these systems, the lessons learned in constructing and

evaluating them, and provide an analysis of the latency to establish peer connectivity in

a small-scale private Brunet overlay with NAT-constrained nodes.

The organization of this chapter follows. Section 3.1 overviews existing solutions to

the bootstrapping problem, and NAT challenges in P2P systems. Section 3.2 presents

a survey of overlays, applying the requirements for private overlay bootstrapping

to them, and then show in detail how they can be applied to Brunet and XMPP. My

implementation is described in Section 3.3. In Section 3.4, I perform a timing evaluation

of bootstrapping overlays using my prototype on PlanetLab and discuss experiences in

deploying the system.

68

3.1 Current Bootstrap Solutions

As described in the introduction, the simple case of bootstrapping is limited to

one peer attempting to find an active peer in the overlay in order for itself to become a

member. The large-scale providers have resources not readily available to small-scale

overlays. This section reviews existing techniques and those being developed and

describes their application to small-scale systems.

When using dedicated bootstrap overlays, a service provider hosts one or more

bootstrap resources. Peers desiring to join the overlay query bootstrap nodes, until

a successful connection is made to one. The bootstrap server will then assist in

connecting the peer to other nodes in the P2P system. Bootstrap nodes are either

packaged with the application at distribution time or through a meta data file, such as in

BitTorrent R⃝. Drawbacks to this approach for small, ad-hoc pools include that the same

server would have to be used every time to bootstrap the system, or users would have

to reconfigure their software to connect to new bootstrap servers over time; at least one

peer must have a publicly accessible address; and a bootstrap server can become a

single point of failure.

Another commonly used approach for large-scale systems is the use of a host

cache [27]. Clients post current connection information to dedicated web services,

a host cache, that in turn communicate with other host caches. For small, ad-hoc

networks, a host cache acts no differently than a centralized rendezvous point, requiring

that at least one peer has a publicly accessible address.

“P2P VPN’s” [46] use of a BitTorrent R⃝ tracker is similar to the host cache concept.

The tracker hosts file meta data and peers involved in sharing. For the VPN, the peer

registers a virtual file used to organize the peers, a form of rendezvous. Each peer in the

VPN queries the tracker regarding the file, registers its IP address, and receives other

active “sharers” IP addresses. Peers on public addresses or using UPnP (universal

plug and play) are able to receive incoming connections from all other peers. The

69

problem with this approach is that it is heavily user-driven. A user must register with

each BitTorrent R⃝ tracker individually and maintain a connection with each of them, in

order to handle cases where BitTorrent R⃝ trackers go offline. In addition, this does not

use the BitTorrent R⃝ trackers in a normal fashion, so it may be banned by tracker hosts.

Research has shown that peers can use the locality properties of recent IP (Internet

Protocol) addresses in a large-scale P2P system to make intelligent guesses about

other peers in the P2P system using an approach called random probing [25, 45].

The results show that, in a network of tens to hundreds of thousands of peers, a

bootstrapping peer can find an active peer in 100 guesses to 2,000 guesses, depending

on the overlay. The approach does not really apply well to small-scale systems,

especially when peers are constrained by NATs and firewalls.

Rather than distribute an IP address, which points explicitly to some location in the

Internet, a small P2P network can apply a name abstraction around one peer in the

overlay using Dynamic DNS [62] (domain name service). Peers share a DNS entry,

which points to a bootstrap server. When the peers detect that the bootstrap server

is offline, at random time intervals they will update the DNS entry with their own. The

application of this approach is well-suited to small, ad-hoc groups, as the service could

be distributed across multiple Dynamic DNS registrations. However, sharing a DNS

entry requires trusting all peers in the overlay, making it easy for malicious peers to

inhibit system bootstrapping. Also the approach requires that at least one peer be

publicly addressable; if a non-publicly addressable peer updates the cache inadvertently,

it could delay or permanently prevent peers from creating a P2P system. The reported

results [62] were simulation-based and did not determine how well a dynamic DNS

handles rapid changing of name to IP mappings.

IP supports multicasting to groups interested in a common service. In the case of

bootstrapping a P2P system [25, 94], all peers would be members of a specific group.

When a new peer comes online, it queries the group for connection information and

70

connects to those that respond. The approach, by itself, requires that all peers are

located in a multicast capable network, restricting this approach typically to local area

networks.

A large-scale structured overlay [21, 24] could enable peers to publish their

information into a dedicated location for their service or application and then query

that list to obtain a list of online peers. Peers could search for other peers in their overlay

and connect with them using their connection information. Since the service would

be a large-scale system, it could easily be bootstrapped by a dedicated bootstrap or

host caches. As it stands, the described works were position papers and the systems

have not been fully fleshed out. The primary challenge in relationship to small, ad-hoc

networks is that it lacks details bootstrapping of peers behind NATs into overlays as it

provides only a means for rendezvous and not reflection nor relaying.

3.2 Core Requirements

As presented in the preceding sections, a solution to bootstrapping small P2P

overlays must address several challenges, namely reflection, rendezvous, and relaying.

This section presents a generic solution to this problem. The basis for my solution is

reusing existing, free-to-join public overlay. In order to support these features the public

overlay must have mechanisms for peers to obtain a public network identity (reflection);

search for other peers that are bootstrapping the same P2P service (rendezvous);

and send messages to peers through the overlay (relaying). These are the minimum

requirements to bootstrap a decentralized, P2P system when all peers are behind NATs.

3.2.1 Reflection

Reflection provides a peer with a globally-addressable identifier for receiving

incoming messages from other peers. Without reflection, peers on different networks

with non-public addresses are unable to communicate directly with each other.

Reflection is not limited to IP. For example, when a peer joins a service, such as a

71

chat application or a P2P system, the overlay provides a unique identifier, which also

serves as a form of reflection.

In IP communication, reflection enables NAT traversal. The simplest method

for NAT traversal relies on obtaining the public information for an existing UDP (user

datagram protocol) socket and then sharing that with other peers. This behavior can

be supported through either local service or remote assistance. The local approach

approach relies on having a router with a public IP address supporting either UPnP [110]

or port forwarding / tracking. In many cases, UPnP is not enabled by default and in

most commercial venues it will rarely be enabled. Port forwarding / tracking requires

non-trivial router configuration, outside the comfort range of many individuals and is not

uniform across routers. A peer using UPnP needs no further services, as UPnP enables

a peer to set and obtain both public IP address and port mappings. Port forwarding and

tracking mechanisms still require that the user obtains and inputs into the application

their public IP address or use in-band assistance described next.

In the remotely assisted scenario, a peer first sends a message to a reflection

provider, perhaps using STUN [91] (Simple Traversal of UDP through NATs). The

response from the provider tells the peer from which IP address and port the message

was sent. In the case of all cone NATs, this will create a binding so that the peer can

then share that IP address and port with other peers behind NATs. When the two

peers communicate simultaneously, all types of cone NATs can be traversed; the timing

of messages needs to be carefully considered, however, since NAT mappings may

change over time. So long as one peer is behind a cone NAT, NAT traversal using

this mechanism is possible. The situation becomes complicated when both peers are

behind symmetric NATs, or when either one of them have a firewall preventing UDP

communication.

Peers behind symmetric NATs cannot easily communicate with each other,

since there is no relation between remote hosts and ports and local ports. Further

72

complicating the matter is that there are various types of symmetric NATs, having

behaviors similar to the various cone NAT types. There does exists methods to traverse

these NATs so long as there is a predictable pattern to port selection [89].

Unlike UDP, TCP (transmission control packet) NAT traversal is complicated by the

state associated with TCP. In many systems, the socket API (application programming

interface) can be used to enable a peer to both listen for incoming connections and form

outgoing connections using the same local addressing information. This method works

for various types of systems though the success rate on NATs is low, 40% [78]. Other

mechanisms rely on out-of-band communication [85], or use of complicated predictive

models [11].

3.2.2 Relaying

NAT traversal services only deal with one aspect of the bootstrap problem:

reflection. That is, peers are able to obtain a public address for receiving incoming

connections with no means for to exchange addresses with other peers nor perform a

simultaneous open to traverse restrictive NATs. To address this issue, many systems

incorporate these NAT traversal libraries while using intermediaries to exchange

addresses as a method of relaying. Another form of relaying exists when two peers are

unable to form direct IP connections with each other and route data messages between

a third-party.

The most common method for relaying in IP is the use of TURN [90] (Traversal

Using Relay NAT). A peer using TURN obtains a public IP address and port that can be

used as a forwarding address. When a remote peer sends to this address, the TURN

server will forward the response to the peer who has been allocated that mapping. The

lack of abstraction in TURN makes the system heavily centralized, making its application

in small-scale systems complicated.

In overlays, peers typically have an abstracted identifier that does not associate

them with a single server enabling more decentralized approaches to relaying. When a

73

remote peer sends a message to the identifier, the overlay should translate the identifier

into network level addresses and forward it to the destination. Because of this restriction,

messages sent by relaying cannot have expectations more than that of sending a packet

by UDP. In other words, a packet will either be received in a reasonable amount of time

or not at all. Support for reliability, streaming, and flow control, if necessary, must be

provided in user-space.

Finally, the service should be asynchronous or event driven. The previous

requirements would allow peers to relay through a message board or even by posting

messages to a DHT. The problem with these two approaches is that peers may very well

communicate for long periods of time using these services. That means the potential for

posting large amounts of data to a service that will retain it and constantly querying the

service to determine if an update is available. Both of these are highly undesirable and

may be viewed as denial of service or spam attacks.

3.2.3 Rendezvous

A rendezvous service allows peers to discover the global identifier of peers

interested in the same service. For any given overlay, a naive approach for rendezvous

is the use of a broadcast query or random probing to determine if any other peers

are using the same service. This approach is unreasonable, depending on the size

of the bootstrap overlay compared to the destination overlay, it may be very difficult

to find another peer, some or all peers may be behind NATs and unreachable without

assistance, and in the worst case scenario a malicious attacker could be waiting for

bootstrap requests into the system.

Rather than attempt to make a single unified rendezvous technique, each overlay

style usually provide an efficient means for rendezvous, thus reducing the network and

time overhead of finding another peer. For example, in the case of a DHT, peers can

use a single DHT key to store multiple values, all of which would be addresses used to

74

communicate with peers in the overlay. Alternatively, in a system like BitTorrent R⃝, peers

could use the same tracker and become “seeds” to the same virtual file.

3.3 Implementations

Table 3-2 reviews various overlays, the majority of which are high availability, public,

free-to-join overlays, though some research only overlays are included. From this list,

I chose to extend Brunet and XMPP to support private overlay bootstrapping. Brunet

provides a structured P2P infrastructure, though lacks an active, large-scale deployment

outside of academic deployment (mine) due to being rooted in an academic project.

XMPP, on the other hand, has support from a large contigency of private users and

enables connections between friends with routing occurring across a distributed overlay.

My implementation makes heavy use of the transports incorporated into Brunet [13].

The key distinguishing feature of this library is the abstraction of sending over a

communication link as it supports primitives similar to “send” and “receive” that enable

the ability to create P2P communication channels over a variety of transports. In the

next sections, I will describe how I extended Brunet to be self-bootstrapping as well as

extensions to enable bootstrapping from XMPP.

The application of structured overlays as the basis private overlays focuses on the

autonomous, self-managing property of the overlay network rather than the ability to

scale to very large numbers. This has also been the motivation of related work which

has employed structured overlays in systems in the order of 10s to 100s of nodes. For

example, Amazon R⃝’s shopping cart runs on Dynamo [28] using a “couple of hundred

of nodes” or less. Facebook R⃝ provides an inbox search system using Cassandra [64]

running on “600+ cores”. Structured overlays simplify organization of an overlay and

provide each member a unique identifier abstracted from the underlying network. As

mentioned in the cited works, they provide high availability and autonomic features that

handle churn well. When used in small networks, most structured overlays (including

Brunet and Pastry) in effect act as O(1) systems, self-organizing links that establish

75

all-to-all connectivity among peers. Brunet explicitly supports all-to-all connectivity,

though in some cases may require constrained peers to route through relays. This can

further be ensured by setting the amount of near connections for the infrastructures,

which in Brunet is configurable at run time.

3.3.1 Using Brunet

Prior to this work, Brunet bootstrapped using a recently online cache of peers and

IP multicast. Brunet already supports behavior similar to STUN, such that, with every

connection Brunet makes, peers inform each other of their view of the remote peers

network state, a form of passive reflection. Peers also generate a unique 160-bit node

identifier that can be used in the overlay as a directly receive packets regardless of the

underlay conditions.

In a single overlay, Brunet supports relaying either through the overlay or pseudo

direct connections called “Tunnels” [43], where peers route to each other through

common neighboring connections. The relaying in this context is used either to maintain

a necessary overlay connection, or to exchange intentions to connect with each other

through “ConnectToMessage” messages. Thus when a peer desires a connection to

another, both peers simultaneously attempt to connect to each other after exchanging

endpoints discovered through reflection using the overlay relay mechanisms, dealing

with the issue of more restrictive cone NATs and the case when the peer is behind a

non-traversable NAT.

To support relaying within the scope of a private overlay, I have further extended

Brunet’s transport library to support treating an existing overlay as a medium for

point-to-point communication. This is called a “Subring” transport, because it supports

the abstraction of multiple private sub-rings within a common large structured ring.

When the private overlay transmits data across the public overlay, the private overlay

packet is encapsulated (and possibly encrypted) in a packet that ensures it will be

delivered to the correct private destination usually by means of greedy routing on the

76

public overlay. In order to instruct peers to establish “Subring” links, they exchange an

identifier of the form “brunet://P2P ID”.

Peers store their “Subring” identifiers into the DHT for rendezvous. The DHT

provides a scalable and self-maintaining mechanism for maintaining a bootstrap, so long

as the DHT supports multiple values at the same key, as Brunet does. The key used

for the DHT rendezvous is a hash of the services name and its version number, which I

call a namespace. Peers can then query this entry in the DHT to obtain a list of peers in

the private overlay. Since DHTs are soft-state, or lease systems, where data is released

after a certain period of time, an online peer must actively maintain its DHT entry. In the

case that a peer goes offline, the DHT will automatically remove the value after its lease

has expired.

To support reflection in the private overlay, there were two potential paths. The first

would have been to extend Brunet to support STUN in each of the remote servers and

then have a private node query them for their public information. The problem with this

approach is that it would require maintaining additional state in order to discern which of

the remote peers are on public addresses and can provide STUN services.

Instead, I opted to multiplex the socket used for the public overlay as it already had

gone through the process of “reflection”. The multiplexing of a single socket for multiple

overlay is called “Pathing”. In this context, the public and private overlays are given a

virtual transport layer that hooks into an another transport layer, thus not limited purely

to socket transport layers. When peers exchange identifiers, instead of transmitting

a simple identifier like “udp://192.168.1.1:15222”, the “Pathing” library extends it to

“udp://192.168.1.1:15222/path”, where each path might signify a unique overlay.

The completed approach is illustrated in Figure 3-2. The approach of “Subring”

and “Pathing” enabled the reuse of the core components of Brunet. Using “Subring”

enables peers to form bootstrap connections to then exchange “ConnectToMessage”

messages. If the direct connections failed, then the “Subring” connections could be

77

Bob’s OverlayPublicDHT Entry for Private Overlay2) Rendezvous – Peer queries DHT for Private overlay peers
4) Peer is connected to the private overlay, multiplexing public overlay’s socket via Pathing transport

Overlay LinkPublic / Private Overlay MappingOverlay Communication
3) Relay – Send “ConnectToMe” message through the public overlay via Subring transport1) Reflection – New peer joins the public overlay

Figure 3-2. Bootstrapping a P2P system using Brunet

used as permanent connections. The use of “Pathing” meant reuse of existing NAT

traversal techniques and limited the amount of system resources required to run multiple

overlays. In terms of total lines of code, these abstractions enabled a recursive overlay

bootstrapping with a relatively small code footprint, less than 1000 lines of code.

3.3.2 Using XMPP

In addition to supporting recursive bootstrapping of private overlays, the techniques

described above can be extended to use a different public overlay, an XMPP-based

federation, to support the bootstrapping of private overlays. The key features that make

XMPP attractive are the distributed nature of the federation and the openness of the

protocol. As of December 2009, there are over 70 active XMPP servers in the XMPP

Federation [119]. These include GoogleTalk, Jabber.org, and Live Journal Talk.

In XMPP, each user has a unique identifier of the form “username@domain”. Where

the domain specifies the client’s XMPP server and the username uniquely identifies a

single individual. XMPP supports concurrent instances for each user by appending a

resource identifier to the user ID: “username@domain/resource”. A resource identifier

can either be provided by the client or generated by the server. For users in the same

78

domain, the server forwards the message from source to destination. When two users

are in different domains, the sender’s server forwards the message to the receiver’s

server, who then relays it to the receiver.

XMMP allows for sending arbitrary binary messages called “IQ”. While peer

relationships are maintained by the server, they are initiated between peers using “IQ”.

Once peers have established a connection or subscription, they are informed through a

“Presence” notification that the peer has come online, this include the full user identifier.

The first form of reflection in XMPP is the unique client identifier. Another is an

IP reflection service available from some XMPP service providers called “Jingle” [69].

“Jingle” uses “IQ” to determine available STUN and TURN servers. Fortunately, these

services are provided free of charge through GoogleTalk. In Brunet, I extended the

UDP transport to support querying STUN servers to obtain and maintain and open an

address mapping. STUN packets are easily distinguished from other packes as the first

two bits are set to 0 as well as a static cookie found in all messages.

In order to support the situation where two peers are unable to communicate

through the exchanged addresses, I have extended XMPP “IQ” as a transport to support

relaying. Once peers has formed a connection through XMPP, they are able to route

connection information to each other and attempt to form a direct connection. In the

case that this is unsuccessful, they are able to fall back to this link as a means to

transmit P2P data. This approach also has the benefit that, if a XMPP server does

not support “Jingle”, the two peers can still form links with each other. Since Brunet

internally supports IP reflection, eventually, if one of the peers in the system has a public

address, it will automatically assist the other peers into forming direct links with each

other.

Rendezvous uses a two step approach. First peers advertise their use of private

overlay in the resource identifier. The name is hashed to ensure that the users complete

identifier does not extend past 1,023 bytes, the maximum length for these identifiers.

79

In addition, a cryptographically generated random number is appended to the resource

identifier to distinguish between multiple instances of the users application in the same

private overlay. Once a peer receives a presence notification from a remote peer and

the base components match, that is the hash of the service, the peer adds it to a list of

known online peers. If the peer lacks connections, the system broadcasts to that list a

request for addresses. The peers respond with a list of addresses including UDP, TCP,

and XMPP addresses, concluding rendezvous.

Ideally, peers would not need to create XMPP connections with each other; if they

are on a public address, the rendezvous phase alone will suffice. When peers do not

have a public address, they can obtain a mapping through STUN, then form an XMPP

connection with each other, and finally perform simultaneous connection attempts.

If NAT traversal fails, the peers can continue routing through the XMPP connection.

Due to the abstractions employed by the transport library, the additional support for

XMPP-based bootstrapping required only an additional 700 lines of code to Brunet and

no modification to the core system.

3.4 Evaluating Overlay Bootstrapping

This section presents a qualitative evaluation of this system prototype bootstrapping

a small-scale network as well as some of the experiences in deploying bootstrapping

overlays.

3.4.1 Deployment Experiments

These experiments verify that the techniques work and determine expected

overheads in using Brunet and XMPP to bootstrap an overlay. Rather than an extensive

experiment overly focused on overheads of Brunet and XMPP, this experiment is

primarily focused on the feasibility of forming small-scale overlays among network-constrained

peers. The experiment represents 5 peers desiring all-to-all direct connectivity, a feature

transparently available to them if they bootstrap into a private Brunet overlay. The

experiments were run on peers deployed on 5 distinct virtual machines. Each virtual

80

Table 3-1. Time in seconds for various private overlay operations
Reflection Rendezvous Relaying Connected

XMPP 0.035 0.110 0.243 20.3
Brunet 3.05 0.330 0.533 23.22

machine had its own separate NAT, and thus peers were unable to communicate directly

without assistance.

The public Brunet overlay used in this experiment consisted of over 600 nodes

running on PlanetLab. PlanetLab [23] is a consortium of research institutes sharing

hundreds of globally distributed network and computing resources. GoogleTalk provided

the XMPP overlay used in this experiment. Though this experiment does not take into

advantage the features of the XMPP Federation, this aspect is presented in more detail

in the next section reviewing experiences deploying overlays using XMPP.

In the experiment, 5 P2P nodes were started simultaneously, while measuring

the time spent for reflection, rendezvous, reflection, and connection. The results are

presented in Table 3-1. For XMPP, these are translated as follows: reflection measures

the time to obtain IP addresses from the STUN server, rendezvous is the time to receive

a presence notification, relaying is the time to receive a message across XMPP, and

connected is once all nodes in the private overlay has all-to-all connectivity. For Brunet,

these are translated as follows: reflection measures the time to connect to the public

overlay, rendezvous is the time to query the DHT, relaying is the average time to send

a message across the overlay, and connected is the time until the private overlay has

all-to-all connectivity. The results are highly correlated to timeouts in Brunet, which

employs a mixture of events and polling to stabilize the overlay, as well as the latency

between the client and GoogleTalk. As this was more of a qualitative experiment, the

results are clear: private overlays providing all-to-all connectivity among NATed nodes

can bootstrap within a very reasonable amount of time.

81

3.4.2 Deployment Experiences

Recently, Facebook R⃝ announced that they would be supporting XMPP as a means

to connect to Facebook R⃝ chat. This was rather exciting and further motivated this

work, as Facebook R⃝ has over 400 million active users, which would have made their

XMPP overlay, potentially, the largest free-to-join overlay. Unfortunately, Facebook R⃝

does not employ a traditional XMPP setup, instead it provides a proxy into their chat

network, preventing features like arbitrary IQs and other forms of out-of-band messages

to be exchanged between peers. User identifiers are also translated, so a peer cannot

obtain a remote peers real identifier. Thus there exists no out-of-band mechanism for

rendezvous. Peers could potentially send rendezvous messages through the in-band

XMPP messaging, but this may be viewed by most recipients as spam as it would arrive

as normal chat messages. Unfortunately, the realization is that not all XMMP servers,

especially those unrelated to the Federation, support features necessary to bootstrap.

During initial tests in verifying the workings of the XMPP code base, I bootstrapped

a private Brunet overlay on PlanetLab through various XMPP service providers.

Unfortunately, some servers (GoogleTalk) ignored clients on PlanetLab. Another server

crashed after 257 concurrent instances of the same account logged in. Because the

provider had no contact information, I was unable to ascertain the reason for the crash.

Though there did exist some servers that had no trouble hosting over 600 concurrent

instances running on PlanetLab.

Once the system was running on PlanetLab, more tests were performed to

determine the ability to bootstrap across the XMPP Federation. For this purpose,

several friendships, or subscriptions, were formed between users across various XMPP

service providers. In the most evaluated case, a single peer on GoogleTalk along with

600 peers on PlanetLab system using jabber.rootbash.com, the GoogleTalk peer would

not always receive presence notifications for all peers online, though always would

receive some. When a peer began the relaying mechanism, it would broadcast to every

82

peer from whom it received a presence notification. When performing this between

GoogleTalk and rootbash, the GoogleTalk peer would not receive a response. Though

in reducing the broadcast to a random selection of 10 peers, every 10 seconds until the

GoogleTalk peer was connected, the peer received responses. The behavior indicates

that the XMPP servers may have been filtering to prevent denial of service attacks.

Peers on the same XMPP server seem to be connected very quickly, though peers

on different services can take significantly longer. For example, when bootstrapping a

single peer from GoogleTalk into the rootbash system, it always took 1 minute for the

node to become fully connected to the private overlay. When the peer used rootbash,

the peer always connected within 30 seconds. It seems as if the communication

between XMPP servers was being delayed for some reason. The same behavior was

not experienced, when chatting between the two peers.

Table 3-2. Public and research overlays

Description Reflection Rendezvous Relay
BitTorrent R⃝ Default BitTorrent R⃝

implementations rely
on a centralized tracker
to provide the initial
bootstrapping. Peers
can establish new
connections through
information obtained
from established con-
nections. This relegates
the tracker as a means
of monitoring the state
of the file distribution.
BitTorrent R⃝ specifies a
protocol, though each
client may support ad-
ditional features not
covered by the protocol.

The current spec-
ification does not
support NAT traver-
sal, though future
versions may po-
tentially use UDP
NAT traversal.
At which point,
BitTorrent R⃝ may
support a reflection
service.

Peers can reg-
ister as seeds
to the same file
hash, thus their
IP address will
be stored with
the tracker.

Peers receive
each other’s IP
addresses from
the tracker, there
is no inherent
relaying.

83

Table 3-2. Continued
Description Reflection Rendezvous Relay

Gnutella Gnutella is a large-scale
unstructured over-
lay with over a million
peers; primarily, it is
used for file sharing.
Gnutella consists of a
couple hundred thou-
sand ultra (super) peers
to provide reliability to
the overlay. Gnutella is
free-to-join and requires
no registration to use.

Work in progress.
Peers attempt
to connect to
a sharer’s re-
source, though a
”Push” notifica-
tion reverses this
behavior. Thus a
peer behind a NAT
can share with a
peer on a public
address.

Peers can per-
form broadcast
searches with
TTL up to 2;
when networks
consist of mil-
lions of peers,
small overlays
will most likely
not be able to
discover each
other.

Not explicitly,
could poten-
tially utilize ping
messages to
exchange mes-
sages.

Skype R⃝ Skype R⃝ is a large-scale
unstructured overlay,
consisting of over a
million active peers,
and primarily used for
voice over P2P commu-
nication. Skype R⃝, like
Gnutella, also has super
peers, though the own-
ers of Skype R⃝ provide
authentication and boot-
strap servers. Though
Skype R⃝ is free-to-join,
it requires registration to
use.

Skype R⃝ APIs pro-
vide no means for
reflection.

Skype R⃝ sup-
ports applica-
tions, or add-
ons, which can
used to transpar-
ently broadcast
queries to a
users friend to
determine if
the peer has
the applica-
tion installed.
Thus Skype R⃝
does support
rendezvous.

Skype R⃝ ap-
plications are
allowed to route
messages via
the Skype R⃝
overlay, but be-
cause Skype R⃝
lacks reflection,
all communi-
cation must
traverse the
Skype R⃝ overlay.

XMPP XMPP consists of a
federation of distributed
servers. Peers must
register an account with
a server, though reg-
istration can be done
through XMPP APIs
without user interac-
tion. XMPP is not a
traditional P2P system,
though it has some P2P
features. XMPP servers
on distinct servers are
able to communicate
with each other. Links
between servers are
created based upon
client demand. During
link creation, servers
exchange XMPP Feder-
ation signed certificates.

While not pro-
vided by all XMPP
servers, there
exist extensions
for NAT traversal.
GoogleTalk, for
example, provides
both STUN and
TURN servers.

Similar to
Skype R⃝,
XMPP friends
can broadcast
queries to each
other to find
other peers us-
ing the same
P2P service.
Thus XMPP
supports ren-
dezvous.

The XMPP
specification
allows peers to
exchange arbi-
trary out-of-band
communica-
tion with each
other. Most
servers support
this behavior,
even when sent
across the Fed-
eration. Thus
XMPP supports
relaying.

84

Table 3-2. Continued
Description Reflection Rendezvous Relay

Kademlia [72] There exists two popu-
lar Kademlia systems,
one used by many
BitTorrent R⃝ systems,
Kad, and the other
used by Gnutella, called
Mojito. Kademlia im-
plements an iterative
structured overlays,
where peers query each
other directly when
searching the overlay.
Thus all resources of
a Kademlia overlay
must have a publicly
addressable network
endpoint.

Existing implemen-
tations of Kademlia
do not support
mechanims for
peers to deter-
mine their network
identity.

Peers can use
the DHT as a
rendezvous
service, storing
their connectiv-
ity information
in the DHT at
key location:
hash(SERVICE).

An iterative
structured over-
lay has no sup-
port for relaying
messages.

OpenDHT [86] OpenDHT is a recently
decommissioned DHT
running on PlanetLab.
OpenDHT is built using
Bamboo, a Pastry-like
protocol [94]. Pastry
implements recursive
routing, peers route
messages through the
overlay.

Existing implemen-
tations of Bamboo
and Pastry do not
support mechan-
ims for peers to
determine their
network identity.
Though this is
ongoing work.

Peers can use
the DHT as a
rendezvous
service, storing
their connectiv-
ity information
in the DHT at
key location:
hash(SERVICE).

Because Pastry
uses recursive
routing, it can
be used as a
relay. Further-
more, extensions
to Pastry have
enabled explicit
relays called
virtual connec-
tions [73].

Brunet [13] Brunet like OpenDHT
is a freely available
DHT running on Plan-
etLab, though still in
active development.
Brunet creates a Sym-
phony [71] overlay using
recursive routing.

Brunet supports
inherent reflection
services, when
a peer forms a
connection with a
remote peer, the
peers exchange
their view of each
other.

Peers can use
the DHT as a
rendezvous
service, storing
their connectiv-
ity information
in the DHT at
key location:
hash(SERVICE).

Like Pastry,
Brunet supports
recursive routing
and relays called
tunnels [43].

85

CHAPTER 4
FROM OVERLAYS TO SECURE VIRTUAL PRIVATE NETWORKS

In this chapter, I take the results from Chapter 3 and apply them to IPOP [41] in

order to construct a fully decentralized P2P VPN (peer-to-peer virtual private network).

While sharing overlays in IPOP makes for simplified use of the system, in reality, it

introduces significant security challenges. For example, a misconfigured or malicious

peer could potentially disable the entire overlay, rendering all VNs (virtual networks)

useless. If security and hence isolation is important, prior to VN deployment, a user

would need to deploy a secure overlay and configure their VPN to bootstrap from it,

given the complexity many users may reconsider the P2P approach and use a simple

centralized VPn.

To address this challenge and to make a fully decentralized P2P VPN, I have

extended the IPOP concept to support bootstrapping from public infrastructures

and overlays into private and secure P2P overlays whose membership is limited

to an individual VPN user base. Chapter 3 focused on a small scale feasibility of

bootstrapping decentralized overlays. This chapter further extends into performance

overheads of recursive Brunet overlays and larger network sizes. I then consider

security in the overlay and present the first implementation and evaluation of an

overlay with secure communication both between end points in the P2P overlay

(e.g. VPN nodes) as well as between nodes connected by overlay edges. Security

requires a means for peer revocation; however, current revocation techniques rely on

centralized systems such as certificate revocation lists (CRLs). The proposed approach

allows revocation using scalable techniques provided by the P2P overlay itself. I call

the completed system and the interface used to administrate it GroupVPN, a novel

decentralized P2P VPN.

The rest of this chapter is organized as follows. Throughout the chapter, there

are two techniques used to evaluate my approaches, simulation and real system

86

deployments; these are described in Section 4.1. Section 4.2 describes techniques that

allow users to create their own private overlays from a shared public overlay in spite

of NAT (network address translation). Use of security protocols has been assumed

in many P2P works, though without consideration of implementation and overheads.

I investigate implementation issues and overheads of security in P2P with emphasis

on P2P VPNs in Section 4.3. Without revocation, use of security is limited, and in

decentralized systems, the use of centralized revocation methods is are not sufficient,

I present novel mechanisms for decentralized revocation in Section 4.4. The complete

system, GroupVPN, is presented in Section 4.5. Section 4.7 compares and contrasts

this work with related work.

4.1 Experimental Environment

Throughout this paper, my quantitative evaluation environment uses both real

deployments on PlanetLab and simulation. The evaluation requirements dictate the

environment used. When the perspective of a single node is useful, PlanetLab’s

overloaded nature makes complex system analysis challenging, especially when

attempting to simulate an instantaneous behavior on a system, which has random

outage and delays in access.

IPOP uses Brunet as the underlying P2P infrastructure for connectivity. Brunet has

been in active development for the past 5 years and is routinely run on PlanetLab [23]

for experiments and tests. PlanetLab consists of of nearly 1,000 resources distributed

across Earth. In practical applications, though, roughly 40% of the resources are

unavailable at any given time and the remaining behave somewhat unpredictably.

PlanetLab deployment takes approximately 15 minutes for all resources to have

Brunet installed and connect to the overlay and then much more time to observe certain

behaviors, making regression and verification tests complicated. To address this, I have

extended Brunet to support a simulation mode. The simulator inherits all of the Brunet

P2P overlay logic but uses simulated virtual time based upon an event-driven scheduler

87

instead of real time. Furthermore, the simulation framework uses a specialized transport

layer to avoid the overhead of using TCP (transmission control protocol) or UDP (user

datagram protocol) on the host system, both of which are limited resources and can

hamper the ability to simulate large systems. The specialized transport uses datagrams

to pass messages between nodes, thus from the node’s perspective, it is very similar to

a UDP transport and can simulate both latency and packet dropping. Latency between

all node pairs is set to 100 ms by default.

Both simulation and real system evaluation provide unique advantages. Simulations

allow faster than real time execution of reasonable sized networks (up to a few

thousand) using a single resource, while enabling easy debugging. In contrast,

deployment on real systems, in particular PlanetLab, presents opportunities to add

non-deterministic, dynamic behavior into the system which can be difficult to replicate,

such as network glitches and long CPU (central processing unit) delays on processing.

4.2 Towards Private Overlays

Many users of IPOP begin by using the public shared overlay and, once comfortable,

move towards hosting their own infrastructure. Some are successful without assistance,

while a majority are not. Network configuration issues tend to be the most common

issue preventing users from hosting their own independent IPOP systems. While users

were able to easily join the shared overlay, similar attempts to construct their own were

hindered and ultimately only successful after receiving feedback.

Prior work in IPOP [44] enabled many VPNs to share a single P2P overlay by

storing IP (Internet Protocol) address into the DHT (distributed hash table) at the key

hash(Namespace : IP). Unfortunately, this approach is fraught with security issues.

In the previous chapter, I established methods that enabled bootstrapping private

Brunet overlays as easily as connecting to a public P2P overlay. This chapter begins by

focusing on the integration of the methodologies employed in recursive Brunet overlays

as applied to IPOP.

88

To bootstrap from an existing Brunet overlay, peers first insert their public overlay

node address into the key represented by hash($PrivateOverlayNamespace) and continue

to do so regularly until they disconnect, so as to not let the entry become stale and

disappear. Peers attempting to bootstrap into the private overlay can then query this

key and obtain a list of public overlay nodes that are currently acting as proxies into the

private overlay. By using the public overlay as a transport, similar to UDP or TCP, the

private overlay node forms bootstrapping connections via the public overlay. At which

point, overlay bootstrapping proceeds as normal. The entire process is represented in

Figure 3-1.

As mentioned in the previous chapter, small overlays may have no members with

a public address, making it difficult to provide overlay based NAT traversal. To avoid

having a special case for NAT traversal in private overlays, in my model, the private

overlay share TCP and UDP sockets with the public overlay. This mechanism, referred

to as “pathing”, allows multiplexing a single UDP socket and listening TCP socket by

many overlays. This is only possible due to the generic transports library of the Brunet

P2P overlay, which does not differentiate UDP, TCP, or even relayed links. Pathing works

as a proxy, intercepting a link creation request from a local entity, mapping that to a

path, and then requesting from the remote entity a link for that path. The underlying

link is then wrapped by pathing and given to the correct overlay node, resulting in a

completely transparent multiplexing of a TCP and UDP sockets, thereby enabling the

NAT traversal in one overlay to benefit the other. Once a link has been established,

the pathing information is irrelevant, limiting the overhead into the system to a single

message exchange during link establishment.

4.2.1 Time to Bootstrap a Private Overlay

This experiment focuses on the overheads in bootstrapping a private overlay using

the techniques mentioned in the previous section. The time to bootstrap can be derived

analytically by considering the minimum steps for a node to join the public overlay,

89

obtain private overlay peers from the public overlay DHT, and then connect to the private

overlay. In Brunet, peers begin by forming leaf or bootstrapping connections and use

these to communicate with the neighbor or peer in the P2P network nearest to their P2P

address. The process to form a connection can be done in as few as 4 messages and

up to 6, if the peers only know each other’s P2P address, which is the case for neighbor

connections.

Assuming a peer already has IP address information for another, a connection can

be initiated by the peer sending a message to the remote peer expressing the desire for

a connection. The remote node responds by either rejecting the request or committing

to the connection. In the next exchange, the initiating peer commits to forming the

connection and the remote peer acknowledges. The two phase commit process is used

to handle the complexity that ensues when multiple simultaneous connection attempts

occur in parallel. All these messages take 1 hop, since they are direct links between

peers.

When peers only have each other’s P2P address and/or the initiating peer is behind

a NAT, it may take fifth and sometimes a sixth message. These messages are requests

for the remote peer’s IP addresses as well as asking the peer to connect with the

initiating peer, addressing the case where the remote peer is behind a NAT and cannot

handle inbound messages. These messages are routed over the overlay taking log(N)

hops, where N is the network size of the public overlay.

Private overlay bootstrapping follows a similar process, though, first, the peer

acquires P2P addresses of other participants through the public DHT, an operation

taking 2 ∗ log(N) hops. In the private overlay, the leaf connections do not communicate

directly; rather, they use the public overlay, causing some of the 1 hop operations above

to take log(N) hops. Finally, finding the nearest remote peer in the private overlay takes

log(N) + log(n), where n is the network size of the private overlay.

90

Given this model, each operation takes the following hop counts: public overlay

bootstrapping => 8 + log(N), DHT operations => 2 ∗ log(N), and private overlay

bootstrapping => 4 + 5 ∗ log(N) + log(n). The cumulative operation takes 12 + 8 ∗

log(N) + log(n) hops. The dominating overhead in bootstrapping the private overlay

is the time it takes to perform overlay operations on the public overlay (log(N)). For

instance, assuming a network size of 512 public and 8 private, a node should be

connected within 87 hops.

To evaluate my implementation for GroupVPN, I used both PlanetLab and the

simulator. 100 tests were run for various network sizes. Though due to difficulty in

controlling network sizes in PlanetLab, I set each PlanetLab node to randomly decide if it

would connect to the private overlay. The network sizes were then used in the simulator

and the analytical model. The average public network size for each of these tests was

600. The results are presented in Figure 4-1 1 . Using a 100 ms delay like the simulator

results in 9.2 and 9.3 seconds for the analytical model for private network sizes of 68

and 147, respectively.

Based upon the results presented in Figure 4-1, the bootstrapping time for the

implementation performs better than the analytical model, due to the simplicity of the

analytical model and the small network sizes. It is of interest that while the simulator

results tend to be in a well defined range, the PlanetLab results have a few outliers with

long bootstrap times. Some of the expected causes for this are churn in the system and

state machine timeouts in Brunet, though I have not considered this in much depth.

1 I performed measurements for many more private network sizes, but all the results
were so similar that it did not introduce anything of interest and are omitted from the
plots to improve clarity.

91

10-1 100 101 102 103

Time in seconds

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

planetlab.68

planetlab.147

simulator.68

simulator.147

Figure 4-1. CDF of private overlay bootstrap time

4.2.2 Overhead of Pathing

Much like the previous experiment, this verifies that the pathing technique has

negligible overheads for VPN usage. To determine the overheads, two GroupVPNs

are deployed on resources on the same gigabit LAN (local area network). To measure

latency and throughput, netperf experiments are run for 30 seconds, 5 times each on an

unutilized network switch. Other specifications of the machine are ignored as the system

without pathing is used as the baseline. The results, Table 4-1, indicate that the use of

pathing presents negligible overhead for both throughput and latency, justifying the use

of this approach to transparently deal with NAT and firewall traversal.

Table 4-1. Pathing overheads
Latency (ms) Throughput (Mbit/s)

Standard 0.303 225.27
Pathing 0.308 224.36

4.3 Security for the Overlay and the VPN

Structured overlays are difficult to secure and a private overlay is not secure if it

provides no means to limit access to the system. Malicious users can pollute the DHT,

send bogus messages, and even prevent the overlay from functioning, rendering the

92

VPN useless. To address this in means that make sense for VPNs and common users,

I have employed a public key infrastructure (PKI) to encrypt and authenticate both

communication between peers as well as communication across the overlay, called

point-to-point (PtP) and end-to-end (EtE) communication, respectively.

Use of a PKI (public key infrastructure) motivates from the ability to authenticate

without a third party, ideal for P2P use, unlike a key distribution centers (KDC) used by

other VPNs. A PKI can use either pre-exchange public keys or a certificate authority

(CA) to sign public keys, i.e., certificates. Thus peers can exchange keys and certificates

without requiring a third-party to be online.

The reasons for securing PtP and EtE are different. Securing PtP communication

prevents unauthorized access to the overlay, as peers must authenticate with each other

for every link created. Though once authenticated, a peer can perform malicious acts

and since the overlay allows for routing over it, the peer can disguise the origination

of the malicious acts. By also employing EtE security, the authenticity of messages

transferred through an overlay can be verified. Though EtE security by itself, will not

prevent unauthorized access into the overlay. By employing both PtP and EtE, overlays

can be secured from uninvited guests from the outside and can identify malicious users

on the inside. Implementing both leads to important questions: what mechanisms can

be used to implement both and what are the effects of both on an overlay and to a VPN

on an overlay.

4.3.1 Implementing Overlay Security

There are various types of PtP links, such as TCP and UDP sockets and relays

across individual nodes and the overlay. EtE communication is datagram-oriented

in IPOP. Traditional approaches of securing communication such as IPsec are not

convenient due to complexity, i.e., operating system specific, portability constraints, and

lack of common APIs. Security protocols that rely on reliable connections, such as SSL

(secure sockets layer) or TLS (transport layer security) are undesirable as well as they

93

would require a userspace implementation of reliable streams (akin to TCP). As such,

I have implemented an abstraction called a security filter as presented in Figure 4-2,

which enables nearly transparent use of security libraries and protocols. In this example,

the security filter abstraction is used by senders and receivers through an EtE secured

chat application. Each receiver and sender use the same abstracted model and thus the

chat application requires only high-level changes, such as verifying the certificate used

is Alice’s and Bob’s, to support security.

A security filter has two components: the manager, and individual sessions or filters.

While the individual sessions could act as filters by themselves, by combining with a

manager, they can be configured for a common purpose and security credentials. This

approach enables the use of security to be transparent to the other components of the

system as the manager handles session establishment, garbage collection of expired

sessions, and revocation of peers. To this date, I have implemented both a DTLS [83]

(datagram transport layer security) filter using the OpenSSL implementation of DTLS

as well as a protocol that reuses cryptographic libraries provided by .NET that behaves

similarly to IPsec.

Certificate embed identity of the owner, thus a signed certificate states that the

signer trusts that the identity is accurate. In network systems, the certificate uses the

domain name to uniquely identify and limit the use of a certificate. When a CA signs

the certificate, by including the domain name, it ensures that users can trust that a

certificate is valid, while used to secure traffic to that domain. Communication with

another domain using the same certificate will raise a flag and will result in the user not

trusting the certificate. In environments with NATs, dynamic IP addresses, or portable

devices, typical of P2P systems, assigning a certificate to a domain name will be a

hassle as it constrains mobility and the type of users in the system. Furthermore, most

users are unaware of their IP address and changes to it. Instead, a certificate is signed

against the user’s P2P address and unique user name as delegated by the CA. The

94

Figure 4-2. Security filter

purpose of the former is for efficiency of revocation as discussed in Section 4.4. During

the formation of PtP links or while parsing EtE messages, the two nodes discover

each other’s P2P addresses. If the addresses do not match the address on the verified

certificate, the communication need not proceed further.

Prior to trusting the security filter, the core software or the security filter must

ensure that the P2P address of the remote entity matches that of the certificate. In my

approach, I did this by means of a callback, which presents the underlying sending

mechanism, EtE or PtP, and the overlay address stored in the certificate. The receiver

of the callback can attempt to cast it into known objects. If successful, it will compare

the overlay address with the sender type. If unsuccessful, it ignores the request. If any

callbacks return that the sender does not match the identifier, the session is immediately

95

closed. Thus the security filter need not understand the sending mechanism and the

sending mechanism need not understand the security filter.

The last consideration comes in the case of EtE communication that provides an

abstraction layer. For example, in the case of VPNs, where a P2P packet contains

an IP packet and thus a P2P address maps to a VPN IP address, a malicious peer

may establish a trusted link, but then hijack another user’s IP session. As such, the

application must verify that the IP address in the IP packet matches the P2P address

of the sender of the P2P packet. In general, an application address should be matched

against a P2P address.

4.3.2 Overheads of Overlay Security

When applying an additional layer to a P2P system, there are overheads in terms

of time to connect with the overlay. Other less obvious effects are throughput, latency,

and processing overheads, assuming that the P2P system will be used over a wide area

network, where the latency and throughput limitations between two points will make the

overhead of security negligible. Though bootstrapping will be affected due to additional

round trip messages used for forming secure connections.

Figure 4-3. DTLS handshake

The DTLS handshake as presented in Figure 4-3, which consists of 6 messages

or 3 round trips. PtP security may very well have an effect on the duration of overlay

96

bootstrapping. There even exists a possibility that with more messages during bootstrap,

the probability one drops is higher, which could, in turn, also have an effect, though

possibly negligible, on time to connect. To evaluate these concerns, I have employed

both simulation and real system experiments.

The following experiments use both simulation and PlanetLab deployment to

evaluate time to connect a new node to an existing resource. Then another experiment

is performed to evaluate how long it takes to bootstrap various sized overlays if all nodes

join at the same time. This experiment is only feasible via simulation as attempting

to reproduce in a real system is extremely difficult due to how quickly the operations

complete.

4.3.2.1 Adding a Single Node

This experiment determines how long it takes a single node to join an existing

overlay with and without DTLS security. The experiment is performed using both

simulation and PlanetLab. After deploying a set of nodes without security and with

security on PlanetLab, the network is crawled to determine the size of the network. In

both cases, the overlay maintained an average size of around 600 nodes. At which

point, I connected a node 1,000, each time using a new, randomly generated P2P

address, thus connecting to a different point in the overlay. The experiment concludes

as soon as the node has connected to the peers in the P2P overlay immediately before

and after it in the P2P address space. In the simulation, a new overlay is created and

afterward a new node joins, this is repeated 100 times. The cumulative distribution

functions obtained from the different experiments are presented in Figure 4-4, which

uses the following notations: secure (dtls), insecure (nosec), PlanetLab (plab), and the

Simulator (sim).

4.3.2.2 Bootstrapping an Overlay

The purpose of this experiment is to determine how quickly an overlay using DTLS

can bootstrap in comparison to one that does not given that there are no existing

97

10-1 100 101 102

Time in seconds

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

plab.nosec

plab.dtls

sim.nosec

sim.dtls

Figure 4-4. A single node joining an insecure and secure overlay

participants. Nodes in this evaluation are randomly given information about 5 different

nodes in the overlay and then all attempt to connect with each other at the same time.

The evaluation completes after the entire overlay has all nodes connected and in their

proper position. For each network size, the test is performed 100 times and the average

result is presented in Figure 4-5, which uses the following notations: secure (dtls) and

insecure (nosec).

4.3.3 Discussion

Both evaluations show that the overhead in using security is practically negligible,

when an overlay is small. In the case of adding a single node, it is clear that the

simulation and deployment results agree, as the difference between bootstrapping

into an overlay with and without security remains nearly the same. Clearly this motivates

the use of security if time to connect is the most pressing question.

The time to bootstrap a secure overlay was not significantly more than that of

an insecure overlay. What I realized is that complex connection handshaking, as

implemented in Brunet, seems to dominate connection establishment time. For

example, in Brunet, two peers must communicate via the overlay prior to forming a

98

0 50 100 150 200 250 300
Network size

0

20

40

60

80

100

T
im

e
 i
n
 s

e
co

n
d
s

nosec

dtls

Figure 4-5. Simulataneous bootstrapping of a secure and an insecure overlay

connection, and the system differentiates between bootstrapping connections and

overlay connections. Thus even though a peer may have a bootstrapping connection,

it will need to go through the entire process to form an overlay connection with a

peer. While this may lead to inefficiencies, this simplification keeps the software more

maintainable and easier to understand.

4.4 Handling User Revocation

Unlike decentralized systems that use shared secrets, in which the creator of the

overlay becomes powerless to control malicious users, PKIs enable their creators to

effectively remove malicious users. Typical PKIs either use a certificate revocation

list (CRL) or online certificate verification protocols such as Online Certificate Status

Protocol (OCSP). These approaches are orthogonal to decentralized systems as they

require a dedicated service provider. If the service provider is offline, an application can

only rely on historical information to make a decision on whether or not to trust a link.

In a decentralized system, these features can be enhanced so not to rely on a single

provider. In this section, I present two mechanisms of doing so: storing revocations in

the DHT and performing overlay broadcast based revocations.

99

4.4.1 DHT Revocation

A DHT can be used to provide revocation similar to that of OCSP or CRLs.

Revocations, a hash of the certificate and a time stamp signed by the CA, are stored

are stored in the DHT at the key formed by the hashing of the certificate. In doing so,

revocations will be uniformly distributed across the overlay, not relying on any single

entity.

The problem with the DHT approach is that it does not provide an event notification

for members currently communicating with the peer. While peers could continue to poll

the DHT to determine a revocation, doing so is inefficient. Furthermore, a malicious

peer, who has a valid but revoked certificate could force every member in the overlay to

query the DHT, negatively affecting the DHT nodes storing the revocation.

4.4.2 Broadcast Revocation

Broadcast revocation uses a structured overlay based broadcast approach as

described in Appendix 8. The form of broadcast can be used to perform to notify the

entire overlay immediately about a new revocation. It is important to note, that the

message needs to be delivered locally prior to forwarding, so that peers who have a

connection to the malicious peer, will end the connection prior to accidentally forwarding

the message to the peer by receiving and acting upon the revocation prior to forwarding

the message.

4.4.3 Evaluation of Broadcast

I performed an evaluation on the broadcast using the simulation to determine

how quickly peers in the overlay would receive the message. The tested network

sizes ranged from 2 to 256 in powers of 2. The tests were evaluations were performed

100 times for each network size. The CDF of hops for each node are presented in

Figure 4-6. The results make it quite clear that the broadcast can efficiently distribute a

revocation much more quickly than log(N) time.

100

0 2 4 6 8 10 12 14 16 18
Hop count

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

2

4

16

32

64

128

256

Figure 4-6. Overlay broadcast time

4.4.4 Discussion

In contrast to the DHT solution, broadcast revocation occurs only once and leaves

no state behind. Thus the broadcast is not a complete solution, as new peers connected

to the overlay or those who missed the broadcast message will be unaware of a

revocation. Furthermore, if an overlay is shared by many VPNs, it may prevent overlay

broadcasting or itself may be inefficient.

The DHT solution by itself may also not sufficient as revocations may be lost

over time as the entries must have their leases renewed in the DHT. To address

this condition, each peer maintains a local CRL and the owner of the overlay can

occasionally send updates to the CRL through an out of band medium, such as e-mail.

A better long term solution may be the use of a gossip protocols so that peers can share

their lists with each other during bootstrapping phases.

A key assumption in using these is that a Sybil [30], or collusion attack, is difficult in

the secured overlay. If a Sybil attack is successful, both a DHT and broadcast revocation

may be unsuccessful, though peers could fix this problem by obtaining the CRL out of

band. In addition, previous work [20] has described decentralized techniques to limit the

101

probability of such attacks from occurring. In my approach, the use of central authority

to review certificate requests can be used to limit a single user from obtaining too many

certificates as well as ensuring uniform distribution of that user’s P2P addresses, further

hampering the likelihood of a Sybil attack. The ability to automate this is left as future

work.

One way to mitigate Sybil attacks using the broadcast approach is to bundle

colluding offenders into a single revocation message. That would prevent those

from colluding together to prevent each other’s revocations. Furthermore, while not

emphasized above, revocation in my system revokes by user name and not individual

certificates. Combined these two components limit Sybil attacks against broadcast.

4.5 Managing and Configuring the VPN

While the PKI model applies to P2P overlays, actual deployment and maintenance

of security credentials can be too complex to manage, particularly for non-experts. Most

PKI-enabled systems require the use of command-line utilities and lack methods for

assisting in the deployment of certificates and policing users. My solution to facilitate

use of PKIs for non-experts is a partially-automated PKI reliant on a group-based Web

interface distributable in forms of Joomla add-ons as well as a virtual machine appliance.

In this environment, groups can share a common Web site, while each group has their

own unique CA. Although this does not preclude other methods of CA interaction,

experience has shown that it provides a model that is satisfactory for many use cases.

Group-based Web 2.0 sites enable low overhead configuration of collaborative

environments. The roles in a group environment can be divided into administrators and

users. Users have the ability to join and create groups; whereas administrators define

network parameters, can accept or deny join requests, remove users, and promote other

users to administrators. By applying this to a VPN, the group environment provides a

simple to use wrapper around PKI, where the administrators of the group act as the CA

and the members have the ability to obtain signed certificates.

102

Elaborating further, when a user joins a group, the administrator can enable

automatic signing of certificates or require prior review; and when peers have overstayed

their welcome, an administrator can revoke their certificate by removing them from

the group. Revocations are handled as described in Section 4.4. In the context of

GroupVPN systems, a user revocation list as opposed to a CRL simplifies revocation,

since users and not individual certificates will be revoked.

Registered users who create groups become administrators of their own groups.

When a user has been accepted into a group by its administrator, they are able to

download VPN configuration data from the Web site. Configuration data is loaded by the

GroupVPN during its configuration process to specify IP address range, namespace,

and security options. The configuration data also stores a shared secret, which uniquely

identifies the user, enabling the Web site to automatically sign the certificate (or

enqueue it form manual signing, depending on the group’s policy). Certificate requests

consist of sending a public key and a shared secret over an HTTPS connection to the

web server. Upon receiving the signed certificate, peers are able to join the private

overlay and GroupVPN, enabling secure communication amongst the VPN peers. The

entire bootstrapping process, including address resolution and communication with a

peer, is illustrated in Figure 4-7.

There are many ways of implementing and hosting the Web site. For example,

Google R⃝ offers free hosting of Python web applications through Google R⃝ Apps, an

option available if the user owns a domain. Alternatively, the user could host the group

site on a public virtual network. In this case, peers interacting with the GroupVPN

would need to connect with the public virtual network in order to create an account,

get the configuration data, and retrieve a signed certificate, at which point they could

disconnect from it. This does not preclude the use of other social mediums nor a central

site dedicated to the formation of many GroupVPNs. Many GroupVPNs can share a

single site, so long as the group members trust the site to host the CA private key.

103

User) Join group,

obtain credentials

and P2P information

1) Request / obtain

group certificate

3) Bootstrap

into overlay

4) Query overlay for

IP P2P

5) Route IP over link

Welcome

to

GroupVPN

Node Z

10.0.123.248

Node X

10.0.5.251

Node W

10.0.1.2

10.0.5.251

is at Node X

10.0.123.248

is at Node Z

10.0.1.2 is

at Node W

6) Form secure,

direct link with

peer via overlay

P2P Node

DHT Entry

Message

VPN

Figure 4-7. Bootstrapping a new GroupVPN

4.6 Leveraging Trust from Online Social Networks

Groups are very useful for coordinating a set of individuals when a subset of

them can be used to establish trust amongst them all. However, groups can lack

clear and concise individuality and limit independence from the collective. Trust

can be leveraged from existing social networks to create trust in other domains.

Much like that of a social network, a VPN consists of trusted links, tying the two

together produced the SocialVPN [56]. In this work, I along with my fellow researchers

implemented a prototype for SocialVPN, which exemplifies the utility of my approaches

in handling security both in terms of trust and session establishment as well as endpoint

configuration of the VPN.

Besides the content described in the following subsections, namely establishing

identity and trust as well as address allocation and discovery, SocialVPN reuses existing

components already provided in IPOP, such as secure link establishment, endpoint

configuration, and packet handling. Even the functionality used by SocialVPN for

104

address allocation and discovery builds upon existing abstractions already provided by

IPOP.

4.6.1 Architecture

SocialVPN leverages the online social network to establish trust and exchange

certificates. Thus a social network must provide a means for an external application

to determine friendships and store arbitrary data into the social network. The arbitrary

data in this case would be the certificate that can be used to find a peer in the network

overlay and verify its identity. The certificate consists of the peer’s social network

information and P2P address. Thus once a peer has connected to a social network the

first time, it need only be repeated to obtain the latest information. Existing certificates

remain valid until the friendship has ended for the certificate cache has been explicitly

flushed.

Once a peer has a certificate, connections are immediately established with all

“friends” that are currently connected to the overlay. As new peers come online, they

establish connections with those already there. Due to potential network problems, this

may not occur, and so all members of SocialVPN will occasionally check the liveness of

peers not connected to the overlay. Because online peers have an active connection,

there is no need to explicitly monitor their state. When they go offline, the connection will

be broken and can be represented to the user appropriately.

The motivation in establishing connections immediately comes from two purposes:

no overhead in bootstrapping on demand connections and better ability to distribute IP

multicast and broadcast packets. Using the traditional IPOP style to establish a direct

connection can take somewhere between several hundreds of milliseconds up to several

seconds, which may be disappointing to users who have used centralized VPNs that

have much faster connection establishment. Because there currently exists no support

for efficient broadcast / multicast message distribution inside SocialVPN, maintaining

105

an active link to all peers allows a peer to push that message to all their peers without

having to establish a new trusted link first.

4.6.2 Leveraging Trust From Facebook

Trust or friendships already established in Facebook R⃝ used a now deprecated

technology that allowed desktop applications access to Facebook R⃝. Certificate

exchange relied upon a web-based data store component provided by Facebook R⃝,

which was presented as a database. When SocialVPN first contacts Facebook R⃝, it

would add the current certificate, if it did not exist and then download certificates for all

friends that it did not already have. Because a user might have more than one instance

of SocialVPN running, the database was designed to allow the user to store multiple

certificates and to clear their certificates. As mentioned earlier, each certificate contains

the friends P2P address, which allows a peer to discover a remote peer and establish a

trusted, direct VPN link with them.

Unfortunately, Facebook R⃝’s interface was poorly constructed and no longer exists.

Each application had to embed in itself private key information to authenticate itself

with Facebook R⃝. A malicious attacker could easily discover this and change the stored

data to suit their needs. While Facebook R⃝ never gave a reason for shutting down the

desktop application component of their system, this is a probable reason.

As an alternative, I developed a web application, which was used for a short period

of time to replace the desktop application; however, this was fraught with problems.

Unlike the desktop application that only required trust with Facebook R⃝, the web

application required hosting a third-party web site to support the system. The trust

model is not significantly different as the administrator for the application has access to

the trusted material regardless, it simply meant another centralized component. These

complications led to the development of an XMPP-based SocialVPN.

106

4.6.3 Leveraging Trust from XMPP

Unlike Facebook R⃝, XMPP is a well standardized, open system with many individual

members contributing compatible services. Thus if one of them decides to break from

the XMPP specification, users can easily migrate to another service provider. After the

unfortunate incident with Facebook R⃝, this open aspect was much more attractive to

SocialVPN as a research project

As discussed in Section 3.3.2, XMPP is primarily used as an open protocol instant

messenger service. Though it has support for exchanging binary messages through

“IQ.” When a peer using SocialVPN connects to XMPP, they are informed of their friends

that are online. Each friend has a unique name in the form “username@domain/resource.”

When a peer receives this message, they can determine if that friend is using SocialVPN

by the resource name. If the peer is discovered to be using SocialVPN they will

exchange certificates and proceed to establish trusted links in the overlay.

4.6.4 Address Allocations and Discovery

In creating a VPN where links are defined by social networking relationships, the

mechanisms for IP address allocation via the DHT do not apply well. A social networking

based VPN will form an overlay that does not need to rely on a structured overlay and

so to do without requires a new addressing scheme. Additionally, attempting to place

all peers inside a social network within an IP address range, especially IPv4, is fraught

with problems [92]. Namely that it can be difficult to find a common address space for all

peers inside a VPN, which can be made even more difficult if those peers use another

VPN product.

The concept employed in SocialVPN is to place each user inside their own private

address space independent of other users. Each friend of that peer has a unique IP

address unbeknownst to them inside this address space. The IP is mapped to the

users P2P address. Then through the use of packet translation, IP addresses are

transparently changed as the packet is transferred between peers. Prior to delivery, the

107

packet’s destination address is converted to the peers own pre-defined IP address and

the source address is based upon a mapping stored inside a hashtable that maps P2P

address to IP address. Only trusted peers will have a mapping like this.

4.7 Related Work

4.7.1 VPNs

Hamachi R⃝ [67] is a centralized P2P VPN provider using the web site for authentication,

peer discovery, and connection establishment. While the Hamachi R⃝ protocol claims to

support various types of security [68], the implementation appears to only support the

KDC requiring that all peers establish trusted relationship through the central website.

The Hamachi R⃝ approach makes it easy for users to deploy their own services, but

places limitations on network size, uses a proprietary security stack, and does not

allow independent VPN deployments. In contrast, my approach presents a completely

decoupled environment allowing peers to start using the shared system to bootstrap

private overlays and migrate away without cost if need be. Furthermore my approach

relies only on a central server to obtain the certificate otherwise, it is decentralized. In

Hamachi R⃝, if the central server goes offline, no new peers can join the VPN.

Campagnol VPN [12] provides similar features to Hamachi R⃝: a P2P VPN that relies

on a central server for rendezvous or discovery of peers. The key differences between

Hamachi R⃝ and Campagnol is that Campagnol is free and does not provide a service;

users must deploy their own rendezvous service. The authors of Campagnol also state

that the current approach limits the total number of peers sharing a VPN to 100 so not to

overload the rendezvous service. The current implementation does not support a set of

rendezvous nodes, though doing so would make the approach much more like ours. In

addition, the system relies on traditional distribution of a CRL to handle revocation.

Tinc [100] is a decentralized VPN requiring users to manually organize an overlay

with support for finding optimal paths. In comparison to my approach, Tinc does not

automatically handle churn in the VPN. If a node connecting two separate pieces of the

108

VPN overlay goes offline, the VPN will be partitioned until a user manually creates a link

connecting the pieces. Furthermore, Tinc does not form direct connections for improved

latency and throughput reasons, thus members acting as routes in the overlay incur the

price of acting as packet forwarders.

The last VPN, I discuss is the most similar to IPOP, its called N2N [29]. N2N uses

unstructured p2p techniques to form an Ethernet based VPN. While their approach,

like ours, has built-in NAT traversal, it requires that users deploy their own bootstrap

and limits security to a single pre-shared key for the entire VPN, thus users cannot be

revoked. Since N2N provides Ethernet, users must provide their own mechanism for

IP address allocation, while discovery utilizes overlay broadcasting. Thus there are

concerns that as systems get larger, N2N may not be very efficient.

4.7.2 P2P Systems

BitTorrent R⃝ [10], a P2P data sharing service, supports stream encryption between

peers sharing files. The purpose of BitTorrent R⃝ security is to obfuscate packets to

prevent traffic shaping due to packet sniffing. Thus BitTorrent R⃝ security uses a weak

stream cipher, RC4, and lacks peer authentication as symmetric keys are exchanged

through an unauthenticated Diffie-Hellman process.

Skype R⃝ [99] provides decentralized audio and video communication to over a

million concurrent users. While Skype R⃝ does not provide documentation detailing the

security of its system, researchers [35, 48] have discovered that Skype R⃝ supports both

EtE and PtP security. Though similar to Hamachi R⃝, Skype R⃝ uses a KDC and does not

let users setup their own systems.

As of December 2009, the FreePastry group released an SSL enabled FreePastry [94].

Though relatively little is published regarding their security implementation, the use of

SSL prevents its application for use in the overlay and for overlay links that do not use

TCP, such as relays and UDP. Thus their approach is limited to securing environments

109

that are not behind NATs and firewalls that would prevent direct TCP links from forming

between peers.

110

CHAPTER 5
EXTENSIONS TO P2P OVERLAYS AND VIRTUAL NETWORKS

This chapter contains components that extend the VPN (virtual private network)

software to provide additional important features. Many of these components derive

from experiences and demands that have arisen as a result of the deployment of the

VPN software in real systems. Deployment experiences include but are not limited to

usage on PlanetLab, resources including personal computers and clusters in residential

and academics environments, virtual machines, and cloud resources. Each of these

environments exposes a different set of requirements to the design and implementation

of a practical P2P (peer-to-peer) VPN.

5.1 Built-in Self-Simulation

Software systems are complex and involve many moving parts. Traditionally, system

design begins by considering the goals of the system, choosing algorithms and data

structures that can achieve those goals, and simulating or modeling the system. Those

results then translate into a real system that consists of a new code based upon the

concept in the simulation. In this process, simulation is applied primarily to validate

a design concept but not its implementation. Then the entire software base must be

independently checked for bugs and other issues that may have already appeared in the

simulation code, doubling developer efforts.

To reduce efforts in development and evaluation, I have investigated and implemented

mechanisms for distributed systems and in particular Brunet to support built-in

self-simulation using event-driven simulation techniques. In other words, even though

Brunet is written for real system deployment, the same code can run using simulated

communication links and simulated time, allowing many nodes to run on the same

resource and potentially faster than wall clock time. This approach allows transitioning

features from simulation directly into deployment, hastening development cycles.

Furthermore, interesting discoveries in the real system can be modeled in simulation to

111

make the simulation behavior more accurate. Because a simulation can run on a single

computer, scaling up to a significantly large system, new features can be constructed

and evaluated locally, removing many bugs and reusing and applying test cases already

present in the simulation environment significantly reducing testing overheads.

The concept can be applied to networking / distributed systems in general.

Distributed system software can usually be divided into many pieces, such as network

communication, state, time-based events, user actions, and so on. Simulation of these

systems focuses on three aspects handling of time-based events, communication

between the various members of the system, and the injection and handling of user

actions. In the rest of this section, I will discuss these in more depth and discuss how I

addressed them in the context of Brunet.

5.1.1 Time-Based Events

Events or actions cause changes in a system. Some are due to external stimuli,

such as hardware or software interrupts in a processors or user input, others are a result

of timers, which may be a subset of hardware interrupts. In the context of simulation,

timers and external stimuli can be viewed as two different components. The external

stimuli may be delivered based upon a timed event or an action initiated by a remote

party. If time is ignored, then a node will run in a loop until its steady state has been

achieved and then constantly verifying that it still is in steady state. Timing allows a

node to delay this behavior, such as establishing more connections or verifying its

connectivity, behavior which produces more efficient systems.

A system could be made entirely without timers and run on external events alone.

In this case, timing is still required to model the communication delay between peers. A

message sent from one peer should not instantaneously arrive at another peer. As will

be described in Section 5.1.2, peers can use timers to simulate latency between peers.

Events in a simulation are stored in a timer with delays specified in terms of a virtual

clock. Methods in order to retrieve the current time should be based upon the same

112

clock in both simulation and deployment systems. In a real system, this would then

reveal the actual current time, whereas in a simulated environment, this would reveal the

current simulated time. By virtualizing time retrieval calls, the caller can be directed to

the appropriate clock depending on whether the system is running in simulation mode

or not. How this is implemented depends on the language the software is written in. For

example, languages with namespaces can easily replace the clock functions with their

own. Languages like C may require pre-processor macros to specify real or virtual time.

As events are queued into the system, they must be stored in ordered. The

structure should be such that the event to execute next is always available in minimum

time, while optimizing for inserting and removing events from the timer. For this

application, a minimum heap works well. A minimum heap provides constant seek

time for the smallest value as well as log(N) insert and deletion time. In Brunet, this has

been implemented as a binary heap.

After the system has initialized, it may add one or more events into the timer to

cause an action to occur. The simulator will then advance the virtual clock to the time

the next event is supposed to occur, execute all events that occurred up to that point

including the next event and then repeat. The running of events should not stop until the

next event to execute should be run in the future, because one event may cause another

event to occur immediately requiring no delay. It should be noted that events may want

to execute other events. These events should not be executed in-line and instead should

be added into the queue to be executed at the same virtual clock time. If this is not

done, there is a potential for stack overflows due to extremely deep calls into the code.

5.1.2 Network Communication

Using communication models or transports that rely on limited resources such

as the number of open sockets or interactions with the operating system can severely

hinder the usability and functionality of a simulator. A system using sockets will quickly

hit a wall, Linux, for example, limits the amount of open file descriptors to 1,024, which

113

means that in a UDP (user datagram protocol) system a simulation would be limited

to having as few as 1,024 peers in the system whereas a TCP (transmission control

protocol) system could be unable to proceed with more connections than 32 (32 peers

with all-to-all connections would result in 1,024 active TCP sockets). Furthermore, each

interaction with a socket requires at least one if not more transitions between user-space

and kernel-space.

So while existing transports could be used for simulated communication, the

overhead in doing so is undesirable as it would limit large-scale simulations. Assuming

that the system is modularly written, it is possible for various forms of transport layers to

be used for network communication. Thus for scalability peers could exchange buffers

or pointers to messages with each other. This would remove any restrictions on O/S

(operating system) resources and would not require that each communication pathway

pass through a system call.

Brunet supports a generic transports framework that provides the method for

sending a message and the ability to register a callback when a message is received.

This concept is built into an “edge.” Each edge is associated with a remote peer,

and when sending or receiving a packet, the destination or source would be the

peer associated with that edge. Edges come in pairs, if they are connected, thus a

simulated edge consists of two components: knowledge of the remote edge and timing

measurement of the latency between the two peers. When a peer sends a message

to the remote peer, the simulated edge enqueues the message into the timer with a

callback into the remote edge’s receive handler.

TCP and UDP use IP (Internet Protocol) addresses and ports to locally and,

potentially, globally uniquely distinguish themselves and that, more importantly, can be

shared with others. In other words, the concept of addresses is key to transports. Since

the simulated transports are all running in the same address space, there does not

need to be a multilevel naming scheme as provided by IP addresses and ports. Instead,

114

simulated transports use a single integer, which can then be used as the key into a

hashtable, whose value is the node matched to the integer.

When a peer wants to connect to a specific node, instead of connecting to a peer

at a remote IP, port pair, it seeks the remote node in the hash table. If no peer exists,

depending on the protocol simulated, the result will be a broken link or a connection

error. If it finds an entry, the two peers create edges associated with each other. At

which point, the peers can easily communicate with each other using the timer and the

exchange of buffers.

5.1.3 User Actions

A user in a distributed system does not necessarily imply a human, but rather, an

external input from either an application, a user, a sensor, or by some other means. In a

simulated environment, these types of behaviors should be properly modeled. That is, if

a user requests information from another user using the simulator, it should be delivered

when available, not after polling some entry point after some period of time.

To effectively model this behavior requires the use of asynchronous interfaces. After

the initiation action is triggered, a registered callback will be triggered upon completion.

A synchronous call can be inefficiently turned into an asynchronous call through the

use of a thread or by polling. Though for performance purposes, it is best to use an

asynchronous interface that only gets invoked upon completion of the task. Fortunately,

it is very easy to make synchronous interfaces from asynchronous, so if designed

properly, this is not difficult to implement for system designers. If asynchronous handlers

are not available, the interface can be made asynchronous through polling at the cost of

overhead.

In Brunet, this behavior has been modeled in interactions with the DHT (distributed

hash table) and sending messages through the overlay. A common abstract class

contains a method to start the action. It notes the starting time when this method is

executed. It then waits for the asynchronous response from the underlying component to

115

inform that the user action has completed. Optionally, it will call another user-specified

callback upon completion.

5.1.4 The Rest of the System

The other components of the system may have an impact on the speed of

simulation, but in general should not affect the ability of the system to be simulated.

Thus the key to making a system self-simulating is modularity and support for asynchronous

interfaces. In the following section, I discuss optimizations that can be made to these

components and others to improve simulation.

5.1.5 Optimizations

Simulations can be slow for a number of reasons and that only increases by

attempting to simulate software that was not intended to be simulated. Overlay software,

for example, typically uses very large addresses (16 bytes or larger) just to represent

another node, whereas in a simulation or model this is typically represented as an

integer or not at all. Additionally, due to the fact that the lifetime of various buffers in

the system can be hard to predict, when interacting with incoming messages and even

outgoing messages, many data structures either stay in scope for a long time or there

is heavy churn on memory in the heap. For managed languages, this can result in

significant overhead due to garbage collection. Finally, since the entire system depends

on ordered time, the mechanism ordering timing events plays a key role.

While the typical address in a P2P system may be large in order to allow nodes

to obtain addresses independently of each other through random number generation,

in a simulation, this large address space is unnecessary, because there is no need to

generate the addresses without knowledge of other addresses. One condition that may

need large address spaces is extremely large simulations, but given that a 32-bit number

allows for 4 billion nodes, this should not be an issue.

Many common data structures are generated in a distributed system even inside

a single node. This includes transport addresses, P2P addresses, and common

116

strings inside the system. By caching these values, the system can reduce its memory

consumption and be nicer to the garbage collector. A cache in this sense consists of a

hashtable, whose key is the object of interest and the value is a singleton or a value that

is identical to the key in every way except but potentially they refer to different locations

in memory. Thus when a peer constructs another peer’s address, it can check the

hashtable for a singleton. If one exists, it uses the singleton and no additional memory

is required besides a pointer to this singleton. If one does not exist, this new value is

stored as a singleton into the system. There are various means to limiting the entries

in a hashtable, such as only keeping the last N entries, keeping track of the last access

time, counting the number of references, or using a concept known as weak references.

Weak references provide an attractive option as it requires no additional state in the

cache, a garbage collector will remove an object when there are no references to it

besides weak references. Thus stale entries in the hashtable will return null objects. So

a cache using weak references will need to iterate through the entire cache occasionally

to remove these stale references.

Messages are usually assembled from a set of memory blocks. Prior to transferring

them, they must be placed into a contiguous buffer. Unfortunately, this can lead to

significant memory allocations and garbage collections. To address this, I have utilized

memory heaps, which can be used to create multiple memory blocks. The concept is to

allocate a large memory block. When assembling a message, it is written to an offset

into this block. The block can then be shared with others by providing a reference to

the memory block and the offset and length of the message inside this block. When the

block is no longer in scope, it is garbage collected. This approach significantly reduces

dynamic allocation of data and in turn significantly improves the performance of the

simulation.

117

5.2 Efficient Relays

Sometimes NAT (network address translation) traversal using STUN [93] fails

due to restrictive firewalls and NAT. Occasionally there are other, harder to diagnose,

connectivity issues. Some P2P VPNs [66, 67] support relaying, similar to Traversal

Using Relay NAT (TURN – Traversal Using Relay NAT) [90] provided by a managed

relay infrastructure. Centralized and decentralized VPNs do not suffer from this

problem as all traffic passes through the central server or managed links. To address the

management and overhead concerns in these systems, I propose the use of distributed,

autonomic relaying system based upon previous work [43, 73]. This previous work

involved the use of triangular routing that allowed peers next to each other in the node

ID (identification) space to communicate despite being unable to communicate directly

because of firewall, NAT, or Internet fragmentation issues.

The process for forming local relays or ”tunnels” [43] begins with two nodes

discovering each other via existing peers and determining the need to be connected. If

a direct connection attempt fails, the peers exchange neighbor sets through the overlay.

Upon receiving this list, the two peers use the overlap in the neighbor sets to form a

two-hop connection. In this work, I have further extended this model to support cases

when nodes do not have an overlap set. This involves having the peers connect to each

other’s neighbor sets proactively creating overlap. In Figure 5-1, two members, 0000

and ABCD, desire a direct connection but are unable to directly connect, perhaps due to

NATs or firewalls. They exchange neighbor information through the overlay and connect

to one of each other’s neighbors, creating an overlap. The overlap then becomes a relay

path (represented by dashed lines), improving performance over routing across the

entire overlay.

Additionally, I have added the feature to exchange arbitrary information along with

the neighbor list. Thus far, I have implemented systems that pass information about

node stability (measured by the age of a connection) and proximity (based upon ping

118

Figure 5-1. Creating relays

latency to neighbors). Furthermore, when overlap changes, another mechanism can

determine which subset of the peers to use; for example, a peer may only route through

the fastest or more stable overlap in the set.

To verify the usefulness of two-hop over overlay routing, I performed experiments

and share the results in Section 5.2.1. In a live system, I have verified the accuracy and

usefulness of the latency-based relay selection algorithm in Section 5.2.2.

5.2.1 Motivation for Relays in the Overlay

The purpose of this experiment is to quantify the performance benefits of autonomic

relays. For this experiment I used the MIT King data set [49], which contains all-to-all

latencies between 1,740 well-distributed Internet hosts. Various sizes of networks

up to 1,740 nodes were evaluated 100 times each. The experiments were executed

by running the Brunet in simulated mode. Once at steady state, I then calculated the

average all-to-all latency for all messages that would have taken two overlay hops

119

Figure 5-2. A comparison of all-to-all overlay routing, two-hop relay, and direct
connection in Brunet

or more, the average of the low latency relay model, and the average of single hop

communication. In the low latency relay model, each destination node form a connection

to the source node’s physically closest peer as determined via latency (in a live system

by application level ping). Then this pathway is used as a two-hop relay between

source and node. I only look at two overlay hops and more, as a single hop would not

necessarily benefit from the work and would be the cause of a triangular inequality.

The results are presented in Figure 5-2. The initial starting size for the network was

set to 25, because network sizes around 20 and under tend to be fully connected due

to the connectivity requirements of the system. It is not until the network size expands

past 100 and towards 200 nodes that relays become significantly beneficial. At 100

nodes, there is approximately a 54% performance increase, whereas at 200 there is an

87% increase and it appears to grow proportionately to the size of the pool. The key

take away is that latency-bound applications using a reasonably sized overlay would

significantly benefit from the use of two-hop relays.

120

Table 5-1. Relay comparison
Latency Bandwidth

(ms) stdev Kbit/s stdev
Hamachi-Free 60.8 2.54 40.2 0.87
Hamachi-Pro 60.2 1.68 1000 1.29
Latency-aware 58.1 35.5 2245 1080

5.2.2 Comparing Relay Selection

In this experiment, I share my experiences of testing the use of latency-aware

relays using the public P2P pool running on Planet-Lab as well as Hamachi-Free and

Hamachi-Pro relays. Due to Hamachi R⃝ not supporting relays in Linux, this experiment

was performed in Windows Vista 64-bit. Hamachi R⃝ is discussed in greater depth in

Chapter 2. The testing platform consists of two virtual machine located on the same

host with a firewall preventing them from establishing direct connections. All experiments

were repeated 5 times using a clean configuration each time. In Hamachi R⃝, this meant

that the server would need to re-evaluate NAT traversing capabilities and the optimal

relay to use. In Brunet, this meant a new node ID and establishing relays with peers in

different regions of the overlay. The results are presented in Table 5-1.

As Hamachi R⃝ was started and figured out that NAT traversal was not possible,

it began using multiple different relays as evident by several different ping times.

Eventually Hamachi R⃝ settled on a relay server and it appeared to be the same one

every time, for both Hamachi-Free and Hamachi-Pro. The only difference between

Hamachi-Pro and Hamachi-Free is that in Pro there is a bandwidth cap of approximately

1 Mbit/s whereas Free is limited to 40 Kbit/s.

Brunet has nodes both on Planet-Lab but also dedicated systems for Archer [37].

These machines are at Universities and thus have a high bandwidth and low latency

connection to the testing site. As witnessed by the results, it appears that in most if

not all these experiments peers had a low latency connection to a University compute

resource and it was chosen ahead of Planet-Lab.

121

The two take aways are the benefit of being able to dynamically deploy relay servers

and reuse compute nodes as relay systems. As the network grows, there may be need

to implement some form of bandwidth limit at relay nodes.

5.3 Policies for Establishing Direct Connections

Routing through a ring-structured overlay using a greedy routing algorithm takes

log(N) time and adds log(N) overall bandwidth for a single message. Therefore, sending

messages frequently between two peers through the overlay is not cost effective. What

is not apparent through the algorithmic complexity analysis is the fact that many paths

in an overlay can be inefficient due to peers routing through distant parts of the world

or having limited bandwidth. Less frequently, packets routed via the overlay can just

disappear due to nodes disconnecting or packet drops across the Internet. To address

this, Ganguly et al. [42] made a system for creating adaptive shortcuts.

Adaptive shortcuts enable peers to establish direct links with each other using

Brunet’s builtin NAT traversal capabilities. The approach taken by Ganguly et al. was to

monitor incoming packets from remote peers and after a certain threshold was passed

the system automatically makes a direct connection to the remote peer. As a result

of this transparency, software using the overlay could simply start this service without

making any additional changes to the application.

5.3.1 Limitations

Unfortunately this approach comes with limitations. There was never any systematic

understanding of behaviors that should signify the creation of a direct link or when a

direct link should be closed. Thus applying the layer naively could result in connection

churn, which would have ramification on the routability of the network. Thus a compromise

was made to have it enabled only for selected traffic, which in the case as described by

Ganguly et al. [42] was IP or VN traffic.

Two issues made the approach no longer feasible: the increase in size of the

overlay network and the securing of IP links. The Internet drops packets at approximately

122

.00835% of the time according to the data provided by iPlane [70]. This compounded

with the fact that an overlay message may take log(N) hops significantly increases the

likelihood of a packet dropping before arriving at its destination. Adding a security model

makes this even more complicated, because a trusted link must be established before

routing any messages between the end points. In the case of DTLS (datagram transport

layer security), this can result in 6 messages traversing the overlay 4-3, prior to the first

IP packet. If peers must first establish a trusted link and then transmit a certain amount

of packets in a given time, there is a reasonable chance that they may never naturally

trigger the creation of an adaptive link.

In practice, it was quite common for this not to succeed and, in fact, security links

were often times not even formed. To verify this, I implemented a network profiling

tool and deployed it on to PlanetLab. The monitoring tool measured the delay and

success of sending messages between the node and every other node in the overlay.

The drop rate and latency for a round trip message per hop distance between two

peers are presented in Figure 5-4 and Figure 5-3, respectively. The data in those

figures is compared to data retrieved from iPlane, which makes it clear that PlanetLab

exacerbates the situation. While this is a well-known issue, it is a very important

conclusion since many of the public systems provided by my research group rely on

PlanetLab.

5.3.2 On-Demand Connections

Before defining a new architecture, I measured the network traffic of active and

idle applications that were of interest to typical P2P VPNs, Condor [65] and data

transfers. Data transfers tend to be simple, if they are TCP driven, first a TCP link

must be established, then data transferred, and finally the link is closed. Condor is a

job schedule management tool, which is discussed in more depth in Chapter 6. The

important aspect for this section is understanding that all nodes in a Condor pool have

a relationship with a manager node. Their behavior is to initially send a registration

123

Figure 5-3. Latency in PlanetLab deployment compared to iPlane

Figure 5-4. Drop rate in PlanetLab deployment compared to iPlane

message containing the details of the node and thereafter to send a one-way message

stating their presence every 5 minutes or so.

The next step was determining the cost of creating a connection versus routing via

the overlay. This cost needs to consider that before a single IP packet can be routed, a

security link must be established. In Brunet, the creation of a link requires 1 round trip

message across the overlay, whereas the security link, as mention earlier, takes 3. So

it is intuitive that sending a single packet secured through an end-to-end channel via

a direct link is far more efficient than doing so via the overlay. So instead of having a

meter determining when to create connections, connections should be made as soon

as there is interest in communication, in other words, “on-demand.” In a DHT system,

124

this may be done prior to sending or retrieving data from the DHT. In a VPN, this may

be during the mapping of IP to P2P as described in Section 2.2.2, which occurs before

secure link establishment. Unfortunately, this has the side affect of not being transparent

to applications using the P2P software’s interface at the cost of being more responsive.

The creation of on-demand connections results in a higher frequency of connection

establishment. As a result, better heuristics are necessary in order to determine when to

close unused connections. Using the profiling information retrieved before with regards

to Condor’s one-way “heartbeat” messages, it was important that a connection was only

closed if it was unused in both directions. Otherwise the manager would be constantly

closing connections and peers would randomly disappear from Condor for periods of

time. An algorithm that seems to have worked so far is based upon something I call

a time-based cache. Initially, entries are stored in a hashtable; after a certain period

of time, they are moved to a second hashtable, and those in the second hashtable

are lost. If an entry is accessed while in the second hashtable or not at all, it is added

to the first hashtable and if applicable removed from the second hashtable. When

an entry is removed from the cache, it causes an eviction notice, which results in the

connection being removed. The timer is based upon a 7.5 minute timer, so that an

inactive connection will be closed within 7.5 to 15 minutes.

The applicability of on-demand connections compared to Chota was evaluated

using the simulator with 1,024 nodes and a drop rate of 0.00925% as found on

PlanetLab. The On-demand connections were established using the exact semantics of

the On-demand protocol; however, the behavior of establishing Chota connections is a

little complicated, since the traffic behavior of successful and unsuccessful connection

attempts is not identical. To address this, I simulated an ideal Chota situation: the

nodes optionally establish a security connection via the overlay, then they exchange a

round trip message, and finally establish a direct connection between each other. The

125

Figure 5-5. Time to form a direct connection

On-demand approach involved optionally creating a security connection followed by the

direct connection.

While this evaluation model creates a highly ideal situation for Chota etablishment.

The results in Figure 5-5 make it clear that Chota is not ideal for this type of application

and that security only makes the issues worse. The On-demand connections show

a significant improvement, but there still exists an obvious issue with connection

establishment that will only be made worse as the system expands. Perhaps using

multiple paths on the overlay can improve this situation packet drops on the overlay may

have high correlation rather than being uniformly random.

In application, this modification made the Archer, which uses both secure links

and Condor, significantly more stable. As the system expanded, nodes were constantly

appearing and disappearing, users jobs were being lost due to disconnectivities, and

users were complaining about being unable to even submit jobs into the system. Since

the change, the issues have been resolved.

5.4 Broadcasting IP Broadcast and Multicast Packets Via the Overlay

The use of a private virtual overlay enables a new method for sending multicast

and broadcast packets. In the original approach to IPOP, broadcasting a packet to the

entire overlay is not suitable because the overlay could consist of peers from other

VPNs and those not even involved with VPN operations, while approaches that generate

126

unicast messages when a broadcast or multicast packet arrives at the VPN (e.g. by

querying a DHT key where all peers in the VPN would place their overlay address so

that they could receive the packets) do not scale well. The abstraction of a private

virtual overlay enables scalable broadcasting within a VPN because the only peers in

the private overlay are peers for a single VPN. Like the broadcast revocation discussed

earlier, IP broadcasting and multicasting use the method described in Appendix 8 to

efficiently distribute messages. Though in VPN situations, many peers may already

have connections to most if not all of their VPN peers, thus the broadcast algorithm has

been modified to allow a peer to select how many peers they would like to forward the

message to. Otherwise in many cases, this algorithm will degenerate into one similar to

the previous approach.

The overlay broadcast method for IP broadcast and multicast can easily be

analytically compared to the original DHT method. A message routed via the overlay

will take approximately log(N) hops. So for the DHT method, this involves N messages

with log(N) hops each or N log(N) messages total and completing in a total time of

log(N) excluding the limitations of bandwidth. Whereas efficient overlay takes exactly N

messages and completes in log2(N) time. The overlay broadcast significantly reduces

bandwidth, which can have a direct effect on the success of packets actually making it

to the end peer. Also as the overlay grows in size, storing all peers inside a single DHT

may create other problems that cannot be resolved easily through analytical modeling.

5.5 Full Tunnel VPN Operations

The configuration detailed so far describes a split tunnel: a VPN connection that

handles internal VPN traffic only, not Internet traffic. Prior to this work, only centralized

VPNs currently support full tunnel: providing the features of a split tunnel in addition

to securely forwarding all their Internet traffic through a VPN gateway. A full tunnel

provides network-layer privacy when a user is in a remote, insecure location such as an

127

Figure 5-6. An example of both full and split tunnel VPN modes

open wireless network at a coffee shop by securely relaying all Internet traffic through a

trusted third party, the VPN gateway. Both models are illustrated in Figure 5-6.

Central VPN clients use full tunneling through a routing rule swap, setting the

default gateway to be an endpoint in the VPN subnet and traffic for the VPN server is

routed explicitly to the LAN gateway. This rule swap causes all Internet packets to be

routed to the VN device and the VPN software can then send them to the remote VPN

gateway. At the VPN gateway, the packet is decrypted and delivered to the Internet. A

P2P system encounters two challenges in supporting full tunnels: P2P traffic must not

be routed to the VPN gateway and there may be more than one VPN gateway. I address

these issues and provide a solution to this problem in Section 5.5.

The challenges faced in a decentralized P2P VPN are providing decentralized

discovery of a VPN gateway and supporting full tunnel mode in a P2P environment

such that all P2P traffic is sent to the intended receiver directly instead of through the

gateway. The remainder of this section covers gateway and client solutions to address

these challenges.

5.5.1 The Gateway

A gateway can be configured through NAT software, like masquerading in IPtables

or Internet Connection Sharing with Windows. This automatically handles the forwarding

of packets received on the NAT interface to another interface bringing the packet closer

128

Figure 5-7. The contents of a full tunnel Ethernet packet

to its destination. Similarly, incoming packets on the outgoing interface must be parsed

in order to determine the destination NAT client.

Following from the original design of the VPN state machine in Figure 2-2, if a VPN

is a gateway, the VPN state machine no longer rejects packets, when the destination is

not in the VPN subnet, though when the VPN gateway mode is disabled these packets

are still rejected. When enabled, all Internet and non-VPN based traffic is written to the

TAP device setting the destination Ethernet address to the TAP device. The remaining

configuration is identical to other members of the system as packets from the Internet

will automatically have the clients IP as the destination as a product of the NAT. To

provide for dynamic, self-configuring systems, VPN gateways announce their availability

via an entry in the DHT. As future work, this approach can be explored to provide

intelligent selection and load balancing of gateways.

5.5.2 The Client

VPN Clients wishing to use full tunnel must redirect their default traffic to their VN

device. In the prototype VPN model, a virtual IP address is allocated for the purpose of

providing distributed VN services DHCP and DNS. This same address is used as the

default gateway’s IP. Because this IP address never appears in a Internet bound packet,

only its Ethernet address does, as shown in Figure 5-7, this approach enables the use

of any and multiple remote gateways. In this figure, PN and VN translate to phyiscal and

virtual network, respectively.

129

To support full tunnel mode, the VPN’s state machine has to be slightly modified to

handle outgoing packets destined for IP addresses outside of the VPN, only rejecting

them when full tunnel client mode is disabled. When enabled, the VPN software sends

packets to the remote peer acting as a full tunnel gateway. Likewise, incoming packets

that have a source address outside the subnet should not be rejected but instead the

overlay address should be a certified VPN gateway prior to forwarding the packet.

To select a remote gateway, peers query the DHT. As there may be multiple

gateways in the system, the peer randomly selects one, forwarding packets to that

node. To ensure reliability, when the client has not heard from the gateway recently,

the client sends a liveness query to the gateway. If the gateway is down, the taken

pessimistic approach finds a new gateway when the next Internet packet arrives.

The real challenge in applying full tunnel VPN mode to P2P VPNs is the nature of

the P2P system, namely dynamic connections. Peers do not know ahead of time what

remote peer connections will be thus a simple rule switch does not work. The original

approach was to watch incoming connection requests and adding additional routing

rules on demand, though this is only reasonably feasible with UDP as a TCP handshake

message would need to be intercepted and potentially replayed by the local host in order

to enable the rule and allow proper routing. The real drawback of the approach though is

that UDP messages can easily be spoofed by remote peers enabling unsecured Internet

packets to be leaked in the public environment. Even if the connections are secured, it

could take some time for the peers to recognize a false connection attempt and delete

the rule.

A solution to the security problem is to have all traffic directly routed to the VN

device with no additional routing rules. The VN is then responsible for filtering P2P traffic

and forwarding it to the LAN’s gateway via Ethernet packets. In the VPN application,

outgoing IP packets’ source ports are compared to VPN application’s source ports.

Upon a match, the VPN application directs the packet to the LAN’s gateway. The

130

Table 5-2. Full tunnel evaluation
Google R⃝ Gateway VPN address Gateway public address

Ethernet 70.6 12.9 13.9
Routing 71.4 13.2 11.0
No VPN 66.1 N/A 10.9

three steps involved in this process are translating the source IP address to match

the physical Ethernet’s IP address, encapsulating the IP packet in an Ethernet packet

with a randomly source address [116] and the destination the LAN’s gateway, and

sending the packet via the physical Ethernet device. Sending an Ethernet packet is

not trivial as Windows lacks support for this operation and most Unix systems require

administrator privilege. An alternative, platform independent solution uses a second TAP

device bridged to the physical Ethernet device, allowing Ethernet packets to be sent

indirectly through the Ethernet device via the TAP device. Because the solution results

in incoming packets to arrive at a different IP address than the actual original source IP

address TCP does not work in this solution. This method has been verified to work on

both Linux and Windows using OS dependent TAP devices and bridge utilities.

5.5.3 Full Tunnel Overhead

While the full tunnel client method effectively resolves the lingering problem of

ensuring that all packets in a full tunnel will be secure, it raises an issue: could the

effect of having all packets traverse the VPN application be prohibitively expensive.

Analysis of this approach compares it with one that uses the traditional routing rule

switch. Figure 5-2 present the ping time from a residential location to one of Google R⃝’s

IP addresses using a gateway located at the University of Florida when the VPN is in

split tunnel mode, full tunnel using the routing rule switch, and full tunnel using Ethernet

forwarding. The results express that there is negligible difference between the full tunnel

approaches. One interesting result is the latency to gateways public address in the

131

routing test, which most likely is a result of the ping being sent insecurely avoiding the

VPN stack completely.

132

CHAPTER 6
AD-HOC, DECENTRALIZED GRIDS

“Give a man a fish, feed him for a day. Teach a man to fish, feed him for a lifetime” –

Lau Tzu

Large-scale grid computing projects such as TeraGrid and Open Science Grid

provide researchers vast amounts of compute resources but with requirements that

could limit access, results delayed due to potentially long job queues, and environments

and policies that might affect a user’s work flow. In many scenarios and in particular

with the advent of Infrastructure as a Service (IaaS) cloud computing, individual users

and communities can benefit from less restrictive, dynamic systems that include a

combination of local resources and on-demand resources provisioned by one or more

IaaS provider. These types of scenarios benefit from flexibility in deploying resources,

remote access, and environment configuration.

Grid computing presents opportunities to combine distributed resources to form

powerful systems. Due to the challenges in coordinating resource configuration and

deployment, researchers tend to either become members of existing grids or deploy

their own private resources. The former approach is limited by lack of flexibility in the

environment and policies, while the latter requires expertise in systems configuration

and management. Though there exists a wealth of middleware available, including

resource managers such as Condor [65], Torque (PBS) [84], and Sun Grid Engine [105],

many see the cost of installing and managing these systems as being greater than their

usefulness and as a result turn to inefficient ad hoc resource discovery and allocation.

To combine resources across multiple domains solutions there exist solutions such

as the Globus Toolkit [40] or gLite [9]; however, these tool sets come with their own

challenges that require the level of expertise most researchers in fields outside of

information technology lack.

133

With the recent advent of cost-effective on-demand computing through Infrastructure

as a Service “clouds”, new opportunities for user-deployed grids have arisen; where,

for example, a small local computer cluster can be complemented by dynamically

provisioned resources that run “cloud-burst” workloads. However, while cloud-provisioned

resources solve the problem of on-demand instantiation, the problem of how to configure

these resources to seamlessly and securely integrate with one’s infrastructure remains

a challenge. In particular, considering that users may provision resources from multiple

IaaS providers, the configuration demands are similar to a distributed grid: while a cloud

image can be encapsulated with a grid computing stack, it still needs configuration in

terms of allocating and distributing the appropriate certificates, network configuration

to establish end-to-end connectivity, and proper configuration of the middleware to

establish worker, submit, and scheduler nodes.

In this chapter, I present techniques that reduce the entry barrier in terms of

necessary expertise and time investment in deploying and extending ad hoc, distributed

grids. To verify this assertion, I have implemented a system supporting these ideas in

the “Grid Appliance,” which as will be demonstrated, allows users to focus on making

use of a grid while minimizing their efforts in setting up and managing the underlying

components. The core challenges solved by my approach include:

• decentralized directory service for organizing grids,

• decentralized job submission,

• grid single sign on through web services and interfaces,

• sandboxing with network support,

• and all-to-all connectivity despite network asymmetries.

The “Grid Appliance” project and concepts have been actively developed and

used in several projects for the past six years. Of these projects, Archer, a distributed

grid for computer architecture research, has demonstrated the feasibility and utility

134

Figure 6-1. Grid Appliance middleware

of this approach by deploying a shared collaborative infrastructure spanning clusters

across six US universities, where the majority of the nodes are constrained by network

address translation (NAT). Every resource in Archer is configured in the same, simple

manner: by deploying a “Grid Appliance” that self-configures to join a wide-area

grid. Researchers interested or desiring the ability to access both grid resources and

specialized commercial simulation tools (such as Simics) can easily use and contribute

resources from this shared pool with little effort by joining a website, downloading

a configuration image and a virtual machine (VM), and starting the VM inside a VM

manager (VMM). Upon completion of the booting process, users are connected to the

grid and able to submit and receive jobs.

At the heart of my approach lies a P2P (peer-to-peer) infrastructure based upon a

distributed hash table (DHT) useful for decentralized configuration and organization of

systems. Peers are able to store key, value pairs into the DHT and to query the DHT

with a key and potentially receive multiple values efficiently. The DHT provides discovery

and coordination primitives for the configuration of a decentralized P2P virtual private

network (VPN), which supports unmodified applications across a network overlay. The

DHT is also used for the decentralized coordination of the grid. Users can configure their

135

grid through a web interface, which outputs configuration files that can be used with the

“Grid Appliance.”

The techniques described in this paper have many applications. The basic system

supports the creation of local grids by starting a virtual machine on the computers

intended for use within the grid and using LAN multicast for discovery. It allows users to

seamlessly combine their dedicated grids with external resources such as workstations

and cloud resources. The level of familiarity with security, operating systems, and

networking is minimal as all the configuration details are handled as components of the

system. Management of the system including users and network configuration utilizes a

social networking like group interface, while deployment uses pre-built virtual machine

images. A graphical overview of the system is illustrated in Figure 6-1.

These techniques simplify the tethering of resources across disparate networks The

setup of security, connectivity, and their continuous management imposes considerable

administrative overhead, in particular when networks are constrained by firewalls and

NAT devices that prevent direct communication with each other, and which are typically

outside the control of a user or lab. Our approach integrates decentralized systems

behind NATs in a manner that does not require the setup of exceptions and configuration

at NAT/firewall by system administrators.

The rest of the paper is as follows. Section 6.1 highlights of my research groups

previous work to provide background for my contributions in this paper. In Section 6.2,

I describe the components of the “Grid Appliance” WOW. Section 6.3 provides a case

study of a grid deployment using standard grid deployment techniques compared to

our “Grid Appliance,” describing qualitatively the benefits and evaluating quantitatively

the overheads of this approach. I share my experiences from this long running project

in Section 6.4. Finally, Section 6.5 compares and contrasts other solutions to these

problems.

136

6.1 WOWs

This work furthers the vision began by myself and my research lab in earlier

described as work wide-area overlay of virtual workstations [42] (WOW). The WOW

paper established the use of virtualization technologies, primarily virtual networking

and virtual machines, to support dynamic allocation of additional resources in grids

that span wide area networks. For reference, the extensions made in this paper to the

WOW concept are means for the dynamic creation of grids with support for security,

decentralized access, and user-friendly approaches to grid management. This section

covers the development of WOWs over the years as it relates to other publications and

as means to distinguish the contributions made by me and in this chapter.

6.1.1 P2P Overlays

Peer-to-peer or P2P systems create environments where members have a common

functionality. P2P systems are often used for discovery in addition to some user-specific

service, such as voice and video with Skype R⃝ or data sharing with BitTorrent R⃝. Many

forms of P2P have autonomic features such as self-healing and self-optimization with

the ability to support decentralized environments. As I will show, this makes their

application in the system very attractive.

For the “Grid Appliance,” I have chosen to use Brunet [13], a type of structured

overlay. Structured overlays tend to be used to construct distributed hash tables (DHT)

and in comparison to unstructured overlays provide faster guaranteed search times

(O(logN) compared to O(N), where N is the size of the network). The two most

successful structured overlays are Kademlia [72], commonly used for decentralized

BitTorrent R⃝, and Dynamo [28], to support Amazon R⃝’s web site and services.

Brunet support for NAT traversal makes it unique from other structured overlays.

Originally in the WOWs [42], Brunet facilitated the dynamic connections amongst peers

in the grid. Since then, it has been extended to support DHT with atomic operations [44],

137

efficient relays when direct NAT traversal fails [115], resilient overlay structure and

routing [43], and cryptographically secure messaging [115].

6.1.2 Virtual Private Networks

A common question with regards to this work is “why VPNs?” The core reason

is connectivity. IPv4 (Internet Protocol version 4) has a limited address space, which

has been extended through the use of NAT allowing a single IP to be multiplexed by

multiple devices. This creates a problem; however, as it breaks symmetry in the Internet

limiting the ability for certain peers to become connected and which peers can initiate

connections. With the advent of IPv6 (Internet Protocol version 6), the situation might

improve, but there are no guarantees that NATs will disappear nor can users be certain

that firewalls will not be in place that inhibit symmetry. A VPN circumvents these issues,

so long as the user can connect to the VPN, as all traffic is routed through a successfully

connected pathway.

The problem with traditional VPN approaches is management overhead including

maintaining resources on public IP addresses and establishing links amongst members

in the VPN. The VPN used in the system is called IPOP [41, 115]. IPOP (IP over P2P),

as the name implies, uses a P2P overlay (Brunet) to route IP messages. By using P2P,

maintaining dedicated bootstrap nodes have less overhead, my approach with IPOP

allows an existing Brunet infrastructure to bootstrap independent Brunet infrastructures

in order to isolate IPOP networks in their own environments [117].

Once IPOP has entered its unique Brunet overlay, it obtains an IP address. IP

address reservation and discovery relies on Brunet’s DHT. Each VPN stores its P2P

identifier into the DHT at the generated by the desired IP address, such that the key,

value pair is (hash(IP),P2P). In order to ensure there are no conflicts, the storing of this

value into the DHT uses an atomic operation, which succeeds only if no other peer has

stored a value int hash(IP).

138

The process for creating connections begins when IPOP receives an outgoing

message. First it parses the destination address and queries the DHT for the remote

peers P2P address. The peer then attempts to form a secure, direct connection with the

remote peer using Brunet’s secure messaging layer. Once that has formed, packets to

that IP address are directed over that secure link.

In my original design [113], the virtual network was secured through a kernel-level

IPsec stack, a model kept through the first generation Archer deployment. This

approach only secures virtual network links between parties and does not secure the

P2P layer; furthermore, in IPsec configuration each peer requires a unique rule for every

other peer, which limited the maximum number of peers in the VPN. Securing the P2P

layer is important, otherwise malicious users could easily derail the entire system, but

securing with IPsec would practically negate the benefits of the P2P system, because

of network configuration issues related to NATs and firewalls. In modern deployments,

I have employed the security layer at the P2P layer, which in turn also secures virtual

networking links.

For grids that rely upon VPNs to connect resources and users, this can impose the

need for a certificate for the VPN and one for the grid. Though in our approach, I avoid

this problem by using a VPN that allows a user to verify the identity of a remote peer

and obtain its certificate, and have taken advantage of hooks in grid software that are

called to verify a remote peers authenticity. In other words, user access is limited by the

VPN and identity inside the grid is maintained by that same certificate. This might not

be possible if all users were submitting from the same resources but is feasible in the

system since each user submits from their own system.

6.1.3 Virtual Machines in Grid Computing

Earlier work [39] advocated the use of virtual machines (VMs) in grid computing for

improved security and customization. Others since [7, 58, 97] have been established

VMs as means for sandboxing, that is environments that allow untrusted users to use

139

trusted resources in a limited fashion. VMs run as a process on a system, where

processes running inside the VM have no access to the host operating system.

Furthermore, VMs can have limited or no networking access as controlled by the host,

which effectively seals them in a cage or sandbox protecting the hosts environment.

VMs are also useful for customization and legacy applications, since a developer can

configure the VM and then distribute it as an appliance, with the only requirement on the

end user being that they have a VM software or manager. Quantitatively, previous work

has shown that CPU-bound tasks perform fairly well running with no more than 10%

overhead and in some cases 0%, which is the case with VMs like Xen.

While not a direct correlation to grid computing, clouds have benefited significantly

from VMs. VMs are the magic behind cloud infrastructures that provide IaaS, such

as EC2. In these environments, users are able to create customized instances, or

packaged operating systems and applications, inside of cloud environments, share

with each other, and dynamically create or shutdown them as necessary. While the

application of clouds is generic, it can easily be applied towards grids. A user can create

push excess jobs into the cloud, when there is overflow, high demands, or the user

does not want to maintain their own hardware. One challenge, however, is the dynamic

creation of a grid as well as extension of an existing grid using the cloud, challenges that

are addressed in this paper.

6.2 Architectural Overview

My approach attempts to reuse as many available components to design a grid

middleware generic enough that th ideas can be applied to other middleware stacks. As

a result, my contribution in this chapter and in particular this section focuses primarily

on the following key tasks: making grid construction easy, supporting decentralized user

access, sandboxing the users environment, limiting access to the grid to authorized

identities, and ensuring priority on users own resources.

140

Table 6-1. Grid middleware comparison
Description Scalability Job queue / submis-

sion site
API Requirements

Boinc Volunteer comput-
ing, applications
ship with Boinc and
poll head node for
data sets

Not explicitly men-
tioned, limited by the
ability of the sched-
uler to handle the
demands of the client

Each application
has a different site,
no separation from
job queue and sub-
mission site

Boinc API and mid-
dleware bundling
required

BonjourGrid Desktop grid, use
zeroconf / Bonjour
to find available
resources in a LAN

No bounds tested,
limits include multi-
casting overheads
and processing
power of job queue
node

Each user has their
own job queue /
submission site

None

Condor High throughput
computing / on de-
mand / desktop /
etc / general grid
computing

Over 10,0001 Global job queue,
no limit on sub-
mission sites,
submission site
communicates di-
rectly with worker
nodes

Optional API to
support job mi-
gration and check
pointing

PastryGrid Use structured over-
lay Pastry to form
decentralized grids

Decentralized, single
node limited by its
processing power,
though collectively
limited by the Pastry
DHT

Each connected
peer maintains its
own job queue and
submission site

None

PBS /
Torque [84]

Traditional approach
to dedicated grid
computing

up to 20,000 CPUs2 Global job queue
and submission site

None

SGE Traditional approach
to dedicated grid
computing

Tested up to 63,000
cores on almost
4,000 hosts3

Global job queue
and submission site

None

XtremWeb Desktop grid, similar
to Condor but uses
pull instead of push,
like Boinc

Not explicitly men-
tioned, limited by the
ability of the sched-
uler to handle the
demands of clients

Global job queue,
separate submis-
sion site, optionally
one per user

No built-in sup-
port for shared file
systems

1 http://www.cs.wisc.edu/condor/CondorWeek2009/condor_presentations/

sfiligoi-Condor_WAN_scalability.pdf

2 http://www.clusterresources.com/docs/211

3 http://www.sun.com/offers/docs/Extreme_Scalability_SGE.pdf

141

http://www.cs.wisc.edu/condor/CondorWeek2009/condor_presentations/sfiligoi-Condor_WAN_scalability.pdf
http://www.cs.wisc.edu/condor/CondorWeek2009/condor_presentations/sfiligoi-Condor_WAN_scalability.pdf
http://www.clusterresources.com/docs/211
http://www.sun.com/offers/docs/Extreme_Scalability_SGE.pdf

6.2.1 Web Interface and the Community

Before deploying any software or configuring any hardware, a grid needs organization

including certificate management, grid access, user account management, and

delegation of responsibilities. These are complex questions, which can be challenging

to address, though for less restrictive systems, like a collection of academic labs

sharing clusters, they may be very easy. One of the professors could handle the initial

authorization of all the other labs and then delegate to them the responsibility of allowing

their affiliates, such as students and scholars access.

For academic environments, grids become more challenging when the professor

or worse yet students must maintain the certificates, handling certificate requests,

and placing signed certificates in the correct location. Our solution to this potentially

confusing area was a group interface, akin to something like Facebook R⃝’s or Google R⃝’s

groups. Albeit, those types of groups are not hierarchal, which is a necessity in order

to have delegated responsibilities. Thus I have a two layer approach, a grid group for

members of the grid trusted by the grid organizers and user groups for those who are

trusted by those in the grid group. Members of the grid group can create their own user

groups. A member of a user group can gain access to the grid by downloading grid

configuration data available within the user group web interface. This configuration data

comes in the format of a disk image, when added to a “Grid Appliance” VM, it is used to

obtain the user’s credentials and enabling them to connect to the grid.

To give an example, consider the computer architecture grid, Archer. Archer was

seeded initially by the University of Florida, so my group and I are the founders and

maintainers of the Archer grid group. As new universities and independent researchers

have joined Archer, they request access to this group. Upon receiving approval, they

then need to form their own user group so that they can allow others to connect to the

grid. So a trusted member might create a user group titled “Archer for University X” and

all members of university X will apply for membership in that group. The creator can

142

Figure 6-2. Grid Appliance deployment scenario

make decisions to either accept or deny these users. Once the user has access, they

will download their configuration data formatted as a virtual disk image and the “Grid

Appliance” VM and start the “VM.” After starting the VM, the user will be connected to

the grid and able to submit and receive jobs.

Joining is easy; a grid requires a user to sign onto a website and download a

configuration data, which can then be used on multiple systems. To support this

process, the configuration data contains cryptographic information that facilitates

acquisition of a signed certificate from the web interface through XML-RPC over HTTPS

(Extensible Markup Language Remote Procedure Call over Hypertext Transfer Protocol

Secure). The process begins by either booting the “Grid Appliance” or restarting a “Grid

Appliance” service. When starting the service will detect if there is new configuration

data, and if there is, it contacts the web interface with the cryptographic information and

a public key. The web interface verifies the user’s identity, retrieves their profile from its

database and binds that information with the public key to create a certificate request,

which will then be signed and returned to the user.

143

With a public web interface, I have been able to create a variety communities. One

of particular interest is not the grid itself but rather a bootstrapping community for grids.

The web interface has been designed to support many grid groups, so too has the P2P

infrastructure as it supports bootstrapping into unique private overlays for individual

grids by means of Brunet’s ability to support recursive bootstrapping. By using the

public interface, users have an opportunity to reuse a public bootstrap infrastructure and

only need to focus on the configuration of their VPN and grid services, which has been

trivialized to accepting or denying users access to a group and turning on resources.

We would like to note that there is no need to make an explicit public grid community

through the web interface, since all “Grid Appliances” come with a default configuration

file that will connect them to an insecure public grid.

6.2.2 The Organization of the Grid

The previous section focused facilitation of grid configuration using the web

interface and skirted the issues of detailed configuration and organization. The

configuration of the grid mirrors that of the connection process. The first tier group

maps to a common grid and each grid maps to a VPN. Thus when a user creates a

new grid group, they are actually configuring a new VPN, which involves address range,

security parameters, user agreements, and the name of the group. The system provides

defaults for address range and security parameters, so users can focus on high level

details like the user agreement and the grid’s name.

As mentioned earlier, the second tier of groups enables members in the grid group

to provide access to their community. It is also the location that users download their

configuration data. The configuration files come in three flavors: submission, worker,

or manager. Worker nodes strictly run jobs. Submission nodes can run jobs as well as

submit jobs into the grid. Manager nodes are akin to head nodes, those that manage the

interaction between worker and submission nodes.

144

While the configuration details are handled by the web interface and scripts inside

the “Grid Appliance,” organization of the grid, more specifically the linking of worker

and submission nodes to manager nodes, relies on the DHT. Managers store their IP

addresses into the DHT at the key managers. When workers and clients join the grid,

they automatically query this key, using the results to configure their grid software.

Managers can also query this key to learn of other managers to coordinate with each

other.

6.2.2.1 Selecting a Middleware

My grid composition is largely based upon a desire to support a decentralized

environment, while still retaining reliability and limiting documentation support efforts. As

there exist many middlewares to support job submission and scheduling, I surveyed

available and established middleware to determine how well they matched my

requirements. My results are presented in Table 6-1, which covers most of the well

established middleware and some recent research projects focused on decentralized

organization.

Of the resource management middlewares surveyed, I chose to use Condor as it

matches closest with my goals due to its decentralized properties and focus on desktop

grids. Condor allows multiple submission points, a non-trivial obstacle in some of the

other systems. Additionally, adding and removing resources in Condor can be done

without any configuration from the managers. Conversely, in SGE and Torque, after

resources have been added into the system, the administrator must manually configure

the manager to control them. Most scheduling software assumes that resources are

dedicated, while Condor supports opportunistic cycles, by detecting the presence of

other entities and will suspend, migrate, or terminate a job, thus enabling desktop grids.

A common drawback to established middlewares is the requirement of a manager node;

having no manager in an ad hoc grid would be ideal.

145

6.2.2.2 Self-Organizing Condor

While the requirement of a central manager may be undesirable, they can easily

be run inside a VM and Condor supports the ability to run many in parallel through the

use of “flocking [33].” Flocking allows submission sites to connect to multiple managers.

This serves two purposes: 1) to provide transparent reliability by supporting multiple

managers and 2) users can share their resources through their own manager. Flocking

allows each site to run its own manager or share the common manager.

To configure Condor, manager IP addresses are stored into the DHT using the key

managers. Joining peers query the DHT to obtain a list of managers, selecting one

randomly to use as its primary manager with the result used for flocking. If the system

prefers managers from its group, it will randomly contact each manager in an attempt to

find a match, selecting one at random if no match is found. Until a manager is found, the

process repeats every 60 seconds. Upon finding a manager, the state of the system is

verified every 10 minutes and new managers are added to the flock list.

6.2.2.3 Putting It All Together

The following summarizes the configuration and organization of the grid. Minimally

a grid will constitute a manager, some workers, and a submitter. Referencing Figure 6-2

step “1,” during system boot, without user interaction, each machine contacts the group

website to obtain a valid VPN certificate. Whereupon, it connects to the P2P overlay

whose bootstrap peers are listed inside the configuration file, “step 2.” At which point,

the machine starts the VPN service running on top of the P2P overlay, also part of

step “2.” The self-configuring VPN creates a transparent layer hiding from the user and

administrators the complexity in setting up a common fabric that can handle potential

network dynamics. Machines automatically obtain a unique IP address and find their

place inside the grid. For a manager machine, this means registering in the DHT (not

shown), while clients and workers search for available managers by querying the DHT,

146

step “3;” IPOP translates the IP to a P2P address, step “4;” and then client contacts the

manager directly, step “5.”

6.2.3 Sandboxing Resources

As tasks can run on worker and potentially submission nodes, I have devised

means to sandbox the environments that do not limit user interactions with the system.

While more traditional approaches to sandboxing emphasize a separation between

worker and submission machine, in actual deployments, very few users explicitly

deploy worker machines, most are submission machines. Thus I developed sandboxing

techniques to limit the ability of submitted jobs on systems that are simultaneously being

used for submission. So these sandboxing technique considers more than just locking

down the machine but also ensuring a reasonable level of access.

6.2.3.1 Securing the Resources

The core of my sandboxing approach is to limit attacks to software in the system

and not poorly configured user space, such as poorly chosen passwords or resources

external to the “Grid Appliance.” All jobs are run as a set of predefined user identities.

When the jobs are finished executing, whether forcibly shutdown or completed

successfully, all processes from that user are shutdown, preventing malicious trojan

attacks. Those users only have access to the working directory for the job and those

with permission for everybody. Escalation of privilege attacks due to poor passwords are

prevented by disallowing use of “su” or “sudo” for these users. Finally, network access

is limited to the VPN, thus they are unable to perform denial of service attacks on the

Internet.

Additionally, systems can be configured such that the only network presented to

them is that of the virtual network. To support this, IPOP has been enhanced to support

a router mode, which can be bridged to a virtual machine adapter running on the host

machine that connects to the network device running inside the VM. Not only does this

147

improve performance, due to reduced I/O overhead, the same virtual network router can

be used for multiple VMs.

To ensure that submit machines still have a high level of functionality without risking

the system to external attacks even from users on the same network, user services are

run only on a “host-only” network device within the virtual machine. This includes an

SSH server and a Samba or Windows File Share. The user name matches that from the

website, while the password defaults to “password.” I would like to note that file sharing

services work the opposite to that of host to guest as most VMs already have in place.

Instead users can access their files on the VM from the host. This was done to limit

potential attacks on submission machine.

6.2.3.2 Respecting the Host

Another aspect of sandboxing is respecting the usage of the host. While Condor

can detect host usage on a machine it is running, when run inside a VM it cannot detect

usage on the host. Thus it is imperative to support such a configuration otherwise

my approach would be limited in that it can only be run during idle times. In the

“Grid Appliance”, this is addressed by running a light-weight agent on the host that

communicates to the VM through the second Ethernet interface. The agent discovers

a VM through multicast service discovery executed only on ”host-only” virtual network

devices. When a user accesses the host, the agent notifies a service in the VM, which

results in running tasks being suspended, migrated, or terminated. The machine

remains off limits until there has been no user activity for 10 minutes.

6.2.3.3 Decentralized Submission of Jobs

From the administrator’s perspective, not requiring a submission machine is also a

form of sandboxing. Maintaining a worker machine requires very low overhead, since

jobs and their associated files are removed upon the completion of a job and corrupted

workers can be deleted and redeployed. Maintaining a submission machine means user

accounts, network access, providing data storage, and trusting users to play nicely on a

148

shared resource. So having users be able to submit from their own resources reduces

the overhead in managing a grid. It does come with a consequence, most grids provide

shared file systems, which are statically mounted in all nodes. In a dynamic grid that

might have multiple shares, this type of approach may not be very feasible.

All is not lost, for example, Condor provides data distribution mechanisms for

submitted jobs. This can be an inconvenience, however, if only a portion of the file is

necessary, as the entire file must be distributed to each worker. This can be particularly

true with disk images used by computer architecture simulations and applications built

with many modules or documentation. To support sparse data transfers and simplify

access to local data, each “Grid Appliance” has a local NFS share exported with

read-only permission. To address the issue of mounting a file system, there exists a tool

to automatically mount file systems, autofs. autofs tool works by intercepting file system

calls inside a specific directory, parsing the path, and mounting a remote file system.

In the “Grid Appliance,” accessing the path /mnt/ganfs/hostname, where hostname is

either the IP address or hostname of an appliance, will automatically that appliance’s

NFS export without the need for super-user intervention. Mounts are automatically

unmounted after a sufficient period of time without any access to the mounted file

system.

6.3 Deploying a Campus Grid

I now present a case study exploring a qualitative and quantitative comparison in

deploying a campus grid and extending it into the “Cloud” using traditional techniques

versus a grid constructed by “Grid Appliance.” One of the target environments for the

“Grid Appliance” is resources provided in distributed computer labs and many small

distributed clusters on one or more university campus as shown in Figure 6-3. The goals

in both these cases are to use commodity software, where available, and to provide

a solution that is both simple but creates an adequate grid. In both cases, Condor is

chosen as the middleware, which is a push scheduler and by default requires that all

149

/mnt/ganfs/hostname

(QJLQHHULQJ

&RPSXWHU�/DE

$UFKLWHFWXUH

&RPSXWHU�/DE

([WHUQDO�(&�

5HVRXUFHV�IRU�3�3�/DE

&RPSXWHU

$UFKLWHFWXUH�/DE
0ROHFXODU

%LRORJ\�/DE

6WXGHQW���5HVHDUFKHU�

/DSWRSV

Figure 6-3. A collection of various computing resources at a typical university

resources be on a common network thus a VPN will be utilized. Additionally, in this

section, I cover details of the “Grid Appliance” that did not fit in the context of previous

discussions in the paper.

6.3.1 Background

In this case study, I will compare and contrast the construction of two types of grids:

a static grid configured by hand and a dynamic grid configured by the “Grid Appliance.”

Each grid is initially constructed using resources at the University of Florida and later

extended to Amazon R⃝’s EC2 and Future Grid at India University using Eucalyptus.

Each environment has a NAT limiting symmetric communication: University of Florida

resources are behind two layers, first an “iptables” NAT and then a Cisco NAT; EC2

resources have a simple 1:1 NAT; and the Eucalyptus resources appear to have an

“iptables” NAT.

150

6.3.2 Traditional Configuration of a Campus Grid

A VPN must be used to connect the resources due to the lack of network symmetry

across the sites. There exists a wealth of VPNs available [67, 100, 120] and some

explicitly for grids [53, 106, 108]. For simplicity sake, OpenVPN R⃝ was chosen due to

the simplicity in its configuration. In reality, OpenVPN R⃝ makes a poor choice because

it is centralized, thus all traffic between submitter and worker must traverse the VPNs

server. Whereas others in the list are distributed and thus allow nodes to communicate

directly, but in order to do so, manual setup is required, a process, that would overwhelm

many novice grid deployers. In all these cases, the VPN requires that at least a single

node have a public address, thus I had to make a single concession in the design of this

grid, that is, the OpenVPN R⃝ server runs on a public node.

In order to connect to OpenVPN R⃝, it must know the server’s address and have

a signed certificate. While typically, most administrators would want a unique private

key for each machine joining the grid, in my case study and evaluation, I avoided

this process and used a common key, certificate pair. In doing so, there are potential

dangers, for example, if any of the machines were hijacked, the certificate would have

to be revoked and all machines would be rendered inoperable. To create a properly

secured environment, each resource would have to generate or be provided a private

key, a certificate request submitted to the certificate authority, and a signed certificate

provided to the resource.

With the networking and security components in place, the next step is configuring

grid middleware. Prior to deploying any resources, the manager must be allocated and

its IP address provider to other resources in the system. Submission points are not a

focus on this case study, though in general most systems of this nature have a single

shared submission site. The challenges in supporting multiple submission points in

this environment include creating certificates same as worker nodes, requiring users to

configure OpenVPN R⃝ and Condor, and handling NFS mounts. Whereas having a single

151

submission point creates more work for the system administrator as mentioned earlier.

Both approaches have their associated costs and neither is trivial. The evaluation

assumes a single user submitting from a single resource.

To address potential heterogeneity issues. An administrator would need to

collaborate with others to ensure that all resources are running a common set of

tools and libraries. Otherwise an application that works well on one platform could cause

a segmentation fault on another, through no fault of the user, but rather due to library

incompatibilities.

To export this system into various clouds, an administrator starts by running

an instance that contains their desired Linux distribution and then installing the grid

utilities like Condor and OpenVPN R⃝. Supporting individualization of the resources

is challenging. The simplest approach is to store all the configuration in that instance

including the single private key, certificate pair as well as the IP address of the manager

node. Alternatively, the administrator could build an infrastructure that receives

certificate requests and returns a certificate. The IP address of the manager node

and of the certificate request handler could be provided to the cloud via user data, a

feature common to most IaaS clouds that allows users to provide either text or binary

data that is available via a private URL inside a cloud instance.

6.3.3 Grid Appliance in a Campus Grid

All these configuration issues are exactly the reasons why “Grid Appliance” and its

associated group Web interface are desirable for small and medium scale grids. The first

component is deciding which web interface to use, public (www.grid-appliance.org) or

private hosted on their own resources. Similarly, users can deploy their own P2P overlay

or use the shared overlay.

The web interface enforces unique names for both the users and the groups.

Once the user has membership in the second tier of groups, they can download a file

that will be used to automatically configure their resources. As mentioned earlier, this

152

www.grid-appliance.org

handled obtaining a unique signed certificate, connecting to the VPN, and discovering

the manager in the grid. Configuration of the VPN and grid are handled seamlessly,

the VPN automatically establishes direct links with peers on demand and peers

configure based upon information available in the P2P overlay dynamically allowing

for configuration changes.

Heterogeneity is a problem that will always exist if individuals are given governance

of their own resources. Rather than fight that process, the “Grid Appliance” approach

is to provide a reference system and then include that version and additional programs

in the resource description exported by Condor. Thus a user looking for a specific

application, library, or computer architecture can specify that in their job description.

Additionally, by means of the transparent NFS mounts, users can easily compile their

own applications and libraries and export them to remote worker nodes.

Extending the “Grid Appliance” system into the clouds is easy. The similarity

between a VM appliance and a cloud instance are striking. The only difference from

the perspective of the “Grid Appliance” system is where to check for configuration data.

Once a user has created a “Grid Appliance” in a cloud, everyone else can reuse it

and just supply their configuration data as the user data during the instantiation of the

instances. As I describe in Section 6.4.2, creating “Grid Appliance” from scratch is a

trivial procedure.

As described in detail earlier, an administrator needs to install the necessary

software either by deploying VMMs and VM appliances or installing “Grid Appliance”

packages on Debian / Ubuntu systems. Additionally, these systems need to be

packaged with the configuration files or floppy disk images. At which point, the systems

will automatically configure and connect to the grid. An administrator can verify this by

monitoring Condor. Additional resources can be added seamlessly, likewise resources

can be removed by shutting them off without direct interaction with the “Grid Appliance”

or manager node.

153

6.3.4 Comparing the User Experience

In the case of a traditional grid, most users will contact the administrator and make

a request for an account. Upon receiving confirmation, the user will have the ability to

SSH into a submission site. Their connectivity to the system is instantaneous, their jobs

will begin executing as soon as it is their turn in the queue. User’s will most likely have

access to a global NFS. From the user’s perspective, the traditional approach is very

easy and straightforward.

With the “Grid Appliance,” a user will obtain an account at the web interface,

download a VM and a configuration file, and start the VM. Upon booting, the user will

be able to submit and receive jobs. To access the grid, users can either SSH into the

machine or use the consoles in the VM. While there is no single, global NFS, each

user has their own unique NFS and must make their job submission files contain their

unique path. For the most part, the user’s perspective of the “Grid Appliance” approach

has much of the same feel as the traditional approach. Although users have additional

features such as accessing their files via Samba and having a portable environment for

doing their software development.

6.3.5 Quantifying the Experience

The evaluation of these environments focuses on the time taken to dynamically

allocate the resources, connect to the grid, and submit a simple job to all resources in

the grid. In both systems, a single manager and submission node were instantiated in

separate VMs. In the traditional setup, OpenVPN R⃝ is run from the manager node. Each

component in the evaluation was run three times. Between iterations, the submission

node and the manager node were restarted to clear any state.

The times measured include the time from when the last grid resource was started

to the time it reported to the manager node, Figure 6-4, as well as the time required

for the submit node to queue and run a 5 minute job on all the connected workers,

Figure 6-5. The purpose of the second test is to measure the time it takes for a

154

Figure 6-4. Time to construct a grid

Figure 6-5. Time to run a job on a grid

submission site to queue a task to all workers, connect to the workers, submit the

job, and to receive the results; thus a stress test on the VPN’s ability to dynamically

create links and verifying all-to-all connectivity. The tests were run on 50 resources

(virtual machines / cloud instances) in each environment and then on a grid consisting of

all 150 resources with 50 at each site.

In the previous section, I qualified why the approach was easier than configuring

a grid by hand, though by doing so I introduce overheads related to configuration and

organization. The evaluation verifies that these overheads do not conflict with the utility

of my approach. Not only do resources within a cluster install the VMs and connect

to the grid quickly, the clouds do as well. While the results were similar, it should be

noted that the time required to configure the static approach was not taken into effect. A

155

process that is difficult to measure and is largely reliant on the ability of the administrator

and the tools used. Whereas the time for the “Grid Appliance” does include many of

these components.

It should be stated that the evaluation only has a single submission node. In

a system with multiple submitters, the OpenVPN R⃝ server could easily become a

bandwidth bottleneck in the system as all data must pass through it, which can be

avoided using IPOP. Additionally, the current “Grid Appliance” relies on polling with long

delays, so as to not have negative effects on the system. Either shrinking those times

or moving to an event based system should significantly improve the speed at which

connectivity occurs.

6.4 Lessons Learned

This section highlights some the interesting developments and experiences, we

have had that do not fit the topics discussed so far.

6.4.1 Deployments

A significant component of my experience stems from the computational grid

provided by Archer [37], an active grid deployed for computer architecture research,

which has been online for over 3 years. Archer currently spans six seed universities

contributing over 600 CPUs as well as contributions and activities from external users.

The Archer grid has been accessed by hundreds of students and researchers from over

a dozen institutions submitting jobs totaling over 500,000 hours of job execution in the

past two years alone.

The Grid Appliance has also been utilized by groups at the Universities of

Florida, Clemson, Arkansas, and Northwestern Switzerland as a tool for teaching

grid computing. Meanwhile the universities of Clemson and Purdue are using the Grid

Appliance’s VPN (GroupVPN / IPOP) to create their own grid systems. Over time,

there have been many private, small-scale systems using the shared system available

at www.grid-appliance.org with other groups constructing their own independent

156

www.grid-appliance.org

systems. Feedback from users through surveys have shown that non-expert users

are able to connect to the public Grid appliance pool in a matter of minutes by simply

downloading and booting a plug-and-play VM image that is portable across VMware,

VirtualBox, and KVM.

6.4.2 Towards Unvirtualized Environments

Because of the demands put on Archer in terms of avoiding the overheads of

virtualization and the perceived simplicity of managing physical resources as opposed

to virtual resources running on top of a physical resources, many users have requested

the ability to run Grid Appliances directly on their machine. Unlike clouds with machine

images such as AMIs (Amazon R⃝ Machine Image) or VM appliances, physical machines

images cannot be easily exported. Most physical OS installed on physical machines will

need some some custom tailoring to handle environment specific issues.

With this in mind, I moved away from stackable file systems and towards creating

repositories with installable packages, such as DEB or RPM. The implications of

packages mean that users can easily produce “Grid Appliances” from installed systems

or during system installation. With the VPN router mode, mentioned earlier, resources

in a LAN can communicate directly with each other rather than through the VPN. That

means if they are on a gigabit network, they can full network speeds as opposed to

being limited to 20% of that due to the VPN, overheads discussed in [116].

6.4.3 Advantages and Challenges of the Cloud

I have had the experience of deploying the “Grid Appliance” on three different

cloud stacks: Amazon R⃝’s EC2 [5], Future Grid’s Eucalyptus [76], and Future Grid’s

Nimbus [60]. All of the systems, encountered so far, allow for data to be uploaded with

each cloud instance started. The instance can then download the data from a static

URL only accessible from within the instance, for example, EC2 user data is accessible

at http://169.254.169.254/latest/user-data. A “Grid Appliance” cloud instances

can be configured via user-data, which is the same configuration data used as the

157

http://169.254.169.254/latest/user-data

virtual and physical machines, albeit zip compressed. The “Grid Appliance” seeks the

configuration data by first checking for a physical floppy disk, then in specific directory

(/opt/grid_appliance/var/floppy.img), followed by the EC2 / Eucalyptus URL, and

finally the Nimbus URL. Upon finding a floppy and mounting it, the system continues on

with configuration. Clouds have been also very useful for debugging. Though Amazon R⃝

is not free, with Future Grid, grid researchers now have free access to both Eucalyptus

and Nimbus clouds. Many bugs can be difficult to reproduce in small system tests or

booting one system at a time. By starting many instances simultaneously, I have been

able to quickly reproduce problems and isolate them, leading to timely resolutions, and

verification of those fixes.

Beyond the use of extending into clouds for on-demand resources, they are also

very convenient for debugging. Doing so on Amazon R⃝ though is not free. Fortunately,

grid researchers now can have free access to Future Grid with both Eucalyptus and

Nimbus style clouds. I did have to do some tinkering to get these systems to work.

First, because the user data is binary data and the communication exchange uses

RPC, which may have difficulty handling binary data, it must be converted to base64

before transferring and converted back into binary data afterward. EC2 handles this

transparently, if using command-line tools. Unfortunately, Eucalyptus and Nimbus do

not, even though Eucalyptus is supposed to be compatible with EC2.

Furthermore, when starting an EC2 instance, networking is immediately available,

whereas with Eucalyptus and Nimbus, networking often times takes more than 10

seconds after starting to be available. Thus a startup script must be prepared for

networking not to be ready and hence unable to immediately download user data. The

best approach to deal with this in a distribution independent manner is to wait until the

primary Ethernet interface (eth0) has an IP and then continuing.

158

/opt/grid_appliance/var/floppy.img

:
5
,7
(

5
(
$
'

5
(
$
'

5
(
$
'

+RPH

��YDU��HWF�

0RGXOH

��RSW��HWF�

%DVH

��ELQ���ERRW���HWF���KRPH���VELQ������

Figure 6-6. Grid Appliance stackable file system

6.4.4 Stacked File Systems

Configuring systems can be difficult, which makes it important to have the ability

to share the resulting system with others. The approach of actually creating packages

can be overly complicated for novices. To address this concern, the original “Grid

Appliance” supported a built-in mechanism to create packages through a stackable file

system using copy-on-write [113]. In this environment, the VM used 3 disks: the “Grid

Appliance” base image, the software stack configured by us; a module; and a home

disk. In normal usage, both the base and module images are treated as read-only file

systems with all user changes to the system being recorded by the home image, as

depicted in Figure 6-6.

To upgrade the system, users replaced their current base image with a newer one,

while keeping their module and home disks. While the purpose of the module was to

allow users to extend the configuration of the “Grid Appliance.” To configure a module

the system would be booted into developer mode, an option during the boot phase,

where only the base and module images are included in the stacked file system. Upon

completing the changes, a user would run a script that would clean the system and

prepare it for sharing. A user could then share the resulting module image with others.

159

Issues with this approach made it unattractive to continue using. First, there exists

no kernel level support for stackable file systems, I had to add UnionFS [118] to the

kernel, adding the weight of maintaining a kernel unto my shoulders. While FUSE

(filesystem in userspace) solutions exist, they require modifications to the initial ram

disk, which is reproduced automatically during the installation of every new kernel,

furthermore, our experience with them suggests they are not well suited for production

systems. Additionally, the approach was not portable to clouds or physical resources.

So while I have deprecated the feature for now, I see it as a potential means to easily

develop packages like DEB and RPM.

6.4.5 Priority in Owned Resources

In Archer, seed universities should have priority on the resources at their university.

Similarly, users should have priority on their contributions. Otherwise, users will remove

their resources from the grid, when they want guaranteed access. To support user and

group based priorities, Condor has mechanisms that can be enforced at the server

that allow for arbitrary means to specify user priority for a specific resource. So the

configuration specifies that if the resource’s user or group matches that of the submitter,

the priority is higher than otherwise. This alone is not sufficient as malicious users could

easily tweak their user name or group to obtain priority on all resources. Thus whenever

this check is made the user’s identity in the submission information is verified against

their P2P VPN certificate. Failed matches are not scheduled and are stored in a log at

the manager for the administrator to deal with later.

To support this behavior, the following statements have been added to the

respective system’s Condor configuration file:

The format for this configuration is as follows:

Job queue (server):

NEGOTIATOR PRE JOB RANK = 10 * (MY.RANK)

Worker:

160

GROUP RANK = TARGET.Group =?= MY.Group

USER RANK = TARGET.User =?= My.User

RANK = GROUP RANK || USER RANK

Worker and Submitter:

Group = ”Group’s Name”

User = ”User’s Name”

6.4.6 Timing in Virtual Machines

Certain applications, particularly license servers, are sensitive to time. Because

of the nature of grids, there exist possibilities of having uncoordinated timing, such as

improperly specifying the time zone or not using a network time protocol (NTP) server

With regards to VMs, VMWare [112] suggests synchronizing with the host’s time and

to avoid using services like NTP, which may have adverse affects on timing inside the

virtual machine. While NTP might have some strange behavior, relying on host time

may produce erratic jumps in time that some software cannot handle. My experiences

recommends the use of NTP to address these concerns, which has resolved many

issues with strange software behavior and frustration from users when their jobs fail due

to being unable to obtain a license due to a timing mismatch.

6.4.7 Selecting a VPN IP Address Range

One challenge in deploying a VPN is ensuring that the address space does not

overlap with that over the environments where it will be used. If there is overlap, users

will be unable to connect to the VPN. Doing so will confuse the network stack, as there

will be two network interfaces connected to the same address space but different

networks. A guaranteed, though not necessarily practical solution is to run the resource

on a VM NAT or a cluster NAT that does not overlap the IP address space of the VPN.

Users of the “Grid Appliance” should not have to concern themselves with this

issues. Prior work on the topic by Ala Rezmerita et al. [85] recommends using

the experimental address class E ranging between 240.0.0.0 - 255.255.255.254,

161

unfortunately this requires Linux kernel modifications. With the amount of bugs and

security fixes regularly pushed into the kernel, maintaining a forked kernel requires a

significant amount of time, duplicating the work already being performed by the OS

distribution maintainers. This would also limit the ability to easily deploy resources in

physical and cloud environments. Additionally, users that wanted to multipurpose a

physical resource may not want to run a modified kernel, while in most cloud setups the

kernel choice is limited.

I have since moved towards using the 5.0.0.0 - 5.255.255.255 address range.

Like the class E address space it is unallocated, but it requires no changes to any

operating systems. The only limitation is that some other VPNs also use it, thus a

user would not be able to run two VPNs on the same address space concurrently.

This approach is much better than providing kernels or dealing with network address

overlaps. Interestingly, even with this in place, we still see some “GroupVPNs” using

address ranges in normal private network address ranges for the VPN, like 10.0.0.0 -

10.255.255.255 and 192.168.0.0 - 192.168.255.255.

6.4.8 Administrator Backdoor

While most administrators will agree that most problems that users encounter are

self-inflicted, there are times, when the system is at fault. Debugging systems faults in a

decentralized system can be very tricky, since it is very difficult to track down a resource

in order to gain direct physical access. Additionally, having a user bring their resource to

an administrator may be prohibitively complicated, as the user would need to relocate

their “Grid Appliance” instance and have network connectivity in order to connect to

the grid and show the problem to the administrator. To address this and other concerns

that only appear after running the system for long periods of time, we have supplied

an administrator backdoor into all resources by installing our public ssh key, though

users are informed of this and are free to remove it for privacy concerns. In typical

configurations, this approach might not be feasible, but because the “Grid Appliance”

162

ships with a decentralized VPN supporting all-to-all connectivity, any resource connected

to the VPN is accessible for remote debugging by an administrator. Most users involved

are extremely delighted with the process as it has an appearance that the system “just

works.”

6.5 Related Work

Existing work that falls under the general area of desktop grids/opportunistic

computing include Boinc [6], BonjourGrid [2], and PVC [85]. Boinc, used by many

“@home” solutions, focuses on adding execute nodes easy; however, job submission

and management rely on centralization and all tasks must use the Boinc APIs.

BonjourGrid removes the need for centralization through the use of multicast resource

discovery; the need for which limits its applicability to local area networks. PVC enables

distributed, wide-area systems with decentralized job submission and execution through

the use of VPNs, but relies on centralized VPN and resource management.

Each approach addresses a unique challenge in grid computing, but none

addresses the challenge presented as a whole: easily constructing distributed,

cross-domain grids. Challenges that I consider in the design of my system include

allowing submission sites to exist any where without being confined to complex

configuration or highly available, centralized locations; the ability to dynamically add and

remove resources by starting and stopping a a resource; and the sharing of common

servers so that no group in the grid is dependent on another. I emphasize these points,

while still retaining the ease of use of Boinc, the connectivity of PVC, and the flexibility

of BonjourGrid. The end result is a system similar to OurGrid [8]; however, OurGrid

requires manual configuration of the grid and networking amongst sites, administration

of users within a site, and limits network connectivity amongst resources, whereas “Grid

Appliance” transparently handles these issues with a P2P overlay and VPN to handle

network constraints and support network sandboxing and a web interface to configure

and manage the grid.

163

With regards to clouds, there exists contextualization [59]. Users construct an

XML configuration file that describes how a cloud instance should be configured and

provide this to a broker. During booting of a cloud instance, it will contact a third-party

contextualization broker to receive this file and configure the system. This approach

has been leveraged to create dynamic grids inside the Nimbus cloud [51]. While this

approach can reproduce similar features of the “Grid Appliance,” such as creating grids

inside the cloud, there are challenges in addressing cloud bursting, automated signing of

certificates, and collaboration amongst disparate groups.

164

CHAPTER 7
SOCIAL PROFILE OVERLAYS

Online social networking has become pervasive in daily life, though as social

networks grow so does the wealth of personal information that they store. Once

information has been released on a social network, known as a user’s profile, the user

and the data are at the mercy of the terms dictated by the social network infrastructure,

which today is typically third-party, centrally owned. If the social network engages in

activities disagreeable to the user, due to change of terms or opt-out programs not well

understood by users such as recent issues with Facebook R⃝’s Beacon program [77], the

options presented to the user are limited. The options include leaving the social network,

surrendering their identity and features provided by the social network; accepting the

disagreeable activities; or to petition and hope that the social network changes its

behavior.

As the use of social networking expands to become the primary way in which users

communicate and express their identity amongst their peers, the users become more

dependent on the policies of social network infrastructure owners. Recent work [15]

explores the coupling between social networks and P2P (peer-to-peer) systems as a

means to return ownership to the users, noting that a social network made up of social

links is inherently a P2P system with the aside that they are currently developed on

top of centralized systems. This chapter extends this idea with focus on the topic of

topology; that is, how to organize social profiles that leverage the benefits offered by a

structured P2P overlay abstraction.

Structured P2P overlays provide a scalable, resilient, autonomic platform for

distributed applications. Structured overlays enable users to easily create their own

decentralized systems for the purpose of data sharing, interactive activities, and other

networking-enabled activities. This chapter is based upon my previous work [115, 117]

discussed in Chapters 3 and 4 to enable social network profile overlays. These works

165

address the challenges of bootstrapping secure, private overlays in environments

constrained by network address translators (NATs) and firewalls through a public overlay

used for discovery and as a relay or communication transport.

A typical social network consists of users and groups. Each user has a profile, a set

of friends, and the ability to send and receive private messages; each group consists of

one or more managers, users, and a messaging board. Profiles contain user’s personal

information, status updates, and public conversations, similar to a message board.

Friends are individuals trusted sufficiently by a user to view the user’s profile. Private

messaging sends messages discretely between users without leaking the message to

other members. Groups have similar features, though identity is shared by many users.

Using this social networking model, I have designed OverSoc. OverSoc uses a

public overlay as a directory for finding and befriending peers or finding and accessing

groups. Once group and profile access has been offered, the public overlay can be used

to bootstrap connectivity to existing profile and group overlays. Security for a profile is

provided by a public key infrastructure (PKI), where profile owners or group managers

are the certificate authorities (CA) and all members have signed certificates. The

overlay stores profile data or group information in its distributed data store, supporting

decentralized access using scalable mechanisms regardless of the profile owner’s online

presence.

In this chapter, I present the architecture of these overlays, as presented in

Figure 7-1. Alice has a friendship with Bob and Carol, hence both are members of

her profile overlay. Bob has a friendship with Alice and Dave but not Carol; hence Alice

and Dave are members of his profile overlay, while Carol is not. Each peer has many

overlay memberships but a single root represented by dashed lines in various shades of

gray. For clarity, overlay shortcut connections are not shown.

The rest of this chapter is organized as follows. Section 7.1 discusses related work.

Section 7.2 describes OverSoc, explaining how to map social networks onto structured

166

Figure 7-1. An example OverSoc social overlay network

P2P overlays. Section 7.3 expresses expectations for user interaction in the system. In

Section 7.4, I explore some of the remaining challenges introduced by this approach.

7.1 Related Works

Buchegger et al. [16] describe how to use a DHT (distributed hash table) to store

social networking profile. The DHT provides look-up services for storing meta-data

pertaining to a peer’s profile. Peers query the DHT for updated content from their

friends by hashing their unique identifiers (e.g. friends’ email addresses). The retrieved

meta-data contains information for obtaining the profile data such as IP address and

file version. Their work relies on a PKI system that provides identification, encryption,

and access control. In contrast, OverSoc maps individual user profiles and groups to

a private overlay secured by point-to-point encryption and authentication amongst all

peers in the overlay. The private overlay provides a clean abstraction of access control,

whereby once admitted to a private overlay, users can access a distributed data store

which holds the contents of the owner’s profile.

167

Shakimov et al. [98] take a different approach by depending on virtual individual

servers (VIS) hosted on a cloud infrastructure such as Amazon R⃝ EC2. Friends contact

each other’s VIS directly for updates. A DHT is used as a directory for groups and

interest-based searches. Their approach assumes bidirectional end-to-end connectivity

between each VIS, where a profile is only available during the up time of the VIS.

Because of the demands on network connectivity and up time, the approach assumes

a cloud-hosted VIS and has difficulty being used on user-owned resources. OverSoc

allows peers to have asymmetric connectivity and does not require constant up time

through the use of NAT traversal support and the ability to store the profile in the

overlay’s distributed data store.

The approach presented by Cutillo et al. [26] relies on a central system to host

identities and certificates that can then be used to query a DHT to discover an initial hop

in a route to a specific peer through their circle of friends. The circle of friends consists

of an unstructured overlay, where direct friends maintain direct connections with the

peer, and outer circles consist of friends of friends and friends of friends of friends.

The main goal of this work is to remove the private components of a profile from a

central entity, whereas OverSoc makes a clean break from all centralization and enables

scalability through distributed replication techniques.

Unlike the above approaches, the P2P social network presented by Abbas et al. [1]

uses an unstructured overlay without a DHT where peers connect directly to each other

rather than through the overlay establishing unique identifiers to deal with dynamic IPs.

Peers cache each other’s data to improve availability, while helper nodes are used to

assist with communication between peers behind NATs. The approach lacks security

and access control considerations and lacks the guarantees and the simplicity of the

abstraction offered by a structured overlay.

168

Figure 7-2. Alice requests and receives a friendship from Bob

7.2 Social Overlays

In this section, I explain how OverSoc maps online social networking to virtual

private overlays consisting of a public directory overlay with many private profile

overlays. The directory overlay supports friend discovery and verification and stores

a lists of peers currently active in each profile overlay. Profile overlays support message

boards, private messages, and media sharing.

7.2.1 Finding Friends

In a traditional social network, directories are used to search for users based upon

public information, such as the user’s full name, user ID (identification), e-mail address,

group affiliations, and friends. The resulting search returns zero or more matching

directory entries. In OverSoc, directory entries are inserted into the DHT of a public

overlay. Since the public information has many components, various subsets form DHT

keys that all point to a common, complete listing of the matching public information. For

example, a user can store a pointer at the DHT key hash(”alice”) or hash(”alicebob”).

The key here is that any subset of the user’s public information in lower-case format can

169

be hashed into a DHT index that would eventually direct the searching user to one or

more users’ public information. More explicit searches could sift through the results and

present to the user only those peers matching all the search parameters. The amount of

information shared publicly should be configurable by the user.

While looking for an individual, a peer may discover that many individuals have

overlapping public information components, such as the user’s name. Assuming all

entries are legitimate, the overlay must have some method of supporting multiple,

distinct values at the same key, requiring the application and user to parse the

responses and determine the best match by reviewing the contents of each certificate.

Alternatively, a technique like Sword [3], which supports attribute based searching, could

be used to efficiently find peers in an overlay.

To address trust levels when searching for friends, a PGP (pretty good privacy)

certificate can be used to store user’s public information and verify user’s friends and

groups. In OverSoc, the main portion of a PGP certificate contains information such

as user name, full name, e-mail address, potentially other user-defined data, and

signature packets from the user and those that trust the certificate including groups and

individuals. These signature packets represent a list of verifiable friends and groups

assisting to further uniquely identify a user. Each time a user befriends someone, they

should exchange signature packets containing at a minimum the friend’s PGP certificate

ID, a signature expiration time, and a signature binding this information with the new

friend’s existing PGP certificate. This increases the trust level of individuals searching

for others especially if they have common friendships or group membership. The use of

a time stamp in the signature assists in deciding whether or not a friendship link is still

active without accessing the profile overlay of either peers. Thus peers that maintain

friendships need to periodically exchange signature packets.

170

Figure 7-3. Alice, already a friend of Bob, connects to his social overlay

7.2.2 Making Friends

In this example, Alice becomes friends with Bob, as illustrated in Figure 7-2. Once

a user, Alice, has found a friend candidate, Bob, Alice can issue a friendship request

and store it in the DHT using the hash of Bob’s certificate as an index, this acts a

public overlay mailbox. Bob can review the public information of Alice prior to making

a decision. If Bob accepts the request, Alice and Bob exchange signature packets and

are granted access to each other’s profiles. Once profile access has been enabled, the

Alice and Bob can learn more information, and if it turns out to be a mistake, either one

of them can unilaterally end the relationship.

Alice’s friendship request should contain a pointer to her certificate in the overlay,

a time stamp, and Bob’s certificate identifier. The friendship request is encrypted using

Bob’s public key and signed using Alice’s private key for the purposes of anonymity

and authenticity. When Bob receives the friendship request, he can verify that the

request was made for Bob by Alice. Upon receiving the friendship request, he has

three choices: a conditional accept, an unconditional accept, or a reject. During an

unconditional accept, Bob signs Alice’s PGP certificate and issues a request to befriend

171

her. Alternatively, he could issue a request to befriend her and wait for her to sign his

certificate and investigates her profile prior to signing hers.

Discovery of a user is not limited to the directory entries. Because users have a

public overlay based mailbox, they are not required to discover each other only through

the directory. Instead, they can use out of band discovery, using mechanisms like e-mail,

chat, or personal websites to exchange certificates. Once a peer has received another

peer’s certificate, they can submit secure friendship requests using the public overlay. In

fact, this sort of system can leverage the trust established by an existing social network

to sign and exchange OverSoc’s certificates.

7.2.3 The Profile Overlay

In a traditional social network, the profile or user-centric portion consists of private

messaging, data sharing, friendship maintenance, and a public message board for

status updates or public messages. In this section, we explain how these components

can be applied to a structured overlay dedicated to an individual profile.

Using the techniques such as those described earlier, it is feasible to efficiently

multiplex a P2P system across multiple, virtual private overlays enabling each profile

owner to have a profile overlay consisting of their online friends. For access control,

OverSoc employs point-to-point encryption and authentication, peers bootstrap private

connections by exchanging the base of the PGP certificate and the profile overlays

signature packet obtained in the “making friends” stage. Because the profile owner

also is the CA, control of which could be distributed across the users resources, for all

members of the overlay, they can easily revoke users from access to the profile overlay.

Chapter 4 describes efficient mechanisms for overlay revocation through the use of

broadcasting for immediate revocation and the use of DHT for indirect and permanent

revocation.

The message board of a profile can be stored in two ways: distributed within the

profile overlay via a data store or stored on the profile owner’s personal computing

172

devices. The distributed data store provides the profile when the owner is offline and

also distributes the load for popular profiles. For higher availability, each peer always

stores and provides all data in their profile when they are online. To ensure authenticity

and integrity, peers sign their messages and each peer’s certificate is available in the

overlay as well as stored by mutual friends for verification. Messages that are unsigned

are ignored by all members of the overlay. An ideal overlay for this purpose should

support complex queries [50] allowing easy access to data stored chronologically, by

content, by type, i.e., media, status updates, or message board discussions.

Private messaging in the profile overlay is unidirectional; only the profile owner

can receive private messages using their overlay. To enforce this, a private message

should be prepended with a symmetric key encrypted by the profile owners public key,

the message should be appended by a signature of the message using the private key

of the message sender, and the entire message encrypted by the symmetric key. This

approach ensures that only the sender and the profile owner can decrypt the private

message and verify the senders identity. The contents of the private message include

the sender, time sent, and the subject. Messages are be stored in well known locations

in the DHT, like “private messages for me”, so that the profile owner can either poll the

location.

7.2.4 Event Based Message Notification

Both the directory and profile overlays have methods by which peers can receive

messages. In the directory overlay, these take form by means of friendship requests and

friendship accepts, certificate signature packets. The profile overlay supports private

messages. While polling the location in the DHT occasionally will allow peers to receive

the messages, polling has inherent delays and network costs. Alternatively, event enable

peers to receive sent messages very quickly after they have been sent with minimal

impact on network throughput.

173

A simple method for implementing an event notification system involves using

the DHT. Each event would have an identification that would map to a list of peers

wanting to know when an event occurred and the data associated with it. Thus mapping

the (eventid , listener) to the DHT could be done by hashing a string such as “private

messages for me” or taking a hash of the user’s certificate hash for public overlay

messages and storing the profile owners active nodes into the list of listeners . When a

message is inserted into the user’s mailbox, the sender could query this list and send to

each listener a notification of the new private message. Alternatively, if a higher degree

of anonymity is required, the DHT server could be modified to forward the response

to the listeners directly rather than returning a list of listeners. Of course, this does not

prevent potential race conditions occurring, such as a situation where a peer recently

joined their profile overlay, had already queried their mailbox and found it empty, while

simultaneously a private message was sent to them yet they were not in the listeners

list. Thus occasional polling is required, though can be minimized, the longer a node has

been online.

7.2.5 Active Peers

The directory overlay should be used to assist in finding currently active peers in

the profile overlays. By placing their node IDs at a well-known, unique per-profile overlay

keys in the DHT, active peers can bootstrap incoming peers into the profile overlay.

I implemented and evaluated this concept in Chapter 4. Because the profile overlay

members all use PKI to ensure membership, even if malicious peers insert their ID

into the active list, it would be useless as the peer would only form connections with

peers who also have a signed certificate. Extending from the earlier example, where

Alice became Bob’s friends, Figure 7-3 presents in detail how she would join his private

overlay.

174

7.2.6 Groups

Groups can be considered extensions of profile overlays. The fundamental

difference between a group and a profile is that a group lacks private messaging and

has shared ownership. So just as a peer can find a profile in the directory by hashing

the name of the user and other identifiable information, so can the user find the group.

Like the certificate of the user, the members of a group sign the group’s certificate

to represent their membership to that group. In OverSoc, users request membership

to the group like they do friendship requests, in response a group manager can sign

their certificate allowing that member access to the group. Finally, the group can be

bootstrapped in the same way as the profile overlay through the directory overlay.

The unique challenge presented by groups is the sharing of the CA task. A

decentralized solution would be for all members of the group to be listed in the

groups DHT and when a peer becomes a manager, they obtain a new signature

packet that contains a user-defined component stating that they are managers. If an

administrator loses their position, then all members who had their certificate signed by

that administrator would need to obtain a new certificate. To avoid member churn, the

owner could provide signature packets for all group members. Thus the managers just

allow temporary access until the owner comes online and provides more permanent

access.

7.3 User Interaction

OverSoc consists of many components that are transparent to the user, the user

experience should appear to the user no differently than an existing online social

network. The OverSoc could be a downloadable application or a browser based

Flash or Silverlight application. If the user, Bob, had already created an account,

Bob would be presented with an interface showing their friends profiles. Based upon

Bob’s configuration, the social application could retrieve profile updates as he navigates

175

to individual profiles or as soon as the application joins an individual profile overlay,

reactive versus proactive profile querying.

If this was Bob’s first time starting OverSoc, he would be presented with screens

asking for his privacy preferences, such as whether or not he wants his information in

the directory overlay, if he felt comfortable enough with the idea of people knowing he

was a member of the social network and who his friends are. Then OverSoc would ask

for personal information to populate his profile and to generate his directory information.

At which point, the OverSoc would join the overlay and create Bob’s private overlay.

Bob could then start searching for friends, make friend requests, and respond to friend

requests.

Recently, Bob had been thinking about his high school days and was curious if

Alice was also a member of OverSoc, though Bob did not have Alice’s e-mail address,

just her first and last name. Bob enters Alice’s name into the OverSoc search box and

is presented by a list of Alice’s. As Bob reviews each of the entries, he recognizes an

Alice that is friend’s with some of the same people Bob was in high school. Bob selects

to become her friend. At which point, the OverSoc transparently inserts a friendship

request to Alice and signs Alice’s certificate so Alice can view Bob’s profile. Of course

that is because Bob has chosen to allow user-initiated friend requests access to his

profile. Alice receives Bob’s request, peruses his profile and feels fine becoming friends

with Bob, which initiates a transparent process of signing Bob’s certificate and placing

the result in the public overlay. There is one problem though, when Bob receives Alice’s

signature and views her profile, he realizes that this is some other Alice. He quickly

chooses to defriend her. This causes Bob’s OverSoc instance to broadcast a revocation

for Alice’s signature and to store the revocation in the DHT. Alice, who was viewing Bob’s

profile, is notified of this sudden loss of trust and while she is able to view the contents of

Bob’s profile, which she has already accessed and obtained, she can no longer receive

updates as members of Bob’s overlay prevent her from accessing it.

176

In another instance, Bob bumped into Carol, who e-mailed Bob a copy of her

certificate. Bob points OverSoc to the certificate, and OverSoc verifies that he wants

to become friends with the identity associated with the certificate. When he accepts,

OverSoc immediately submits a request to become Carol’s friend. Carol receives

notification and accepts Bob’s friendship request. At this point, both Bob and Carol

have transparently exchanged signed certificates and have mutual access to each other

profiles. As Bob reads Carol’s latest news, he remembers a funny personal story and

that he would like to share with Carol. So he sends Carol a private message. Carol

is offline though. The next time Carol goes online, her social application discovers

the message and presents it to her. In this scenario, OverSoc has taken the private

message, secured it with her public key and a symmetric key and signed it with his

private key. After which, it inserts the message into the DHT and sends a notice to the

event notification system, which detects that there were no listeners. When Carol’s

application comes online, it queries the DHT receiving the message. Prior to presenting

Carol the message, the OverSoc decrypts and verifies the message.

The OverSoc architecture can leverage existing social networks to bootstrap trust.

For example, consider Bob and David are two friends on Facebook R⃝. Bob joins a

Facebook R⃝ application called “OverSoc/Facebook R⃝ Bridge”, which stores a copy of

his OverSoc certificate in his personal profile. Bob has been bragging to David about

OverSoc and mentions to him how easy it is to migrate from Facebook R⃝ to OverSoc

using this application. So David joins OverSoc as well as the application. When David

accesses the application, it pastes his certificate to his profile, notifies notifies him that

he has a friend already using it, Bob, and that he can immediately sign Bob’s certificate,

and leaves a request for Bob to sign his certificate. Additionally, when David logs

into OverSoc, he can leave a friend request there as well, so that the next time Bob

accesses Facebook R⃝ or OverSoc, he will receive David’s request and can sign David’s

certificate. At which point, both will have access to each others OverSoc profile overlays.

177

7.4 Challenges

While structured P2P overlays have been well-studied in a variety of applications,

their use in social profile overlays raises new interesting questions, including:

Handling small overlay networks - P2P overlay research typically focuses on

networks larger than the typical user’s friend count (Facebook R⃝’s average is 1301).

Because social profile overlays are comparatively smaller, this can impact the reliability

of the overlay and availability of profile data. A user can host their own profile; however

when the user is disconnected it is important that their profile remains available even

under churn. It is thus important to characterize churn in this application to understand

how to best approach this problem. An optional of per-user deployment of a virtual

individual server (VIS) and the use of replication schemes aware of a user’s resources

provide possible directions to address this issue.

Overlay support for low throughput, unconnected devices - devices such as

smart phones cannot constantly be actively connected to the overlay and the connection

time necessary to retrieve something like a phone number may be too much to make

this approach useful. Similar to the previous challenge, this approach could benefit from

using a VIS enabling users access to their social overlays by proxy without establishing

a direct connection to the overlay network.

Reliability of the directory and profile overlay - Overlays are susceptible

to attacks that can nullify their usefulness. While the profile overlay does have

point-to-point security, in the public, directory overlay, the lack of any form centralization

makes policing the system a complicated procedure. While the approach of appending

friends list can assist users in making decisions on identity, it does not protect against

denial of service attacks. For example, users could attempt create many similar

identities in an attempt to overwhelm a user in their attempt to find a specific peer.

1 http://www.facebook.com/press/info.php?statistics

178

Previous work has proposed methods to ensure the usability of overlays even while

under attack. For the social overlay to be successful, one must identify which methods

should be used. A possible approach is to replicate public information within a user’s

profile overlay thus providing an alternative directory overlay for querying prior to using

the public directory overlay.

Social profile data storage - In previous works, DHTs have been used as the

building blocks to form more complex distributed data stores as presented in Past [95]

and Kosha [17]. Application of data stores will be heavily dependent on the churn rate

associated with the overlay. If the system lacks any reasonably stable membership,

large data files may be corrupted while smaller data sets are completely lost. Ideally,

the usage model would be similar to those of Skype R⃝ and Twitter, which have active

processes for the duration of the computers usage. In an environment like this, data

storage would be limited only by the available bandwidth of the participants.

179

CHAPTER 8
CONCLUSIONS

This work brings significant advances to the usability of VPNs through understanding

important practical applications and verification in both simulation and real deployments.

The architecture explored herein provides a general framework for creating VPNs that

has contributed to various end-point and overlay configurations useful for both large and

small scale deployments for group or personal use.

In order to support a completely ad-hoc, decentralized VPN, users begin by

connecting to a public overlay, such as XMPP or Kademlia, in order to discover other

users. After exchanging their information via these mediums, peers can establish direct

communication links with each other and with other peers already in the VPN. Peers can

exchange or obtain trusted identities using established peer or group relationships in

existing social networks.

Because most peers are behind NATs and firewalls, this dissertation covers

methods, which allow peers to use existing overlays to bootstrap through NATs and

firewalls. This can mean using a third-party system until a peer on a public IP address

comes online, or more likely, using a service to obtain a public IP and port mapping for

the peer’s private address. When peers cannot directly establish direct links, the overlay

still provides the ability to route messages between peers. Routing messages across

the overlay can incur significant overhead and is not optimized for any specific purpose.

To remedy this, I have established a mechanism to create two-hop links between peers

emphasized on the latency between the peers.

This work describes two novel mechanisms for handling address assignments

inside a VPN: using a DHT with atomic capabilities as well as independent networks

with explicit links based upon social connections. The DHT approach allows for highly

scalable systems in comparison to other approaches that require state to be manually

spread across the system or through the use of broadcast mechanisms. By making the

180

network addresses dependent on social links and independent of the actual overlay,

peers need not worry about address collisions. Furthermore, this work explores means

to transparently migrate resources using DHT style addressing even when those

resources are connected via the VPN router.

Existing approaches to VPN placement use either interface or router models.

Interface models can easily be constructed to be transparent, whereas existing router

models have no such features. Through the use of network protocols supported

in network stacks found in common operating systems, mechanisms for support

transparent configuration of both interface and routing models have been detailed.

Where routers are desirable due to performance, and interface is attractive for security

purposes, a hybrid model provides a middle ground that combines these two aspects to

support high-performance, though secure virtual networking.

Because attempting to verify the system in every possible environment after making

adding features or fixing bugs requires a significant time investment, I have employed a

built-in self-simulating environment into Brunet. The application has reduced the time

necessary to develop, evaluate, and debug new contributions as well as reproduce

bugs and protect from having them reoccur. In the context of this dissertation, it has

been used to verify and motivate the necessity for on demand as opposed to passive

connections, as well as the relay, bootstrapping, and security work.

This work has been the corner stone in a real system used to provide ad-hoc grid

computing named the Grid Appliance [114], which has been realized in a voluntary

computing grid for computer architecture research called Archer [37]. Archer currently

spans six universities with over 600 resources. Over hundreds of users have connected

seamlessly to these resources from many locations. A PlanetLab back end distributed

across over 600 resources provides near constant overlay uptime for Archer and

external users. External users include classes and groups at other universities. Most

recently, a grid at La Jolla Institute for Allergy and Immunology went live with minimal

181

communication with our group. Researchers at the Clemson University and Purdue have

opted for this approach over centralized VPNs as the basis of their future distributed

compute clusters and have actively tested networks of over 1000 nodes.

The majority of this dissertation focused on services to enable user-friendly VPNs.

During the design and evaluation, it became apparent that there still exist significant

deficiencies in the design described herein. The following are important research topics

that are left as future research topics. During the evaluation of packet drop rates across

the Internet and in particularly PlanetLab, it is apparent that recursive packet routing

will not scale well especially when dealing with non-negligible traffic. Another aspect

of limited scalability is presented when using a single UDP socket multiplexed across

potentially many VPN connections. Each UDP socket has a small buffer associated

with it. When that buffer is exhausted sends either become blocking or are thrown away,

depending on usage. In terms of VPNs, there still exists a wide gap between IPv6 and

IPv4. My work could be used to assist in deploying IPv6 to IPv4 tunnels, which unlike

existing approaches, have natural fail over support and efficient paths between source

and destination. Finally, the last major draw back to the Grid Appliance is the necessity

for a centralized scheduler / management component. Ideally, this could be handled

in decentralized means with trust, a user rank system for priority, ability to handle

simultaneous scheduling of tasks, and limiting the reliance of a node being online to

receive results for tasks.

182

APPENDIX: STRUCTURED OVERLAY BROADCAST

Figure A-1. Tree-based overlay broadcast

Broadcast revocation can be used to address the deficiencies of DHT revocation.

As a topic of previous research works [32, 111], structured overlays can be used without

additional state to perform efficient broadcasts from any point in the overlay to the entire

overlay. In these papers, analysis and simulations have shown that the approach can

be completed in a network size of n in O(log2 n) time with n messages. The overlay

broadcast algorithm used in this paper provides a complete overlay broadcast in

O(log2 n) time with n messages. When applied to Brunet, as illustrated in Figure A-1,

it utilizes the organization of a structured system with a circular address space that

requires peers be connected to those whose node addresses are the closest to their

own, features typical of one-dimensional structured overlays including Chord [104],

Pastry [94], and Symphony. Using such an organization, it is possible to do perform a

broadcast with no additional state. To perform a broadcast, each node performs the

following recursive algorithm:

BROADCAST(start, end, message):

RECEIVE(message)

183

for i in length(connections) do

n start← ADDRESS(connections[i])

if n start ̸∈ [start, end) then

continue

end if

n end← ADDRESS(connections[i + 1])

if n end ̸∈ [start, end) then

n end← end

end if

msg← (BROADCAST, n start, n end, message)

SEND(connections[i], msg)

end for

with “connections” as a circular list of connections in non-decreasing order from the

perspective of the node performing the current recursive, broadcast step.

In this algorithm, the broadcast initiator uses its own address as the start and

end, thus the broadcast will span the entire overlay after completing recursive calls at

each connected node. A recursive end, “n end”, must be inside the region between

“start” and “end”, thus if the connection following the current sending connection,

“connections[i + 1]”, is not in that region, it will only broadcast up to “end” and not

the address specified by that connection. To summarize, the overlay is recursively

partitioned amongst the nodes at each hop in the broadcast. By doing so, all nodes

receive the broadcast without receiving duplicate broadcast messages.

184

REFERENCES

[1] S. M. A. Abbas, J. A. Pouwelse, D. H. J. Epema, and H. J. Sips. A gossip-based
distributed social networking system. In Enabling Technologies, IEEE International
Workshops on, 2009.

[2] H. Abbes, C. Cérin, and M. Jemni. Bonjourgrid: Orchestration of multi-instances
of grid middlewares on institutional desktop grids. In International Parallel and
Distributed Processing Symposium (IPDPS), 2009.

[3] J. Albrecht, D. Oppenheimer, A. Vahdat, and D. A. Patterson. Design and
implementation trade-offs for wide-area resource discovery. In ACM Trans.
Internet Technol., 2008.

[4] S. Alexander and R. Droms. RFC 2132 DHCP Options and BOOTP Vendor
Extensions, March 1997.

[5] Amazon.com, Inc. Amazon elastic compute cloud. http://aws.amazon.com/ec2,
2009.

[6] D. P. Anderson. Boinc: A system for public-resource computing and storage. In
the International Workshop on Grid Computing, 2004.

[7] N. Andrade, L. Costa, G. Germoglio, and W. Cirne. Peer-to-peer grid computing
with the ourgrid community. In Brazilian Symposium on Computer Networks, May
2005.

[8] N. Andrade, L. Costa, G. Germglio, and W. Cirne. Peer-to-peer grid computing
with the ourgrid community. In Brazilian Symposium on Computer Networks
(SBRC) - 4th Special Tools Session, 2005.

[9] P. Andreetto, S. Andreozzi, G. Avellino, S. Beco, A. Cavallini, M. Cecchi,
V. Ciaschini, A. Dorise, F. Giacomini, A. Gianelle, U. Grandinetti, A. Guarise,
A. Krop, R. Lops, A. Maraschini, V. Martelli, M. Marzolla, M. Mezzadri, E. Molinari,
S. Monforte, F. Pacini, M. Pappalardo, A. Parrini, G. Patania, L. Petronzio, R. Piro,
M. Porciani, F. Prelz, D. Rebatto, E. Ronchieri, M. Sgaravatto, V. Venturi, and
L. Zangrando. The glite workload management system. Journal of Physics:
Conference Series, 119(6):062007, 2008.

[10] Azurues. Message stream encryption. http://www.azureuswiki.com/index.php/
Message_Stream_Encryption, December 2007.

[11] A. Biggadike, D. Ferullo, G. Wilson, and A. Perrig. NATBLASTER: Establishing
TCP connections between hosts behind NATs. In ACM SIGCOMM Asia Work-
shop, April 2005.

[12] F. Bondoux. Campagnol : distributed vpn over udp/dtls. http://campagnol.

sourceforge.net, 2010.

185

http://aws.amazon.com/ec2
http://www.azureuswiki.com/index.php/Message_Stream_Encryption
http://www.azureuswiki.com/index.php/Message_Stream_Encryption
http://campagnol.sourceforge.net
http://campagnol.sourceforge.net

[13] P. O. Boykin, J. S. A. Bridgewater, J. S. Kong, K. M. Lozev, B. A. Rezaei, and V. P.
Roychowdhury. A symphony conducted by brunet. http://arxiv.org/abs/0709.
4048, 2007.

[14] D. Bryan, B. Lowekamp, and C. Jennings. Sosimple: A serverless,
standards-based, p2p sip communication system. In Advanced Architectures
and Algorithms for Internet Delivery and Applications, June 2005.

[15] S. Buchegger and A. Datta. A case for P2P infrastructure for social networks -
opportunities & challenges. In WONS ’09: The Sixth International Conference on
Wireless On-demand Network Systems and Services, 2009.

[16] S. Buchegger, D. Schiöberg, L. H. Vu, and A. Datta. Peerson: P2p social
networking: early experiences and insights. In Workshop on Social Network
Systems, 2009.

[17] A. R. Butt, T. A. Johnson, Y. Zheng, and Y. C. Hu. Kosha: A peer-to-peer
enhancement for the network file system. In IEEE/ACM Supercomputing, 2004.

[18] S. Carl-Mitchell and J. S. Quarterman. RFC 1027 - using arp to implement
transparent subnet gateways, October 1987.

[19] M. Castro, M. Costa, and A. Rowstron. Debunking some myths about structured
and unstructured overlays. In Symposium on Networked Systems Design &
Implementation, 2005.

[20] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wallach. Security for
structured peer-to-peer overlay networks. In Symposium on Operating Systems
Design and Implementaion (OSDI), December 2002.

[21] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron. One ring to rule them
all: Service discover and binding in structured peer-to-peer overlay networks. In
Symposium on Operating Systems Principles (SOSP) European Workshop, Sept.
2002.

[22] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: a distributed storage system for
structured data. In Symposium on Operating Systems Design and Implementation
(OSDI), 2006.

[23] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak, and
M. Bowman. Planetlab: an overlay testbed for broad-coverage services. SIG-
COMM Comput. Commun. Rev., 2003.

[24] M. Conrad and H.-J. Hof. A generic, self-organizing, and distributed bootstrap
service for peer-to-peer networks. In International Workshop on Self-Organizing
Systems (IWSOS), 2007.

186

http://arxiv.org/abs/0709.4048
http://arxiv.org/abs/0709.4048

[25] C. Cramer, K. Kutzner, and T. Fuhrmann. Bootstrapping locality-aware p2p
networks. In International Conference on Networks (ICON), 2004.

[26] L. A. Cutillo, R. Molva, and T. Strufe. Privacy preserving social networking
through decentralization. In Wireless On-Demand Network Systems and Services
(WONS), 2009.

[27] H. Damfpling. Gnutella web caching system. http://www.gnucleus.com/

gwebcache/specs.html, 2003.

[28] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: amazon’s highly
available key-value store. In Symposium on Operating Systems Principles
(SOSP), New York, NY, USA, 2007. ACM.

[29] L. Deri and R. Andrews. N2N: A layer two peer-to-peer vpn. In International
conference on Autonomous Infrastructure, Management and Security, 2008.

[30] J. R. Douceur. The sybil attack. In International Workshop on Peer-to-Peer
Systems, pages 251–260. Springer-Verlag, 2002.

[31] R. Droms. RFC 2131 Dynamic Host Configuration Protocol, March 1997.

[32] S. El-Ansary, L. Alima, P. Brand, and S. Haridi. Efficient broadcast in structured
p2p networks. In International Workshop on Peer-to-Peer Systems (IPTPS), 2003.

[33] D. H. J. Epema, M. Livny, R. van Dantzig, X. Evers, and J. Pruyne. A worldwide
flock of condors: Load sharing among workstation clusters. Future Generation
Computer Systems, 12(1):53 – 65, 1996.

[34] E. Exa. CloudVPN. http://e-x-a.org/?view=cloudvpn, September 2009.

[35] D. Fabrice. Skype uncovered. http://www.ossir.org/windows/supports/2005/

2005-11-07/EADS-CCR_Fabrice_Skype.pdf, November 2005.

[36] Facebook. Facebook. http://www.facebook.com, January 2010.

[37] R. J. Figueiredo, P. O. Boykin, J. A. B. Fortes, T. Li, J. Peir, D. Wolinsky,
L. K. John, D. R. Kaeli, D. J. Lilja, S. A. McKee, G. Memik, A. Roy, and G. S.
Tyson. Archer: A community distributed computing infrastructure for computer
architecture research and education. In CollaborateCom, November 2008.

[38] R. J. Figueiredo, P. O. Boykin, P. S. Juste, and D. Wolinsky. Integrating overlay
and social networks for seamless p2p networking. In Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises, 2008.

[39] R. J. Figueiredo, P. A. Dinda, and J. A. B. Fortes. A case for grid computing on
virtual machines. In International Conference on Distributed Computing Systems.
IEEE Computer Society, 2003.

187

http://www.gnucleus.com/gwebcache/specs.html
http://www.gnucleus.com/gwebcache/specs.html
http://e-x-a.org/?view=cloudvpn
http://www.ossir.org/windows/supports/2005/2005-11-07/EADS-CCR_Fabrice_Skype.pdf
http://www.ossir.org/windows/supports/2005/2005-11-07/EADS-CCR_Fabrice_Skype.pdf
http://www.facebook.com

[40] I. Foster. Globus toolkit version 4: Software for service-oriented systems.
Journal of Computer Science and Technology, 21:513–520, 2006.
10.1007/s11390-006-0513-y.

[41] A. Ganguly, A. Agrawal, O. P. Boykin, and R. Figueiredo. IP over P2P: Enabling
self-configuring virtual IP networks for grid computing. In International Parallel and
Distributed Processing Symposium, 2006.

[42] A. Ganguly, A. Agrawal, P. O. Boykin, and R. Figueiredo. Wow: Self-organizing
wide area overlay networks of virtual workstations. In IEEE High Performance
Distributed Computing (HPDC), June 2006.

[43] A. Ganguly, P. O. Boykin, D. Wolinsky, and R. J. Figueiredo. Improving peer
connectivity in wide-area overlays of virtual workstations. Cluster Computing
Journal, 7 2009.

[44] A. Ganguly, D. Wolinsky, P. Boykin, and R. Figueiredo. Decentralized dynamic host
configuration in wide-area overlays of virtual workstations. In International Parallel
and Distributed Processing Symposium, March 2007.

[45] C. GauthierDickey and C. Grothoff. Bootstrapping of peer-to-peer networks. In
International Symposium on Applications and the Internet, 2008.

[46] W. Ginolas. P2PVPN. http://p2pvpn.org, 2009.

[47] B. Gleeson, A. Lin, J. Heinanen, T. Finland, G. Armitage, and A.Malis. RFC 2764
a framework for IP based virtual private networks, February 2000.

[48] S. Guha, N. Daswani, and R. Jain. An experimental study of the skype
peer-to-peer voip system. In International Workshop on Peer-to-Peer Systems,
2006.

[49] K. P. Gummadi, S. Saroiu, and S. D. Gribble. King: Estimating latency between
arbitrary internet end hosts. In SIGCOMM Internet Measurement Workshop,
2002.

[50] M. Harren, J. M. Hellerstein, R. Huebsch, B. T. Loo, S. Shenker, and I. Stoica.
Complex queries in dht-based peer-to-peer networks. In International Workshop
on Peer-to-Peer Systems, 2002.

[51] A. Harutyunyan, P. Buncic, T. Freeman, and K. Keahey. Dynamic virtual AliEn grid
sites on nimbus with CernVM. Journal of Physics: Conference Series, 2010.

[52] B. Hubert. tc - linux advanced routing & traffic control. http://lartc.org/, June
2009.

[53] X. Jiang and D. Xu. Violin: Virtual internetworking on overlay. In International
Symposium on Parallel and Distributed Processing and Applications, pages
937–946, 2003.

188

http://p2pvpn.org
http://lartc.org/

[54] R. Jones. Netperf: A network performance monitoring tool. http://www.netperf.
org, 2009.

[55] D. Joseph, J. Kannan, A. Kubota, K. Lakshminarayanan, I. Stoica, and K. Wehrle.
Ocala: an architecture for supporting legacy applications over overlays. In
Symposium on Networked Systems Design & Implementation, pages 20–20,
2006.

[56] P. S. Juste, D. Wolinsky, P. Oscar Boykin, M. J. Covington, and R. J. Figueiredo.
SocialVPN: Enabling wide-area collaboration with integrated social and overlay
networks. Computer Networking, 54:1926–1938, August 2010.

[57] M. Kallahalla, M. Uysal, R. Swaminathan, D. E. Lowell, M. Wray, T. Christian,
N. Edwards, C. I. Dalton, and F. Gittler. SoftUDC: A software-based data center for
utility computing. Computer, 37(11):38–46, 2004.

[58] K. Keahey, K. Doering, and I. Foster. From sandbox to playground: Dynamic
virtual environments in the grid. In International Workshop in Grid Computing,
November 2004.

[59] K. Keahey and T. Freeman. Contextualization: Providing one-click virtual clusters.
In eScience, 2008.

[60] K. Keahey and T. Freeman. Science clouds: Early experiences in cloud computing
for scientific applications. In Cloud Computing and Its Applications, 2008.

[61] C. C. Keir, C. Clark, K. Fraser, S. H, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield. Live migration of virtual machines. In Symposium on Networked
Systems Design and Implementation, pages 273–286, 2005.

[62] M. Knoll, A. Wacker, G. Schiele, and T. Weis. Bootstrapping in peer-to-peer
systems. In International Conference on Parallel and Distributed Systems
(IPDPS), 2008.

[63] M. Krasnyansky. Universal tun/tap device driver. http://vtun.sourceforge.net/
tun, 2005.

[64] A. Lakshman. Cassandra a structured storage system on a P2P network.
http://www.facebook.com/note.php?note_id=24413138919, August 2008.

[65] M. Livny, J. Basney, R. Raman, and T. Tannenbaum. Mechanisms for high
throughput computing. SPEEDUP Journal, 11(1), June 1997.

[66] G. LLC. Gbridge. http://www.gbridge.com, September 2009.

[67] LogMeIn. Hamachi. https://secure.logmein.com/products/hamachi2/, 2009.

[68] LogMeIn, Inc. LogMeIn hamachi2 security, 2009.

189

http://www.netperf.org
http://www.netperf.org
http://vtun.sourceforge.net/tun
http://vtun.sourceforge.net/tun
http://www.facebook.com/note.php?note_id=24413138919
http://www.gbridge.com
https://secure.logmein.com/products/hamachi2/

[69] S. Ludwig, J. Beda, P. Saint-Andre, R. McQueen, S. Egan, and J. Hildebran.
XEP-0166: Jingle, December 2009.

[70] H. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson, A. Krishnamurthy,
and A. Venkataramani. iplane: an information plane for distributed services. In
USENIX Symposium on Operating Systems Design and Implementation (OSDI),
2006.

[71] G. S. Manku, M. Bawa, and P. Raghavan. Symphony: distributed hashing in a
small world. In USITS, 2003.

[72] P. Maymounkov and D. Mazières. Kademlia: A peer-to-peer information system
based on the XOR metric. In International Workshop on Peer-to-Peer Systems,
2002.

[73] A. Mislove, A. Post, A. Haeberlen, and P. Druschel. Experiences in building and
operating epost, a reliable peer-to-peer application. In Symposium on Operat-
ing Systems Principles (SOSP)/EuroSys European Conference on Computer
Systems, 2006.

[74] MySpace, Inc. Myspace. http://www.myspace.com, January 2010.

[75] M. Nelson, B.-H. Lim, and G. Hutchins. Fast transparent migration for virtual
machines. In USENIX Annual Technical Conference, pages 25–25, Berkeley, CA,
USA, 2005.

[76] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and
D. Zagorodnov. The eucalyptus open-source cloud-computing system. In
IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid),
2009.

[77] J. C. Perez. Facebook’s beacon more intrusve than previously thought. http:

//www.pcworld.com/article/140182/facebooks_beacon_more_intrusive_than_

previously_thought.html, 2007.

[78] S. Perreault and J. Rosenberg. TCP candidates with interactive
connectivity establishment (ICE). http://tools.ietf.org/html/

draft-ietf-mmusic-ice-tcp-08, October 2009.

[79] K. Petric. Wippien. http://wippien.com/, August 2009.

[80] J. Postel. RFC 0925 - multi-lan address resolution, 1984.

[81] Qumranet. Kernel-based virtual machine for linux. http://kvm.qumranet.com/

kvmwiki, March 2007.

[82] S. Ratnasamy, P. Francis, S. Shenker, and M. Handley. A scalable
content-addressable network. In ACM SIGCOMM, 2001.

190

http://www.myspace.com
http://www.pcworld.com/article/140182/facebooks_beacon_more_intrusive_than_previously_thought.html
http://www.pcworld.com/article/140182/facebooks_beacon_more_intrusive_than_previously_thought.html
http://www.pcworld.com/article/140182/facebooks_beacon_more_intrusive_than_previously_thought.html
http://tools.ietf.org/html/draft-ietf-mmusic-ice-tcp-08
http://tools.ietf.org/html/draft-ietf-mmusic-ice-tcp-08
http://wippien.com/
http://kvm.qumranet.com/kvmwiki
http://kvm.qumranet.com/kvmwiki

[83] E. Rescorla and N. Modadugu. RFC 4347 datagram transport layer security, April
2006.

[84] C. Resources. Torque resource manager. http://www.clusterresources.com/

pages/products/torque-resource-manager.php, March 2007.

[85] A. Rezmerita, T. Morlier, V. Neri, and F. Cappello. Private virtual cluster:
Infrastructure and protocol for instant grids. In Euro-Par, November 2006.

[86] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker, I. Stoica,
and H. Yu. Opendht: a public dht service and its uses. In Conference on Appli-
cations, technologies, architectures, and protocols for computer communications,
pages 73–84, New York, NY, USA, 2005. ACM.

[87] M. Ripeanu. Peer-to-peer architecture case study: Gnutella network. http:

//www.cs.uchicago.edu/%7Ematei/PAPERS/gnutella-rc.pdf, 2001.

[88] E. Rosen and Y. Rekhter. RFC 2547 BGP/MPLS VPNs, March 1999.

[89] J. Rosenberg. Interactive connectivity establishment (ICE): A protocol for
network address translator (NAT) traversal for offer/answer protocols. http:

//tools.ietf.org/html/draft-ietf-mmusic-ice-19, October 2008.

[90] J. Rosenberg, R. Mahy, and P. Matthews. ”traversal using relays around nat
(turn)”. http://tools.ietf.org/html/draft-ietf-behave-turn-16, 2009.

[91] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing. RFC 3489 session traversal
utilities for nat (STUN), October 2008.

[92] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing. RFC 3489 session traversal
utilities for nat (STUN), October 2008.

[93] J. Rosenberg, J. Weinberger, C. Huitema, and R. Mahy. RFC 3489 stun - simple
traversal of user datagram protocol (udp) through network address translators
(nats), 2003.

[94] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location
and routing for large-scale peer-to-peer systems. In IFIP/ACM International
Conference on Distributed Systems Platforms (Middleware), November 2001.

[95] A. Rowstron and P. Druschel. Storage management and caching in PAST, a
large-scale, persistent peer-to-peer storage utility. In Symposium on Operating
Systems Principles (SOSP), 2001.

[96] P. Saint-Andre. RFC 3920 extensible messaging and presence protocol (XMPP):
Core, October 2004.

[97] S. Santhanam, P. Elango, A. A. Dusseau, and M. Livny. Deploying virtual
machines as sandboxes for the grid. In WORLDS, 2005.

191

http://www.clusterresources.com/pages/products/torque-resource-manager.php
http://www.clusterresources.com/pages/products/torque-resource-manager.php
http://www.cs.uchicago.edu/%7Ematei/PAPERS/gnutella-rc.pdf
http://www.cs.uchicago.edu/%7Ematei/PAPERS/gnutella-rc.pdf
http://tools.ietf.org/html/draft-ietf-mmusic-ice-19
http://tools.ietf.org/html/draft-ietf-mmusic-ice-19
http://tools.ietf.org/html/draft-ietf-behave-turn-16

[98] A. Shakimov, H. Lim, L. P. Cox, and R. Caceres. Vis-à-vis:online social networking
via virtual individual servers, May 2008.

[99] Skype Limited. Skype. http://www.skype.com.

[100] G. Sliepen. tinc. http://www.tinc-vpn.org/, September 2009.

[101] P. Srisuresh, B. Ford, and D. Kegel. RFC 5128 State of Peer-to-Peer (P2P)
Communication across Network Address Translators (NATs), March 2008.

[102] Standard Performance Evaluation Corporation. Specjbb2005. http://www.spec.
org/jbb2005/, 2005.

[103] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana. Internet indirection
infrastructure. IEEE/ACM Transactions on Networking, 2004.

[104] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek,
and H. Balakrishnan. Chord: a scalable peer-to-peer lookup protocol for internet
applications. IEEE/ACM Transactions on Networking, 11(1), 2003.

[105] Sun. gridengine. http://gridengine.sunsource.net/, March 2007.

[106] A. I. Sundararaj and P. A. Dinda. Towards virtual networks for virtual machine
grid computing. In Conference on Virtual Machine Research And Technology
Symposium, pages 14–14, 2004.

[107] W. Townsley, A. Valencia, A. Rubens, G. Pall, G. Zorn, and B. Palter. RFC 2661
Layer Two Tunneling Protocol, August 1999.

[108] M. Tsugawa and J. Fortes. A virtual network (vine) architecture for grid computing.
International Parallel and Distributed Processing Symposium, 2006.

[109] M. Tsugawa and J. Fortes. Characterizing user-level network virtualization:
Performance, overheads and limits. In IEEE International Conference on
eScience, pages 206–213, Dec. 2008.

[110] UPnP Forum. UPnP device architecture 1.1. http://www.upnp.org/specs/arch/
UPnP-arch-DeviceArchitecture-v1.1.pdf, October 2008.

[111] V. Vishnevsky, A. Safonov, M. Yakimov, E. Shim, and A. D. Gelman. Scalable blind
search and broadcasting over distributed hash tables. Computer Communications,
31(2), 2008.

[112] VMware, Inc. Timekeeping in vmware virtual machines. http://www.vmware.com/
pdf/vmware_timekeeping.pdf, 2008.

[113] D. I. Wolinsky, A. Agrawal, P. O. Boykin, J. Davis, A. Ganguly, V. Paramygin,
P. Sheng, and R. J. Figueiredo. On the design of virtual machine sandboxes for
distributed computing in wide area overlays of virtual workstations. In International
Workshop on Virtualization Technologies in Distributed Computing, 2006.

192

http://www.skype.com
http://www.tinc-vpn.org/
http://www.spec.org/jbb2005/
http://www.spec.org/jbb2005/
http://gridengine.sunsource.net/
http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.1.pdf
http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.1.pdf
http://www.vmware.com/pdf/vmware_timekeeping.pdf
http://www.vmware.com/pdf/vmware_timekeeping.pdf

[114] D. I. Wolinsky and R. Figueiredo. Grid appliance user interface. http://www.

grid-appliance.org, September 2009.

[115] D. I. Wolinsky, K. Lee, P. O. Boykin, and R. Figueiredo. On the design of
autonomic, decentralized vpns. In International Conference on Collaborative
Computing: Networking, Applications and Worksharing, 2010.

[116] D. I. Wolinsky, Y. Liu, P. S. Juste, G. Venkatasubramanian, and R. Figueiredo.
On the design of scalable, self-configuring virtual networks. In IEEE/ACM
Supercomputing 2009, November 2009.

[117] D. I. Wolinsky, P. St. Juste, P. O. Boykin, and R. Figueiredo. Addressing the
P2P bootstrap problem for small overlay networks. In 10th IEEE International
Conference on Peer-to-Peer Computing (P2P), 2010.

[118] C. P. Wright and E. Zadok. Unionfs: Bringing file systems together. In Linux
Journal, December 2004.

[119] XMPP Standards Foundation. Public XMPP services. http://xmpp.org/

services/, December 2009.

[120] J. Yonan. OpenVPN. http://openvpn.net/, 2009.

193

http://www.grid-appliance.org
http://www.grid-appliance.org
http://xmpp.org/services/
http://xmpp.org/services/
http://openvpn.net/

BIOGRAPHICAL SKETCH

David Isaac Wolinsky was born on October 31, 1982. He was blessed with an

awesome, Isaac Emmanuel, born November 30, 2009. Beginning his studies in August

2001 at the University of Florida, David obtained the following degrees in electrical and

computer engineering: Bachelor of Science in spring 2005, Master of Science in spring

2007, and Doctorate of Philosophy in summer 2011. His advisor at the University of

Florida was Professor Renato Figueiredo, whom he began working with since the during

the spring of 2006 at the Advanced Computing and Information Systems Lab.

His primary research focuses are network virtualization using structured P2P

(peer-to-peer) overlays and grid computing. The networking research has been realized

in IPOP, a free (BSD - Berkeley Software Distribution licence)) network virtualization

software. Additionally, he has worked on enabling DHTs, decentralized NAT (network

address translation) traversal through relays, software models for improved network

virtualization, and autonomic virtual networking stacks. This work is a major contribution

to his grid computing research focus, Grid Appliance, which enables the creation of

decentralized, distributed grids using virtualized, physical, and cloud resources. Going

forward, he expressed great interested in using these concepts in other distributed

systems such as sensor networks, social networks, cloud services, or even web

services.

During his free time, he enjoys time with my boy, running, playing basketball, and

occasionally playing video games. At one point, he was ranked in the top 20 on the US

East Warcraft III Free For All Ladder.

194

	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	1 INTRODUCTION
	1.1 Virtual Private Network Basics
	1.2 Computer Network Architectures
	1.3 Structured Overlays
	1.4 Network Asymmetries
	1.5 Contributions

	2 VIRTUAL NETWORK CONFIGURATION AND ORGANIZATION
	2.1 Network Configuration
	2.1.1 Centralized VPN Systems
	2.1.2 Centralized P2P VPN Systems
	2.1.3 Decentralized VPN Systems
	2.1.4 Unstructured P2P VPN Systems
	2.1.5 Structured P2P VPN Systems

	2.2 Local Configuration
	2.2.1 Local VPN Architecture
	2.2.2 Address Resolution
	2.2.3 Address Allocation
	2.2.4 Domain Name Servers and Services

	2.3 Supporting Migration
	2.4 Evaluation of VPN Network Configuration
	2.5 Evaluation of VPN Local Configuration
	2.5.1 On the Grid
	2.5.2 In the Clouds

	3 BOOTSTRAPPING PRIVATE OVERLAYS
	3.1 Current Bootstrap Solutions
	3.2 Core Requirements
	3.2.1 Reflection
	3.2.2 Relaying
	3.2.3 Rendezvous

	3.3 Implementations
	3.3.1 Using Brunet
	3.3.2 Using XMPP

	3.4 Evaluating Overlay Bootstrapping
	3.4.1 Deployment Experiments
	3.4.2 Deployment Experiences

	4 FROM OVERLAYS TO SECURE VIRTUAL PRIVATE NETWORKS
	4.1 Experimental Environment
	4.2 Towards Private Overlays
	4.2.1 Time to Bootstrap a Private Overlay
	4.2.2 Overhead of Pathing

	4.3 Security for the Overlay and the VPN
	4.3.1 Implementing Overlay Security
	4.3.2 Overheads of Overlay Security
	4.3.2.1 Adding a Single Node
	4.3.2.2 Bootstrapping an Overlay

	4.3.3 Discussion

	4.4 Handling User Revocation
	4.4.1 DHT Revocation
	4.4.2 Broadcast Revocation
	4.4.3 Evaluation of Broadcast
	4.4.4 Discussion

	4.5 Managing and Configuring the VPN
	4.6 Leveraging Trust from Online Social Networks
	4.6.1 Architecture
	4.6.2 Leveraging Trust From Facebook
	4.6.3 Leveraging Trust from XMPP
	4.6.4 Address Allocations and Discovery

	4.7 Related Work
	4.7.1 VPNs
	4.7.2 P2P Systems

	5 EXTENSIONS TO P2P OVERLAYS AND VIRTUAL NETWORKS
	5.1 Built-in Self-Simulation
	5.1.1 Time-Based Events
	5.1.2 Network Communication
	5.1.3 User Actions
	5.1.4 The Rest of the System
	5.1.5 Optimizations

	5.2 Efficient Relays
	5.2.1 Motivation for Relays in the Overlay
	5.2.2 Comparing Relay Selection

	5.3 Policies for Establishing Direct Connections
	5.3.1 Limitations
	5.3.2 On-Demand Connections

	5.4 Broadcasting IP Broadcast and Multicast Packets Via the Overlay
	5.5 Full Tunnel VPN Operations
	5.5.1 The Gateway
	5.5.2 The Client
	5.5.3 Full Tunnel Overhead

	6 AD-HOC, DECENTRALIZED GRIDS
	6.1 WOWs
	6.1.1 P2P Overlays
	6.1.2 Virtual Private Networks
	6.1.3 Virtual Machines in Grid Computing

	6.2 Architectural Overview
	6.2.1 Web Interface and the Community
	6.2.2 The Organization of the Grid
	6.2.2.1 Selecting a Middleware
	6.2.2.2 Self-Organizing Condor
	6.2.2.3 Putting It All Together

	6.2.3 Sandboxing Resources
	6.2.3.1 Securing the Resources
	6.2.3.2 Respecting the Host
	6.2.3.3 Decentralized Submission of Jobs

	6.3 Deploying a Campus Grid
	6.3.1 Background
	6.3.2 Traditional Configuration of a Campus Grid
	6.3.3 Grid Appliance in a Campus Grid
	6.3.4 Comparing the User Experience
	6.3.5 Quantifying the Experience

	6.4 Lessons Learned
	6.4.1 Deployments
	6.4.2 Towards Unvirtualized Environments
	6.4.3 Advantages and Challenges of the Cloud
	6.4.4 Stacked File Systems
	6.4.5 Priority in Owned Resources
	6.4.6 Timing in Virtual Machines
	6.4.7 Selecting a VPN IP Address Range
	6.4.8 Administrator Backdoor

	6.5 Related Work

	7 SOCIAL PROFILE OVERLAYS
	7.1 Related Works
	7.2 Social Overlays
	7.2.1 Finding Friends
	7.2.2 Making Friends
	7.2.3 The Profile Overlay
	7.2.4 Event Based Message Notification
	7.2.5 Active Peers
	7.2.6 Groups

	7.3 User Interaction
	7.4 Challenges

	8 CONCLUSIONS
	APPENDIX: STRUCTURED OVERLAY BROADCAST
	REFERENCES
	BIOGRAPHICAL SKETCH

