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Abstract—This paper presents CloudBay, an online resource
trading and leasing platform for multi-party resource sharing.
Following a market-oriented design principle, CloudBay provides
an abstraction of a shared virtual resource space across multiple
administration domains, and features enhanced functionalities for
scalable and automatic resource management and efficient service
provisioning. CloudBay distinguishes itself from existing research
and contributes in a number of aspects. First, it leverages scalable
network virtualization and self-configurable virtual appliances
to facilitate resource federation and parallel application de-
ployment. Second, CloudBay adopts an eBay-style transaction
model that supports differentiated services with different levels
of job priorities. For cost-sensitive users, CloudBay implements
an efficient matchmaking algorithm based on auction theory and
enables opportunistic resource access through preemptive service
scheduling. The proposed CloudBay platform stands between
HPC service sellers and buyers, and offers a comprehensive solu-
tion for resource advertising and stitching, transaction manage-
ment, and application-to-infrastructure mapping. In this paper,
we present the design details of CloudBay, and discuss lessons
and challenges encountered in the implementation process. The
proof-of-concept prototype of CloudBay is justified through
experiments across multiple sites and extensive simulations.

I. INTRODUCTION

The emerging cloud computing paradigm reshapes the way
IT services are delivered with its ability to elastically grow
and shrink the resource provisioning capacity on demand.
It launches a new chapter for e-science and e-engineering
applications that offers High Performance Computing (HPC)
at scale. For example, the recent published top500 list includes
Amazon’s EC2 virtual cluster composed of over one thousand
cc2.8xlarge instances [1]. In order to realize HPC-as-a-service
with the full potential of cloud computing, it is best to take
advantage of resources in an open marketplace across multiple
clouds [2]. However, two major challenges still remain to
be addressed. First, although end users are liberated from
the arduous task of resource configuration, this burden is
transferred to computational resource providers. Existing work
either limits service to local area connectivity [3], or requires
nontrivial resource and networking setup among all resource
contributors [4]. Second, there lacks a flexible application-to-
infrastructure mapping mechanism that accommodates differ-
entiated service requirements and at the same time, maintains
high efficiency for resource allocation across multiple clouds.
Finally, it is critical to implement a fair pricing scheme in a
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multi-party cloud environment for both resource sellers and
customers.

To overcome these hurdles, we propose CloudBay as a
full-fledged solution for computational resource sharing and
trading in an open cloud environment. CloudBay addresses the
first challenge by incorporating decentralized self-configurable
networking and self-packaging cloud toolsets. This design
breaks the barrier of proprietary clouds and reduces efforts
for resource joining, maintenance and query. It also helps
cloud resource customers to deploy and maintain their appli-
cations using the shared cloud infrastructure. To address the
second challenge, CloudBay implements an eBay-style trading
mechanism. Specifically, user requests are classified as quality-
sensitive and cost-sensitive depending on the offers the users
are willing to make. The service scheduler in CloudBay as-
signs higher priorities to quality-sensitive service requests, and
allows opportunistic provisioning of under-utilized resources
through preemptive application execution. The competition
among cost-sensitive service requests are resolved by an
efficient auction mechanism that guarantees resource access
for those users who value them the most. Service scheduling
in CloudBay also supports distributed sites bid for jobs for op-
timal system-wide performance. Our proposed market-driven
solution differs from Amazon’s on-demand and spot [aaS in
the following two aspects: (1) CloudBay is more flexible than
Amazon’s spot market because it allows for partially fulfilling
user requests, whereas EC2 spot market only supports all-or-
none resource acquisition. This feature is useful as HPC users
often have fuzzy resource demand [5]. (2) Resource auction
in CloudBay is based on a novel Ausubel auction model that
encourages truthful bidding (i.e., bidders bid based on their
true valuation), and achieves Vickrey efficiency compared with
Amazon’s spot market auction. We believe that the exploratory
investigation presented in this study can open up significant
perspectives of merging HPC and cloud computing in the long
run.

In this study, we demonstrate that the following features
render CloudBay a favorable implementation for HPC-as-a-
service in an open cloud environment:

o Scalable resource federation: Leveraging P2P-based
virtual networking, CloudBay achieves scalable resource
bridging by disseminating routing information in a de-
centralized fashion.

o Self-configurable resource provisioning: We develop
a number of programs to automate network configura-



tion and application deployment in CloudBay. Our work
greatly simplifies the task of resource providers and
provides timely services to end users.

« Fair resource allocation: A fair allocation of resources
allows the service qualities received by end users to
be proportional to the values they pay. In CloudBay,
we implement an efficient market-driven matchmaking
mechanism to achieve this goal.

o Flexible resource usage: CloudBay accommodates a
variety of resource usage models and offers differentiated
levels of services to end users. For example, it can support
both rigid and flexible parallel application execution.

The rest of the paper is organized as follows. In Section II,
we provide an overview of CloudBay and introduce the design
and implementation of virtualization tools facilitating resource
sharing. In Section III, we explain the details of the job
scheduling algorithms in CloudBay. The evaluation results
of our prototype CloudBay implementation are presented in
Section IV. Section V describes related work to our proposed
system. And finally, we conclude our paper and discuss
possible future research directions in Section VI.

II. DESIGN OVERVIEW

A. Architecture
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Fig. 1. CloudBay Architecture

Figure 1 depicts the architecture of CloudBay. The design
goal of CloudBay is to provide a suite of tools that facili-
tate computational resource sharing and enhance application-
to-infrastructure mapping. To fulfill this goal, CloudBay is
designed as a service-oriented architecture that seamlessly
bridges the gap between applications and resources. First,
CloudBay provides resource virtualization services on top of
the bare hardware, including: (1) a P2P virtual networking
tool that supports scalable and cross-domain resource stitch-
ing; and (2) an application-aware VM image called Cloud
Appliance that packages grid/cloud computing toolsets and
self-configurable networking facilities. With the support of
the virtualization service, computational resources residing on
different domains can be easily connected together to form an
ad-hoc cluster over wide-area networks.

Next, accompanied by the virtualization services, CloudBay
offers market-oriented resource-request matchmaking services
for both quality-sensitive and budget-sensitive users. The core
functionalities include: (1) an account manager managing
resource seller and buyer accounts; (2) a transaction negotiator

that helps to arrange user requests based on the supply and
demand level of the current resource market; (3) an auction
engine that resolves resource competition when necessary;
and (4) a payment collector that collects fees for resource
rental. We will cover the details of the market-driven service
scheduling scheme in Section III.

Finally, CloudBay offers a variety of popular programming
models for deploying and running distributed applications.
This is achieved by interfacing with pre-packaged softwares
supporting application compilation, run-time configuration and
job management. For example, the current implementation
of Cloud Appliance image packages MPI library and My-
Hadoop [6] for HPC application tuning and running. Addi-
tional functionalities such as interfacing with users, monitoring
and profiling are traversal to the entire CloudBay service stack.

B. Use Case Illustration
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A simple use case for CloudBay

Figure 2 illustrates a simple working scenario in CloudBay.
A user submits a bid request (detailed in Section III-A) to
the CloudBay server seeking to access resources within his
budget constraint (step ()). The CloudBay server accepts the
bid request and places it together with other incomplete bid
requests in the system. If the request cannot be satisfied by
the current resource supply, a dynamic ascending auction is
launched by the centralized auction engine (step (2)). Suppose
this user wins 6 VM instances as a result of the auction,
the CloudBay server will automatically provide connectivity
that bundles the allocated instances into a cluster (step ).
The bundle now becomes invisible to other users and is
isolated from other resources in the system. CloudBay employs
Condor [7] to manage user submitted jobs, and randomly
designates a node within the winning bundle as the head node.
The job submitted by the user will be forwarded to a local
client node running the condor_schedd daemon, and CloudBay
will let Condor take over the rest of the work (step @).

C. Resource Virtualization Tools

This section introduces our previous work on platform,
resource and network virtualization. These techniques form
the basis of scalable and self-configurable resource sharing
in CloudBay. Since this paper mainly focuses on resource
management and service scheduling issues, we only present
an overview of these virtualization tools, and refer the readers
to [8], [9], [10] for implementation details.



a) IP-over-P2P (IPOP) [8], [9]: CloudBay is designed
to provide infrastructure support to scale up to large num-
bers of geographically distributed resources over wide-area
networks. To address this requirement, we developed IPOP,
a P2P-based self-configurable tool for network virtualization.
CloudBay uses IPOP to enable elastic resource provision and
relinquish, and attains the following benefits: (1) scalable
network management, because routing information is self-
configured and disseminated in a decentralized manner. (2)
resilient to failure, because P2P networks offer more robust-
ness against failure than a centralized approach. (3) easy
accessibility, due to IPOP’s ability to traverse NAT/firewalls.

b) Cloud Appliance: Cloud Appliance directly extends
our previous work of Grid Appliance [10]. It packages cloud
computing toolsets into an application-aware virtual machine
image (available in VMware, Virtual Box and KVM), and
supports on-demand resource clustering. A resource provider
may choose to launch a Cloud Appliance on the physical
host machine, which will automatically place the contributed
resource slice into the global CloudBay resource pool. Al-
ternatively, a resource provider may also choose to install
separate CloudBay package on the fly (e.g., the package grid-
appliance-base offers virtual networking functionality and can
be installed from ubuntu). In essence, a Cloud Appliance is an
integrated middleware that encapsulates a full job scheduling
software stack. It hides the heterogeneity of various cloud
platforms and provides a uniform interface to different cloud
resource providers. Cloud Appliance also allows resource cus-
tomers to run unmodified, binary software executables without
imposing platform-specific APIs that applications must be
bound to. Scheduling service in Cloud Appliance directly
interfaces with the Condor scheduler for job management.
Finally, Cloud Appliance offers sandboxing security such that
undesirable behaviors are confined to an isolated VM instance.

D. Autonomic Resource Pooling

This section presents the implementation details of resource
pooling in CloudBay. Resource pooling involves development
of: (1) a centralized resource pool accessible to all users; and
(2) an isolated resource pool allocated to a particular user.
Our implementation uses a centralized approach to provide
autonomic services for resource configuration and manage-
ment. Specifically, a resource manager process, running side-
by-side with the Condor central manager, is implemented on
the CloudBay server that helps to monitor and manage active
resources in the system. We automate the resource joining
process by packing a booting script written in Python into the
Cloud Appliance VM image. To contribute a VM instantiated
by the Cloud Appliance, a resource provider first submits a
resource join request from a web interface, and then downloads
a certified configuration file bound to the VM. This process is
termed as “floppy insertion” in CloudBay.

The front end of CloudBay is implemented using
Django [11], allowing users to easily interact with the server.
Figure 3 shows a resource summary page that returns the con-
dor_status result using Condor SOAP API. When a resource
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Fig. 3. User interface for viewing resources in the global pool

bundle is allocated to some request, the resource manager
process will create a new configuration file (floppy) for each
VM within the bundle. In our previous implementation [12],
users have to manually configure the allocated resource bun-
dle through the web interfaces. Whereas in CloudBay, the
resource manager automatically locates the VMs based on
their addresses on the IPOP virtual network and transfers
the floppies to them via scp. This autonomic floppy insertion
process enables CloudBay to form an isolated resource pool
upon request and greatly simplifies resource allocation.

III. MARKET-DRIVEN SERVICE SCHEDULING

This section presents the design details for user service
scheduling in CloudBay. Due to space limitation, we focus
on the eBay-style differentiated service provisioning, HPC job
submission, and auction mechanism design. The details about
CloudBay economy bootstrapping and interfaces for valuation
expression are omitted. These details will be addressed in a
future extended version of this paper.

A. Resource and Service Request Models

We consider the resource pool of CloudBay consisting
of dedicated and high-performance computing and storage
facilities (e.g., clusters and network shared file systems) that
span across organizational and national boundaries. Leverag-
ing techniques presented in Section II, these facilities are easy
to confederate within a common resource namespace, forming
what is referred to as a science cloud. Note that CloudBay does
not target at non-dedicated and cheap resource in the volunteer
computing model because it is hard to guarantee quality of
service for quality-sensitive HPC users in a highly dynamic
environment. On the resource market formed by CloudBay,
resource providers partition their resources into standard sized
resource slices that are instantiated using Cloud Appliances,
and delegate the task of negotiation and selling to CloudBay.
The resource rental model in CloudBay is similar to that used
in Amazon EC2, where users purchase computing services in
the unit of instance-hours. However, rather than providing TaaS
where users have complete control over the allocated VMs
and build their own software stacks, CloudBay is more PaaS-
oriented that packs a computing platform and job management
functionalities as a service.



Let R be the set of VM instances within the global resource
pool. CloudBay allows for V classes of VM instances to be
created by resource providers (e.g., small, medium and large
VM instances). All instances within the same class, i.e., R, €
R,v € V, have homogeneous configurations. We denote the
set of user requests by U, each request U € U is limited to a set
of VM instances within the same class. If a user wishes to run
a job on a set of heterogeneous resources, he can simply create
a request group in CloudBay that bundles the VMs granted by
all the requests sharing the same job configuration.

The need for differentiated service provisioning is imminent
because it improves utilization of the infrastructure. Traditional
HPC centers allow different job priority classes and use
backfilling scheduling [13] to reduce fragmentation of system
resources, while modern IaaS providers in cloud computing
tend to jointly schedule on-demand and opportunistic resource
requests, as is the case of Amazon’s launch of spot market
in addition to the on-demand service. As HPC merges with
cloud computing, the question becomes, how to implement the
differentiated request model in modern HPC centers equipped
with cloud infrastructure? In CloudBay, we develop a service
scheduling approach inspired by the transaction model used in
eBay. Before we proceed to describe our approach, we clarify
the assumptions and specifications of the user request model
in the next few paragraphs.

We consider a heavily loaded system where user demand
is greater than resource supply. Otherwise, all user requests
are able to be accommodated and the question becomes which
site to choose for optimal job placement. CloudBay plans to
adopt an adaptive scheduling policy to solve both cases. When
demand falls below the supply level, the auction engine in
CloudBay automatically switch from the seller-initiated mode
to bidder-initiated mode, i.e., all the eligible resource providers
can bid for job execution according to their reputations, current
site load and data locality. We plan to add the bidder-initiated
auction in our future work.

We define two types of user requests in CloudBay.

o “buy”-request — submitted by quality-sensitive users and
is analogous to the option of buy-it-now on eBay. The
submitted job is likely to be associated with a deadline,
and the interruption in service is generally undesirable
(non-preemptive). Note that we cannot promise imme-
diate access to the resource because the system might
become so congested filling with non-preemptive jobs'.

e “bid”’-request — submitted by budget-sensitive users and
is analogous to those who bid on goods on eBay wishing
to find a deal. There is no deadline associated with bid-
requests. The bidder may specify a expected duration of
job execution, or simply let it run to completion. The
jobs are characterized as failure resilient that interruption
in service does not compromise the computation integrity.

UIf it happens and some request is rather urgent, the user is given the option
to overpay a large amount in order to squeeze in. Just as the way to deal with
sellers canceling buy-it-now transaction on eBay, the transaction negotiator in
CloudBay needs to compensate the preempted job owner for violating SLA.

Given a mixture of the two types of user requests, the goal
of service scheduling is to achieve fair resource allocation
while maintaining high utilization of the infrastructure. By
fair we mean: (1) jobs associated with high bids?> should
take precedence over low-bid jobs; and (2) market price of
resources is not over- or under-valuated. By high infrastructure
utilization we mean that the matchmaking service should make
resource allocation decisions in a timely manner, and grants
resource access rights to end users whenever there is a chance.
We will illustrate the design details of service scheduling in
CloudBay in the later sections.

B. Job Submission

CloudBay directly interfaces with Condor for job manage-
ment because of Condor’s ability to support both dedicated and
opportunistic job execution. We create a uniform web interface
that allows users to upload executables and job configuration
files to the CloudBay server. The job submission process in
CloudBay is illustrated in Figure 4. First, when a resource
bundle is allocated to serve a request, the CloudBay server
will send the job to a gateway node within the winning
bundle running the condor_schedd daemon. After that, the
local Condor server will fetch the job information and schedule
the job in the local pool (see the left of Figure 4). If this job
get preempted some time later, the CloudBay server will store
the computing state (through checkpointing) as well as the
original job configuration. Suppose after a while, a new pool
of resources become available again, the CloudBay server will
redirect the job information to a gateway node in the new pool
to resume the job execution (see the right part of Figure 4).
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C. Service Scheduling in CloudBay

The procedure for request scheduling in CloudBay is
summarized in Algorithm 1. In order to eliminate request
queueing, the transaction negotiator tries to make an allocation
decision whenever a service request arrives. An incoming
request issued by some quality-sensitive user takes precedence
over all bid requests and gain access to the desired resource
bundle whenever possible (line 3 to 12). On the other hand, if
an incoming request is of bid type, it is scheduled to compete
resources with other bid requests when current resource supply
cannot meet its demand. The auction engine will trigger a two-
stage Ausubel auction (line 17) to resolve the competition.

’the buy-request is viewed as a special case of bid-request where users are
willing to pay a fixed predefined amount.



Algorithm 1: Request scheduling in CloudBay

1 begin

2 examine incoming request type

3 case buy-request

4 if supply > demand then

5 L allocate VMs as requested

6

7 else if J unfinished bid jobs AND their aggregate

resource occupation > demand then

8 preempt jobs from low-bid to high until
demand is satisfied

9 else

10 negotiate with the user with two options

11 e try at a later time

12 e pay large fine for immediate resource access

13 case bid-request

14 if supply > demand then

15 allocate VMs as requested and collect
payments accordingly

16 else

17 start a two-stage Ausubel auction, reconsider
bid-requests for all incomplete jobs

18 allocate according to the auction result

The original Ausubel auction (also known as the efficient
ascending auction) was proposed in [14], and possess two
appealing properties that make it a good match for our design
goal. First, it is computationally tractable. Second, it employs
a non-linear payment method to eliminate the incentives of
strategic bid behaviors. However, we cannot directly apply the
original Ausubel auction to our scheduling context because of
the following difficulties: (1) Ausubel auction uses iterative
price adjustment to balance market demand and supply. In
practical algorithmic design, the convergence to market equi-
librium state might take long time due to price oscillating
around the market clearing price. The reason behind this is
that it’s impossible to determine the step length for price
adjustment unless we know the search stop point (the market
clearing price) in advance. (2) Some bidders have all-or-none
resource acquisition preference. They may suddenly drop out
of the auction when price is adjusted. If that is the case,
the market equilibrium state may not exist at all. In order to
determine resource allocation, we have to extend the feasible
region for the solution. Specifically, suppose n bidders bid
for m VM instances of certain class v. Let each bidder’s
demand be d! at auction round ¢ (the auction is iterative).
We relax the convergence condition of > 1", df = m to
> ,di < m. Note that such relaxation will result in
efficiency loss. However, as we use backtracking to find the
closest point to equilibrium state, such loss is relatively small.

In the original Ausubel auction, the payment calculation is
carried out along with the procedure to search for the market

equilibrium price. We propose a two-stage Ausubel auction to
overcome the first difficulty. In the first stage, the algorithm
quickly locates a final market price. With this information, we
can decide the price adjustment step and simulate the original
Ausubel payment calculation procedure in the second stage.
We assume user’s valuation to resource bundle is monotonic
and strictly concave, i.e., allocated resources exhibit dimin-
ishing rewards to users. For a given VM class v, let p¥ (we
omit v for brevity of notations) be user i’s bid price for the
kth allocated instance-unit time. To obtain the market clearing
price, we perform a binary search on a sorted list of such bid
prices. When two bids submitted by two different users tie
with each other, the algorithm assigns higher priority to the
bid submitted at an earlier wall clock time. If the algorithm
fails to converge to a market clearing price, it will backtrack
to find the best feasible allocation yielding Z?:l d! < m. The
final allocation for each user is determined by evaluating the
marginal bid vector using the returned final market price.

D. Payment Accounting

In the second stage, the auction engine simulates the
auctioneer-bidder communications as proposed in the original
Ausubel auction [14] in an iterative manner. The payment
collector interacts with the auction engine in order to calculate
payment amounts for all bidders. We briefly summarize the
payment accounting method as follows. First, at each round ¢,
the auctioneer calculates the aggregate reserved bundle p! for
bidder 7 by comparing the market supply against the aggregate
demand from ¢’s opponents:

pk = max{0,m — Z d’}

J#i
Accordingly, the round reserved bundle p is defined as the
difference of the aggregate reserved bundle at adjacent rounds:

)

pi = pi
= pp—pi (> 1)

Note that p! > 0 because the aggregate demand from i’s
opponents is weakly diminishing. If u} > 0, then this amount
of allocation is referred to as “clinched” by bidder ¢ at current
round price p’. Suppose i wins A; at the final round T, the
total payment of ¢ is calculated as:

2

T
Pi(A) =) o'l 3)
t=1

One virtue of the Ausubel auction is that it replicates the out-
come of the static Vickrey auction. This property is desirable
because untruthful users experience degraded performance in
computing markets [15]. The proposed auction is incentive
compatible (proof detailed in [14]), and results in fair market
pricing upon convergence.

E. Discussion

Our scheduling decision is made on request. This might
cause constant thrashing of the low-bid requests. In fact,
such an effect is the tradeoff to reduced resource utilization



in periodic scheduling. To alleviate this problem, we can
compensate the preempted low-bid jobs for a small amount. As
the compensation accumulates, the job becomes more resilient
to preemption. This is an interesting topic because doing so
seems to violate our design goal of fairness. Due to the space
limitation we will not discuss the solution further in this paper.

IV. EVALUATION
A. Performance Evaluation for Resource Pooling

We develop and deploy an experimental CloudBay platform
composed of 32 VM instances, with 20 of them setup on Fu-
tureGrid [16], 8 on Amazon EC2, and 4 on local lab machines
at the University of Florida. Each instance is equipped with
1.5G memory and 1 virtual CPU core running at 2.66GHz,
and is pre-configured with Condor supporting both dedicated
and opportunistic scheduling. The CloudBay server process is
implemented and run on a separate machine that also works
as the head node for the global Condor resource pool.
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First, we examine the setup time for creating an isolated
bundle of VM instances. In particular, the setup time is
the time elapsed from the moment an allocation decision
is made until all resources in the bundle are shown using
the condor_status command. According to Section II-D, the
setup time comprises: (1) generating floppy file for network
configuration; and (2) notifying the VM instance within the
winning bundle about the information of the new Condor
head node by transferring the floppy file and modify the
local Condor configuration. Figure 5 shows the measurement
of bundle setup time for multiple VM instances cross three
different sites and on FutureGrid only. We observe that the
setup time displays an increasing trend as the number of VM
instances increases for both experiments. Since cloud users
typically request resources over hours, the experiment results
indicate that automatic resource pooling in CloudBay imposes
a trivial overhead to the total resource rental period.

Next, we investigate the performance of CloudBay virtual
networking by stress testing the Hadoop cluster with and
without IPOP virtual network, respectively. Specifically, we
deploy a CloudBay Hadoop cluster, with two VM instances
hosted on the UF campus network, and the other two VM

instances hosted on Amazon’s EC2 platform. All instances
have the same resource configuration with EC2’s ml.large
instance type. For the purpose of performance comparison,
we also setup a EC2 homogeneous Hadoop cluster connected
by EC2’s internal network. Two MapReduce programs, word-
count and terasort, are selected as benchmark programs. For
each program, we vary the input file size from 0.5G to 2.5G,
and measure the completion time of all the map and reduce
tasks. The results are shown in Figure 6(a) and Figure 6(b).
From the figure, we observe that the heterogeneous networking
environment in CloudBay virtual cluster achieves broader
deployment scope at the cost of degraded execution time.
Using the Hadoop monitoring tool, we observe that the two
local nodes greatly straggle the program progress due to the
intermediate data transfer from the EC2 site (the master node
is located at EC2 side). In addition, the performance gap in
terms of completion time difference is relatively consistent in
the wordcount program, but increases significantly as the input
data size grows. This phenomenon is primarily contributed
to the difference of intermediate data transfer between the
map and the reduce phase. For wordcount, the size of the
word list generated from the map tasks is almost the same
for all input3 , while for terasort, the size of the intermediate
data for the reduce tasks is increasing all the time. As the
data sharing problem becomes more serious in a virtual cloud
environment [17], the research for location-aware scheduling
mechanism for data-intensive applications is therefore imper-
ative in the future development of CloudBay.

B. Performance Evaluation for Service Scheduling

This section studies CloudBay’s ability to schedule mixed-
type service requests. Our investigation answers two questions
from different perspectives. First, from the perspective of the
resource providers, we are interested in understanding how
much resource time is consumed by frequent preemptions of
low-bid service requests (preemption overhead). Next, from
the perspective of the end users, we are concerned about the
perceived lag of service completion (service delay) against the
willingness to pay for the service (offered price).

The CloudBay platform is in prototype testing stage and
does not accumulate enough user base. Therefore, our eval-
uation is simulation-based. We implement a discrete-event
simulator using the Simpy [18] simulation package based on
Python. In the simulation, we create 512 single-core VM
instances to serve incoming user requests. Each request can ask
for up to 32 instances for running applications. The requested
VM number per request is uniformly distributed in the range
of (0,32]. For buy-requests, the resource reservation price in
a unit of time is set to 20. According to Amazon’s spot price
history [19], we set the offered prices for bid-requests to fall
in the range of (0, 20), and follows a normal distribution with
i = 8 and 0 = 4. The job arrival process is assumed to
follow a Poisson distribution. By varying the rate parameter A,
we can simulate system behaviors under different workloads.

3We simply append the same text to generate larger size of input
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We generate synthetic user-requested resource usage times
based on a realistic workload scenario described in [20].
The workload traces include a Condor workload from the
University of Notre Dame, and an on-demand IaaS cloud
workload from the University of Chicago Nimbus science
cloud. Based on these traces, the requested times are set
spanning a relatively long period of time (e.g., a typical request
will ask for resource rental over several hours).

In the first set of simulations, we assume the preemption
time is linearly proportional to the number of VM instances to
relinquish and reset. The preemption process includes the time
to save program state (checkpointing), restart the networking
configuration process and reconfigure local Condor service.
This process can take several minutes for repooling a large
number of VM instances. Figure 7 shows the results calculated
over a one-month period simulation run. We vary the percent-
age of bid requests to generate different flows of incoming
requests. The labels of high, medium, and low workload
correspond to the average system utilization of 83.3%, 66.5%,
and 53.4%, respectively. Note that the presented results are
relative measurements, e.g., the bid overhead is measured as
the preemption loss with regard to the total resource time
occupied by bid-requests, not to resource time occupied by
all requests. Therefore, the overall overhead is approximately
the weighted sum of bid-request and buy-request overhead.
When less bid requests are present, they are subject to frequent
preemption by the dominant buy requests. As a result, we
observe spikes at the initial phase for bid requests. However,
the overall overhead is relatively stable in all the tested
scenarios, contributing around 1.8% to the total busy resource
cycles, indicating that CloudBay is suitable for processing high
throughput service requests in an open cloud environment.

In the second set of simulations, we create 2,000 synthetic
requests and investigate the average service delay with regard
to different user bid prices. The service delay factor is defined
as the ratio of the actual service completion time to the user
requested time. A factor of 1.0 means there is no service delay.
We conduct five simulation runs with varying percentages
of bid request from 30% to 70%. For each run, the system
utilization averages at around 83%, and the total simulated
time is about 50 days. The results are shown in Figure 8. As
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we expected, higher bid price leads to less service delay in
general. However, we also observe a few irregular points on
the figure, and the less bid requests a curve gets, the more
wrinkled a curve exhibits. This can be explained as follows:
(1) a low-bid request might get scheduled without blocking
simply because there are available slots in the system; (2) the
bid price is randomly generated for each request such that the
number of bid requests for a particular price is insufficient. In
general, we can conclude that CloudBay achieves fair resource
allocation for serving differentiated user requests.



V. RELATED WORK

There has long been significant interest in investigating the
application of economic approaches for resource management
in distributed systems. According to Wolski et al. [21], two
types of market strategy are commonly used in a computa-
tional economy, namely commodities markets and auctions.
Auctions are simple to implement and are efficient to sell
off computing cycles to contending users. Therefore, auctions
achieved wide applications in early computational ecosystems
such as Spawn [22], Popcorn [23], and Tycoon [24]. Another
early work was Nimrod/G [25], where grid resources were
allocated based on user-negotiated contracts with the resource
sellers. Most systems were designed for early distributed
computing infrastructure such as dedicated clusters and com-
putational grids, and did not account for the latest technology
advance in networking and hardware virtualization.

In the era of cloud computing, due to the service-oriented
paradigm shift, market-driven distributed systems become
commercialized in the next-generation data centers. Efforts
were made to take advantage of cloud computing for efficient
resource sharing [26]. However, the role of CloudBay is not to
serve as yet another [aaS, PaaS, or SaaS provider, but rather to
bridge the scattered scientific community in support of HPC
application development and delivery.

VI. CONCLUSION AND FUTURE WORK

We presented a novel CloudBay framework for large-scale
computational resource sharing. Equipped with virtual net-
working and application-aware virtual appliances, CloudBay
achieves ad-hoc self-organization, discovery and grouping
of distributed resources without incurring extra deployment
and management efforts from both resource providers and
end users. Moreover, CloudBay implements a market-driven
service scheduling policy that accommodates a mixture of user
request models, and efficiently distributes idle resources to
users in a cost-effective manner. The pricing and payment
accounting policies boosts utilities for multiple trading parties,
and guarantees incentive compatibility for bidders. Utilizing
services provided by CloudBay, researchers with domain
knowledge can comfortably deploy their parallel applications
using popular parallel programming models on a resource
bundle assembled from multiple organizations.

CloudBay is still in its infancy stage and is actively evolved
towards a fully functional system. We have already deployed
virtual appliances across a variety of open and private cloud
platforms, including university clusters, FutureGrid, and Ama-
zon EC2. Our experimental results demonstrated the effec-
tiveness of deploying CloudBay in production HPC centers.
The system performance due to market-driven scheduling was
validated though simulations in Section IV. In the future, we
plan to fulfill the design of CloudBay, and collect real-world
data of user behaviors for investigations. Another possible
research direction is to design and evaluate bidder-initiated
auction in which placement of job execution is determined
by efficient auction forms for optimal system performance.
We expect that our experiences gained from the design and

implementation of CloudBay would open a new research
avenue for realizing HPC-as-a-service, and push the boundary
for new cloud computing usage models.
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