
An Untold Story of Redundant Clouds:
Making Your Service Deployment Truly Reliable

Ennan Zhai† Ruichuan Chen‡ David Isaac Wolinsky† Bryan Ford†

†Yale University ‡Bell Labs / Alcatel-Lucent

ABSTRACT

To enhance the reliability of cloud services, many application
providers leverage multiple cloud providers for redundancy.
Unfortunately, such techniques fail to recognize that seem-
ingly independent redundant clouds may share third-party
infrastructure components, e.g., power sources and Internet
routers, which could potentially undermine this redundancy.
This paper presents iRec, a cloud independence recom-

mender system. iRec recommends at best-effort indepen-
dent redundancy services to application providers based on
their requirements, minimizing costly and ineffective redun-
dancy deployments. At iRec’s heart lies a novel protocol
that calculates the weighted number of overlapping infras-
tructure components among different cloud providers, while
preserving the secrecy of each cloud provider’s proprietary
information. We sketch the iRec design, and discuss chal-
lenges and practical issues.

1. INTRODUCTION
Lured by properties such as elastic provisioning and scal-

ing, companies offering online applications and services are
increasingly moving their computations and data away from
private infrastructure into the cloud. While application pro-
viders enjoy the benefits of the cloud paradigm, the fact
that the cloud abstraction obscures what happens inside re-
mains a significant concern [11, 19, 23, 24]. Many applica-
tion providers choose to rent from multiple cloud services
for redundancy, thereby enhancing the reliability of their
applications. Netflix, for instance, utilizes three indepen-
dent Amazon EC2 availability zones redundantly [2], and
iCloud builds on both Microsoft Azure and Amazon EC2
for redundancy [1]. Inter-cloud systems [4, 5, 7], which de-
ploy application services redundantly on diverse providers,
have been proposed to make applications more dependable.
Unbeknownst to the application providers, however, third-

party infrastructure components shared by redundant de-
ployments may undermine reliability enhancement efforts [11,
19]. Redundant cloud services that appear independent may
in fact share deep, hidden interdependencies. This interde-

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage, and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the owner/author(s). Copyright is held by the owner/author(s).

HotDep - Workshop on Hot Topics in Dependable Systems

November 3, 2013, Nemacolin Woodlands Resort, PA, USA
ACM 978-1-4503-2457-1.

pendence may lead to unexpected correlated failures across
the clouds, in turn making applications unavailable when a
shared dependency fails.

Suppose an application provider, A, replicates critical state
across two different cloud infrastructure providers, B and
C, to enhance the application’s reliability. A, however, does
not know B and C share a third-party infrastructure com-
ponent, a power source P . If the power source P crashes
for whatever reason, both B and C may become simultane-
ously unavailable, resulting in a correlated failure causing a
service outage in application A. This scenario is not merely
hypothetical. In one recent report [10], a storm in Dublin,
Ireland took out local power source and its backup genera-
tor, thus causing both Amazon and Microsoft clouds in that
region to be unavailable for many hours, potentially under-
mining the reliability of applications attempting to achieve
redundancy across those two cloud infrastructure providers.

Due to cloud services’ non-transparent, proprietary lay-
ering of services and infrastructures, it is difficult for ap-
plication providers to locate the root causes of correlated
failures even after they encounter an outage, let alone to an-
ticipate the possible sources of such failures in advance. For
cloud providers, some recent efforts have been focused on
automatic failure localization and tolerance [3, 6, 9, 15, 18],
making their services more robust to failures. Resolving
such correlated failures, however, still requires significant
human intervention, leading to prolonged failure recovery
time [12, 35]. Moreover, cloud providers typically do not
know whether they are sharing third-party infrastructure
components with other providers [11,19].

Our goal. Facing this dilemma, this paper explores a new
approach. Rather than localizing or tolerating failures, we
aim at recommending truly independent redundancy services
to application providers when they first attempt to deploy
redundant systems. This approach minimizes potential cor-
relation between different cloud providers on which the ap-
plication providers plan to deploy their applications. With
this approach, application providers’ deployments can be
enhanced significantly without wasting resources on ineffec-
tive redundancy. To the best of our knowledge, there is no
existing effort addressing this problem.

Road-Map. The rest of this paper is organized as follows.
We first describe the target scenario and challenges in the
next section. We then propose a practical recommender and
present its design in Section 3. Important practical issues
and challenges are discussed in Section 4. We then summa-
rize related work in Section 5, and outline future work in
Section 6.

2. SCENARIO & CHALLENGES
Before describing our proposal, we first clarify our target

scenario, then discuss key technical challenges.

2.1 Scenario
Figure 1 shows a typical scenario for our target prob-

lem. There are three different entities: 1) The application
provider, who intends to deploy her application across multi-
ple cloud providers for redundancy. An application provider
may be a large organization with vast resources and global
interests, or an individual with limited resources and re-
gional interests. Well-known application providers illustrat-
ing this role include iCloud, Netflix, and Zynga. 2) Cloud
providers, who host infrastructure and services such as stor-
age, computation, and network bandwidth, and may share
some third-party infrastructure components, such as power
sources and Internet routers. Representative cloud providers
include Amazon’s EC2 and S3, as well as Microsoft’s Azure.
3) The cloud recommender, our proposed system, fills a gap
between the application provider and cloud providers. An
application provider expresses her deployment expectations
and requirements to the cloud recommender, who recom-
mends redundancy-optimized combinations of cloud provi-
ders to the application provider.

2.2 Challenges
Designing a practical cloud recommender presents many

technical challenges; we summarize two key challenges here.

Challenge 1: Personalized requirements on hetero-

geneous infrastructure components. Different cloud
providers may share various third-party infrastructure com-
ponents such as power sources, Internet routers, and physi-
cal links. Different types of infrastructure components usu-
ally play different roles for the cloud providers, have different
reliability properties, and are managed differently. For in-
stance, the outage of one power source might affect multiple
data centers, but the failures of several core routers may
affect only one data center’s network connectivity. Cloud
providers in principle have access to such infrastructure in-
formation, but they normally do not know exactly how their
customers, i.e., application providers, will use their services
in applications. By contrast, each application provider knows
its own dependencies on various types of infrastructure com-
ponents, though normally only qualitatively. Each applica-
tion developer, however, is unlikely to have access to detailed
information about the structure and interdependence of the
infrastructure components underlying the clouds on which
the application might build.
As a result, to provide meaningful recommendation re-

sults, a cloud recommender must not only consider the im-
portance and structural roles of each type of infrastructure
component from a cloud provider’s point of view, but also
understand each application provider’s personalized quali-
tative requirements. These customer-specific qualitative re-
quirements must then be transformed into quantitative re-
quirements suitable for automated processing.

Challenge 2: Preserving proprietary business secrets.

Recommender systems traditionally rely on users’ feedback,
through voting for example. In our scenario, due to the non-
transparency of clouds, it is difficult for application providers
to offer feedback after-the-fact on whether their prior redun-
dant configurations have proven adequately independent—

Figure 1: System overview. Step 1: Requirement submis-
sion; Step 2: Requirement forwarding; Step 3: W-PSI-CA
computation; Step 4: Replying results; and Step 5: Recom-
mendation.

except after a correlated failure occurs, proving their config-
uration less redundant than they had hoped. Common de-
pendencies between different cloud providers might be found
if, for instance, these cloud providers were willing to share
details of their internal infrastructures with each other or
with their application provider customers. Such open in-
formation sharing by cloud providers seems unlikely to be
viable in practice, however, as the internal details of their
infrastructures are typically considered closely-guarded se-
crets critical to their business competitiveness.

Two obvious solutions would be: 1) to introduce a trusted
third party, which collects infrastructure information from
multiple cloud providers and computes recommendations for
application providers; or 2) using secure multi-party compu-
tation (SMPC) [38] to compute recommendation results pri-
vately, without revealing the datasets from which those re-
sults are computed. Unfortunately, in the former case cloud
providers may be hesitant to trust a third party, while the
latter option is complex and time-consuming [36,39]. Deter-
mining common infrastructure components while preserv-
ing the secrecy of cloud providers’ proprietary information,
therefore, presents a difficult practical challenge.

3. A PRACTICAL RECOMMENDER: iRec
We now propose a recommender system, iRec, designed to

recommend redundant cloud configurations while addressing
the challenges above. Before presenting iRec’s design in de-
tail, we first discuss background the design builds on.

3.1 Background: PSI-CA
Our approach relies on an existing primitive called pri-

vate set-intersection cardinality (PSI-CA) [13, 16]. This al-
gorithm allows a group of k parties with multisets S1, ..., Sk

to compute privately | ∩i Si|, the number of elements they
have in common, without learning the specific elements in
∩iSi. PSI-CA uses an additive homomorphic encryption
scheme such as the Paillier cryptosystem [21].

Suppose we have two parties p1 and p2, each having a data
set: S1 = {x1, · · · , xm} and S2 = {y1, · · · , yn}, respectively.
We briefly summarize the PSI-CA algorithm.

• Step 1: Party p1 first generates a polynomial, P (z),
over a finite field whose roots are S1’s elements xi.

Thus, the polynomial generated by p1 is: P (z) := (x1−
z)(x2 − z) · · · (xm − z) =

∑
u
αuz

u.

• Step 2: p1 sends to p2 the homomorphically encrypted
coefficients αu of P (z), along with p1’s public key.

• Step 3: For each of S2’s elements yi, p2 computes
Enc(rP (yi) + 0+), evaluating the polynomial at each
element in S2, multiplying each result by a fresh ran-
dom number r, and finally appending 0+, a string of
zeros. p2 can compute this without knowing p1’s pri-
vate key due to the cryptosystem’s homomorphism.

• Step 4: p2 sends a random permutation of the re-
sults back to p1, who decrypts them and counts the
occurrences of the 0+, yielding |S1 ∩ S2|.

Though we focus above on a case for computing the cardi-
nality of two set intersection, the primitive extends to deal
with the case of multiset intersection [13, 16]. We omit the
description of this extension for space reasons.

3.2 The Design of iRec
iRec makes two key assumptions. First, we assume all the

entities including application providers, iRec, and cloud pro-
viders faithfully follow the specified protocol. Second, each
cloud provider knows only the information about its own in-
frastructure components, and this information is accessible
only to the cloud provider itself.
In practice, cloud providers have infrastructure manage-

ment and monitoring tools to collect and record information
about their own and third-party infrastructure components
they depend on; thus, we expect they could repurpose this
information for use by iRec.
We now outline the heart of iRec’s design, deferring to

later sections discussion of important details such as unifying
the information contexts of different cloud providers.

Step 1: Requirement submission. Alice, an application
provider, wants to deploy her application across multiple
cloud providers for redundancy. She contacts iRec and con-
veys her deployment requirements, which typically include:
1) on which redundant clouds Alice might deploy her ap-
plication; 2) which alternative services she may use; and 3)
what types of common infrastructure components presenting
correlated failure risks, such as power sources and Internet
connectivity, Alice is most concerned about. In addition,
Alice also specifies the weights of different types of infras-
tructure components, to obtain results tailored to her appli-
cation. Weights in our design are positive integers indicating
relative importance of different infrastructure components.
In practice, if Alice does not have the information needed to
tune these weights herself, she may consult the iRec service,
choosing some standardized weight assignment scheme.

Step 2: Requirement forwarding. On receiving Alice’s
requirements, the iRec sends each of Alice’s potential cloud
providers two lists: 1) the weights Alice assigned to the var-
ious infrastructure components, and 2) the list of other al-
ternative cloud providers she is considering.

Step 3: W-PSI-CA computation. With the two lists
above, each of Alice’s specified cloud providers performs a
protocol we call W-PSI-CA (Weighted PSI-CA). Figure 2 il-
lustrates howW-PSI-CA extends PSI-CA to support weights.

Figure 2: A W-PSI-CA computation. The first column in
WLUT gives names of infrastructure components, and the
second column gives their weights. Pi denotes power source
i, Rj means Internet router j, and Dk is used to denote DNS
k. We assume the third-party infrastructure components
have uniform identities in this scenario.

Each cloud provider first generates a Weight Look Up Ta-
ble (WLUT). This table captures the cloud provider’s in-
frastructure components and their corresponding weights,
as shown in Figure 2(1). For instance, Cloud Provider1 uses
three third-party infrastructure components: power source 1
(P1), DNS 1 (D1) and Internet router 2 (R2). Their weights
are 2, 3 and 1, respectively.

Next, the cloud provider generates a Data Set for Inter-
section (DSI) based on the WLUT. As shown in Figure 2(2),
the DSI has only one column. The count of each infrastruc-
ture component in the DSI equals the infrastructure compo-
nent’s weight in the WLUT. For example, in Figure 2, since
an infrastructure component P1’s weight is 2, two instances
of P1s are present in the DSI.

Each cloud provider then performs the PSI-CA proto-
col with each other provider’s DSI, to obtain the weighted
number of shared infrastructure components between dif-
ferent cloud providers. Each cloud provider stores these
set intersection cardinalities. Each cloud provider moreover
needs to get the sizes of the DSIs of the other cloud pro-
viders involved in the PSI-CA protocol. In Figure 2, for
example, since two cloud providers share the same power
source P1 and the same routing infrastructure component
R2, Cloud Provider1 computes the set intersection cardi-
nality with Cloud Provider2. The computation result is 3.
Cloud Provider1 learns two values: 3, the weighted number
of overlapping infrastructure components, and 5, the size of
the DSI of Cloud Provider2.

Upon obtaining the above two values, a cloud provider
(say i) computes an overlap rate, ORi,j , with respect to a
cloud provider j, using the following equation (1):

ORi,j =
WN

|DSIi|+ |DSIj | −WN
(1)

In this equation, WN is the weighted number of shared
infrastructure components between cloud provider i and j,
and |DSIi| is the size of the DSI of cloud provider i. In Fig-

ure 2, for example, Cloud Provider1 calculates the overlap
rate as: 3/(6 + 5− 3) = 3/8.
At this point we have described only the two-party W-

PSI-CA. W-PSI-CA is easily extended to the multi-party
scenario using generalizations in the original PSI-CA algo-
rithm [13]. Not surprisingly, W-PSI-CA inherits the origi-
nal PSI-CA’s property of ensuring the privacy of each cloud
provider’s infrastructure information.

Step 4: Collecting results. After the W-PSI-CA, each
cloud provider sends all the overlap rates it computed with
other providers back to the cloud recommender iRec.

Step 5: Recommendation. With the overlap rates in
hand, the iRec recommends Alice the most independent
cloud services. Specifically, the iRec ranks the potential
cloud provider configurations in order based on the overlap
rates, and sends this ordered list to Alice. Since Alice re-
ceives only an ordered list reflecting possible configurations,
she obtains no proprietary information about the cloud pro-
viders’ internal infrastructures in this result.

3.3 Differential Privacy Enhancement
Both the original and our weighted PSI-CA primitives

privacy-protect each cloud provider’s proprietary informa-
tion. Each cloud provider, however, still learns the exact

sizes of the resulting intersection and other cloud providers’
DSIs. In some cases, even this leakage might be a concern.
An existing effort, DJoin [20], proposes a differentially pri-

vate form of private set intersection cardinality, BN-PSI-CA.
This extension adds differentially private noise to the multi-
party set intersection cardinality results, strengthening the
offered privacy guarantee. We can thus directly benefit from
BN-PSI-CA by replacing PSI-CA with BN-PSI-CA in our
W-PSI-CA protocol.

3.4 Example Use Case
We now describe in more detail a hypothetical use case for

iRec, inspired by the Netflix situation mentioned in the in-
troduction. Alice, a video-on-demand entrepreneur, wishes
to deploy her new video delivery application across three re-
dundant cloud providers, but wants their data centers to be
located in the same geographic region to minimize impact
on performance. Nevertheless, given that the data centers
are physically nearby, Alice is legitimately worried that they
may depend on similar local power distribution sources in
the area, and may depend on Internet feeds arriving over
common fibre optic paths from similar or identical nearby
Internet Exchange Points (IXPs).
Alice initially has a choice of six alternative cloud provi-

ders who offer suitable services and have data centers in her
desired geographical region, and she would like to choose
three of them. She finds first that only four of these cloud
providers support iRec. She therefore immediately narrows
her choices to those four providers that support iRec, as
she sees this as a mark of transparency and trustworthiness
in cloud provider operation, and without the information
provided by iRec she would doubt the true level of redun-
dancy she is actually achieving in her application. In ef-
fect, supporting iRec may give cloud providers a way to bol-
ster their “reliability credentials” and distinguish themselves
from their competitors, to their own advantage.
The cloud providers that support iRec are required by the

iRec standardization to include certain tags in their WLUTs

and DSIs, representing the specific local power sources, power
cables, IXPs and fibre optic cables their data centers depend
on. In this way, through their contractual commitments with
the iRec standardization body, each cloud provider who de-
pends on the same power sources and Internet supply com-
ponents will use the same standardized WLUT and DSI tags
in describing those dependencies. Through this standardiza-
tion, iRec identifies and measures the relative importance of
any overlapping infrastructure components on Alice’s behalf,
through the W-PSI-CA computation above.

4. PRACTICAL ISSUES
This section explores potential issues for iRec deployment.

4.1 Do providers have incentives to join?
The motivation for application providers to use iRec is

straightforward: they can choose redundant cloud services
offering better independence in combination, improving re-
liability and avoiding the costs of ineffective redundancy.
In contrast, cloud providers may not benefit directly from
participating in such a recommendation process. Therefore,
what incentive do cloud providers have to join iRec?

One possible benefit to cloud providers is that participat-
ing in iRec may enable providers to understand their poten-
tial infrastructure issues better in relation to other providers.
While cloud providers may not learn which specific infras-
tructure components overlap with others, they can learn to
what extent common dependencies exist between different
cloud providers. iRec thus gives cloud providers as well as
their customers the opportunity to measure and improve the
independence of their infrastructure deployments, in order
to head off potential reliability risks.

Another possible incentive is that cloud providers not par-
ticipating in iRec will not appear among the alternative
cloud providers iRec offers application providers. Applica-
tion providers may be less likely to learn about or consider
these alternatives when they evaluate possible redundant ap-
plication deployments. Thus, non-participating cloud pro-
viders might lose potential customers due either to the lack
of the iRec “reliability label” or merely due to not being on
the iRec “certified provider list.”

Finally, iRec offers cloud providers the opportunity to im-
prove their reputation for reliability and transparency, with-
out risking significant leaks of proprietary secrets about the
structure of their cloud infrastructure. Thus, joining iRec
offers cloud providers a privacy-preserving way to increase
the effective transparency of their infrastructures.

4.2 Will cloud providers behave honestly?
In reality, some cloud providers execute the iRec protocol

dishonestly. They might “declare”only a subset of their true
infrastructure component dependencies in their WLUTs, for
example, thereby generating partial DSIs while performing
W-PSI-CA. In doing so, these cloud providers might benefit
from their dishonesty by appearing to have a smaller set in-
tersection cardinality and hence greater independence from
other providers. Dishonest cloud providers may thus rank
higher in the resulting recommendation lists.

One approach to address this issue might be to use trusted
hardware (e.g., TPM) to remotely attest whether cloud pro-
viders are performing the W-PSI-CA as required. Since ex-
isting efforts such as Excalibur [23] have deployed TPM into
cloud services, the TPM could in principle attest to the

behavior of a cloud provider, verifying whether the cloud
provider honestly computed the set intersection.
The inputs into the W-PSI-CA computation would also

have to be TPM-protected, however, to prevent a dishon-
est provider from doctoring the inputs before they enter
the cooperative computation. Producing trusted inputs to
W-PSI-CA may thus imply incorporating TPM into poten-
tially shared components such as upstream Internet routers
or power sources, a task we expect is possible in principle
though extremely challenging in practice.
A more practical alternative might be to introduce a cloud

auditor, who most of the time does not have access to the
inner structural workings of individual cloud providers, but
who has the authority to make occasional spot-check “in-
spections”, either at random times or in response to a com-
plaint by an application provider. Other approaches to cloud
reliability auditing already assume a trusted third-party au-
ditor [39]. iRec might complement such approaches by re-
ducing the auditor’s load and day-to-day information access
requirements, while ensuring that cloud providers risk expo-
sure if they implement iRec dishonestly.

4.3 Is an auditing system an alternative?
As suggested by Shah et al. [25], cloud auditing systems

may be capable of discovering shared infrastructure com-
ponents across multiple cloud providers. A cloud auditing
system might build a dependency graph to represent depen-
dencies between the infrastructure components of alterna-
tive cloud providers. Based on this dependency graph, the
auditing system can locate common infrastructure compo-
nents across clouds. A natural question is why we do not
directly adopt cloud auditing system to achieve our goal of
recommending independent redundant services.
While this more straightforward design would work, we

suspect cloud providers might be more resistant to adopt-
ing it because of the greater information disclosure and trust
they must place in the third-party auditor. Traditional cloud
auditing systems need full dependency information about
all relevant components within each cloud, and must cen-
trally aggregate all cloud providers’ sensitive infrastructure
information to generate the entire dependency graph. Cloud
providers may be unwilling to share this full internal depen-
dency information on a regular basis.
While some privacy preserving auditing protocols for the

integrity of cloud storage services have been proposed [26,
30–33, 37], these only enable application providers to check
whether their data has been maliciously modified, and do
not offer any guarantee that the application service will re-
main reliable and available.
Another alternative solution would make use of secure

multi-party computation (SMPC) to avoid privacy leakage.
In our prior work [36,39], we used this method to find com-
mon components across cloud providers. While more gen-
eral, these types of SMPC unfortunately scale poorly.

5. RELATED WORK
There is surprisingly little existing work on the design of

cloud independence recommendation systems. To the best
of our knowledge, iRec is the first effort in this space.
Nevertheless, existing efforts have focused on determing

suitable cloud providers to meet other user-specified require-
ments, such as finding the right balance between perfor-
mance and cost. CloudCmp [17] developed a benchmark

tool for computing the cost-to-performance ratio of four
representative cloud providers. Other studies [28, 29] have
made similar efforts to deploy applications in consideration
of other cloud characteristics and objectives.

CloudWard [14] explored the problem of deploying compo-
nent-based applications in the cloud, formulating this chal-
lenge as an optimization problem by maximizing deployment
benefit while satisfying client-imposed policy constraints.
Similarly, Conductor [34] focuses on MapReduce-type work-
loads, and KingFisher [27] proposes cost-aware provisioning
in clouds. These three efforts might be viewed as cloud rec-
ommender systems for different purposes. None of this work
evaluates infrastructure independence or recommends cloud
deployments to maximize the benefits of redundancy.

In a prior technical report we proposed Structural Reli-
ability Auditors (SRA) [39], the first architecture we know
of for systematically discovering common dependencies and
correlated failure risks in cloud infrastructure. Building on
this idea, Xiao et al propose a privacy-enhanced SRA, P-
SRA [36], which determines potential common dependencies
using Secure Multi-Party Computation (SMPC) techniques.
While more general, SPMC is extremely time-consuming,
and does not scale well to cloud infrastructure datasets in
which there may be a large number of common infrastruc-
ture components. The iRec design in contrast focuses on
developing a simple, best-effort recommendation scheme to
measure the independence of cloud services for redundancy
purposes, while preserving cloud providers’ information us-
ing the more efficient and scalable PSI-CA algorithm.

6. CONCLUSION AND FUTURE WORK
To address the risk of correlated failures resulting from

common third-party infrastructure components shared by
multiple cloud providers, we have sketched a privacy-pre-
serving scheme for evaluating the independence of alterna-
tive cloud services, and recommending combinations to ap-
plication providers maximizing the benefits of redundancy.

For future work, we intend to improve iRec in the fol-
lowing ways: 1) To make iRec more practical, we will ex-
plore the design space of more effective weight assignment
schemes. We intend to adapt traditional analytic hierarchy
process techniques [22] to reason about iRec’s weight assign-
ment process. This work may not be trivially applicable to
iRec, since there are many factors that may result in corre-
lated cloud failures. 2) We are developing an iRec prototype
and plan to evaluate its effectiveness and efficiency using re-
alistic datasets. 3) A high-performance differential privacy
mechanism has been proposed in SplitX [8]; we are planning
to enhance the efficiency of differential privacy in iRec via
a similar approach. 4) To ensure the correctness of com-
puted results, we would like to explore incentive schemes
that might encourage cloud providers to follow the W-PSI-
CA protocol honestly. 5) Handling multi-layer third-party
infrastructure components is an important future problem,
since real clouds can be complex and many-layered.

Since we believe cloud provider independence to be of
real interest to many application providers, further research
along these lines may yield a variety of new cloud-based in-
dependence measurement and recommendation techniques,
not only related to reliability.

Finally, iRec suggests potential opportunities to optimize
other goals. While the emphasis of this paper is on reliabil-

ity, we envision iRec could evolve into or be combined with
a more comprehensive cloud recommender system.

Acknowledgments

We wish to thank the anonymous HotDep reviewers for their
comments. We also thank Jeff Mogul and Gustavo Alonso
for helpful suggestions. This work is supported by the Na-
tional Science Foundation under Grant No. CNS-1149936.

7. REFERENCES

[1] Apple’s iCloud runs on Microsoft’s Azure and Amazon’s
cloud. http:
//venturebeat.com/2011/09/03/icloud-azure-amazon/.

[2] Netflix. https://signup.netflix.com/.
[3] P. Bahl, R. Chandra, A. G. Greenberg, S. Kandula, D. A.

Maltz, and M. Zhang. Towards Highly Reliable Enterprise
Network Services Via Inference of Multi-level
Dependencies. In SIGCOMM, pages 13–24, 2007.

[4] C. Basescu, C. Cachin, I. Eyal, R. Haas, A. Sorniotti,
M. Vukolic, and I. Zachevsky. Robust Data Sharing with
Key-Value Stores. In DSN, pages 1–12, 2012.

[5] A. N. Bessani, M. P. Correia, B. Quaresma, F. André, and
P. Sousa. DepSky: Dependable and Secure Storage in a
Cloud-of-clouds. In EuroSys, pages 31–46, 2011.

[6] N. Bonvin, T. G. Papaioannou, and K. Aberer. A
Self-organized, Fault-tolerant and Scalable Replication
Scheme for Cloud Storage. In SoCC, 2010.

[7] C. Cachin, R. Haas, and M. Vukolic. Dependable Storage in
the Intercloud. Technical Report RZ3783, IBM Research,
Zurich, 2010. Available at http://domino.research.ibm.
com/library/cyberdig.nsf/papers/
630549C46339936C852577C200291E78/$File/rz3783.pdf.

[8] R. Chen, I. E. Akkus, and P. Francis. SplitX:
High-Performance Private Analytics. In SIGCOMM, pages
315–326, 2013.

[9] X. Chen, M. Zhang, Z. M. Mao, and P. Bahl. Automating
Network Application Dependency Discovery: Experiences,
Limitations, and New Solutions. In OSDI, pages 117–130,
2008.

[10] J. Clark. Lightning strikes Amazon’s European cloud.
http://www.zdnet.com/
lightning-strikes-amazons-european-cloud-3040093641/.

[11] B. Ford. Icebergs in the Clouds: the Other Risks of Cloud
Computing. In HotCloud, 2012.

[12] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A.
Truong, L. Barroso, C. Grimes, and S. Quinlan.
Availability in Globally Distributed Storage Systems. In
OSDI, pages 61–74, 2010.

[13] M. J. Freedman, K. Nissim, and B. Pinkas. Efficient Private
Matching and Set Intersection. In EUROCRYPT, pages
1–19, 2004.

[14] M. Y. Hajjat, X. Sun, Y.-W. E. Sung, D. A. Maltz, S. G.
Rao, K. Sripanidkulchai, and M. Tawarmalani. CloudWard
Bound: Planning for Beneficial Migration of Enterprise
Applications to the Cloud. In SIGCOMM, pages 243–254,
2010.

[15] S. Kandula, R. Mahajan, P. Verkaik, S. Agarwal,
J. Padhye, and P. Bahl. Detailed Diagnosis in Enterprise
Networks. In SIGCOMM, pages 243–254, 2009.

[16] L. Kissner and D. X. Song. Privacy-Preserving Set
Operations. In CRYPTO, pages 241–257, 2005.

[17] A. Li, X. Yang, S. Kandula, and M. Zhang. CloudCmp:
Comparing Public Cloud Providers. In IMC, pages 1–14,
2010.

[18] V. Liu, D. Halperin, A. Krishnamurthy, and T. Anderson.
F10: A Fault-Tolerant Engineered Network. In NSDI, 2013.

[19] J. C. Mogul. Emergent (Mis)behavior vs. Complex Software
Systems. In EuroSys, pages 293–304, 2006.

[20] A. Narayan and A. Haeberlen. DJoin: Differentially Private
Join Queries over Distributed Databases. In OSDI, 2012.

[21] P. Paillier. Public-Key Cryptosystems Based on Composite
Degree Residuosity Classes. In EUROCRYPT, pages
223–238, 1999.

[22] T. L. Saaty. What is the analytic hierarchy process?
Springer, 1988.

[23] N. Santos, R. Rodrigues, K. P. Gummadi, and S. Saroiu.
Policy-Sealed Data: A New Abstraction for Building
Trusted Cloud Services. In USENIX Security, 2012.

[24] M. Schwarzkopf, D. G. Murray, and S. Hand. The Seven
Deadly Sins of Cloud Computing Research. In HotCloud,
2012.

[25] M. A. Shah, M. Baker, J. C. Mogul, and R. Swaminathan.
Auditing to Keep Online Storage Services Honest. In
HotOS, 2007.

[26] M. A. Shah, R. Swaminathan, and M. Baker.
Privacy-Preserving Audit and Extraction of Digital
Contents. IACR Cryptology ePrint Archive, 2008:186, 2008.

[27] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh. A
Cost-Aware Elasticity Provisioning System for the Cloud.
In ICDCS, pages 559–570, 2011.

[28] P. B. Teregowda, B. Urgaonkar, and C. L. Giles. CiteSeerx:
A Cloud Perspective. In HotCloud, 2010.

[29] E. Walker. Benchmarking Amazon EC2 for
High-Performance Scientific Computing. USENIX Login,
33(5):18–23, 2008.

[30] C. Wang, S. S. M. Chow, Q. Wang, K. Ren, and W. Lou.
Privacy-Preserving Public Auditing for Secure Cloud
Storage. IEEE Trans. Computers, 62(2):362–375, 2013.

[31] C. Wang, K. Ren, W. Lou, and J. Li. Toward Publicly
Auditable Secure Cloud Data Storage Services. IEEE
Network, 24(4):19–24, 2010.

[32] C. Wang, Q. Wang, K. Ren, and W. Lou.
Privacy-Preserving Public Auditing for Data Storage
Security in Cloud Computing. In INFOCOM, pages
525–533, 2010.

[33] Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li. Enabling
Public Auditability and Data Dynamics for Storage
Security in Cloud Computing. IEEE Trans. Parallel
Distrib. Syst., 22(5):847–859, 2011.

[34] A. Wieder, P. Bhatotia, A. Post, and R. Rodrigues.
Orchestrating the Deployment of Computations in the
Cloud with Conductor. In NSDI, 2012.

[35] X. Wu, D. Turner, C.-C. Chen, D. A. Maltz, X. Yang,
L. Yuan, and M. Zhang. NetPilot: Automating Datacenter
Network Failure Mitigation. In SIGCOMM, pages 419–430,
2012.

[36] H. Xiao, B. Ford, and J. Feigenbaum. Structural Cloud
Audits that Protect Private Information. In CCSW, 2013.

[37] K. Yang and X. Jia. Data Storage Auditing Service in
Cloud Computing: Challenges, Methods and
Opportunities. World Wide Web, 15(4):409–428, 2012.

[38] A. C.-C. Yao. Protocols for Secure Computations
(Extended Abstract). In FOCS, pages 160–164, 1982.

[39] E. Zhai, D. I. Wolinsky, H. Xiao, H. Liu, X. Su, and
B. Ford. Auditing the Structural Reliability of the Clouds.
Technical Report YALEU/DCS/TR-1479, Department of
Computer Science, Yale University, 2013. Available at
http://www.cs.yale.edu/homes/zhai-ennan/sra.pdf.

