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Abstract—*“Give a man a fish, feed him for a day. Teach a man
to fish, feed him for a lifetime” — Lau Tzu

Grid computing projects such as TeraGrid [1], Grid’5000 [2],
and OpenScience Grid [3] provide researchers access to vast
amounts of compute resources, but in doing so, require the adap-
tion of their workloads to the environments provided by these
systems. Researchers do not have many alternatives as creating
these types of systems involve coordination of distributed systems
and expertise in networking, operating systems, security, and grid
middleware. This results in many research groups creating small,
in-house compute clusters where scheduling is often ad-hoc, thus
limiting effective resource utilization. To address these challenges
we present the “Grid Appliance.” The “Grid Appliance” enables
researchers to seamlessly deploy, extend, and share their systems
both locally and across network domains for both small and large
scale computing grids. This paper details the design of the Grid
Appliance and reports on experiences and lessons learned over
four years of development and deployment involving wide-area
grids.

I. INTRODUCTION

Grid computing presents opportunities to combine various
scale, distributed resources together to form powerful com-
puting systems. Due to the challenges in coordinating the
organization of grids, researchers typically become members
of existing grids or often times inefficently manage their
local resources, such as resource discovery and allocation by
word of mouth. While there is a wealth of grid middleware
available, including resource managers like Condor [4], Torque
(PBS) [5], and Sun Grid Engine [6] and parallelization tools
like MPICH [7], Hadoop [8], and UPC [9], most researchers
see the entry barrier to installing and future management of
the system as being greater than their usefulness. To address
these concerns, we have implemented the “Grid Appliance”
allowing users to focus on making use of the grid and not the
setup and management of the underlying components.

At the heart of our approach lies a P2P infrastructure
enabling decentralized peer discovery thus coordinating the
organization of a grid. The chosen P2P infrastructure is
based upon distributed hash tables (DHTs) enabling peers
to efficiently query the system with a key and potentially
receive multiple values without complex searching algorithms.
To address wide area connectivity and network dynamics, we
employ a virtual private network (VPN), guaranteeing all-to-
all connectivity while transparently handling configuration and
organization through the DHT. Grid configuration happens
automatically through web interface configuration files and
node interaction through the DHT or VPN based IP multicast.
The entire system has been packaged into a software repository

978-1-4244-8865-0/10/$26.00 ©2010 IEEE

enabling automatic configuration of physical, virtual, and
even cloud resources. This results in the “Grid Appliance”,
a preconfigured environment emphasizing user-centricity and
trivial installation. This approach focuses user interaction with
the system on their tasks rather than the configuration details,
providing researchers with a plug-and-play tool to create ad-
hoc virtual compute clusters for their own groups, local or
federated.

The web interface used to create the appliance configuration
is called “Group Appliances.” At this site, users create or
join groups, similar to an online social networking group.
Administrators of the group have the abilities to accept or deny
user access and remove misbehaving users. All members of the
group have the ability to create and download configuration
files, which plug into the “Grid Appliance” as a floppy disk
or as a file in its file system. The file specifies the type and
purpose of the “Grid Appliance” instance and uniquely identi-
fies the owner. Upon first boot, an appliance instance contacts
the “Group Appliances” site specified in the configuration
file to obtain a certificate authority (CA) signed certificate,
after which the system becomes completely decentralized and
connects to other systems through the P2P overlay.

To justify our techniques, consider the difficulty in combin-
ing resources across disparate networks, which may or may not
involve multiple research groups. Challenges such as safety,
security, connectivity, and efficiency may require an infor-
mation technology (IT) expert. Network constraints present
another complexity beyond configuration and organization of
distributed resources. Contributing groups may have resources
behind different network address translators (NATSs) and fire-
walls, preventing direct communication with each other. Even
assuming that an institution’s network administrator is willing
to make exceptions for the grid, additional rules may be
required for each new cluster or resource added internally
and externally, quickly becoming unmanageable. Our system
embraces these concerns, we assume a completely decentral-
ized system with many if not all resources behind NATs,
that users may be unfamiliar with networking considerations
and managing grid organization; but the system still works
well when used inside a LAN controlled by experienced IT
workers.

The rest of this paper discusses these challenges in more
depth and our solutions addressing them. In Section II, we
discuss various types of middleware and techniques used to
support self-configuration. Section III reflects on the difficul-
ties presented by distributed systems and how only a small

563



subset of VPNs can provide a satisfactory solution. The entire
architecture of the system is presented in Section IV. Finally,
Section V compares and contrasts other solutions to these
problems.

II. MIDDLEWARE

We consider two types of grid middleware in this paper:
resource management / batch task systems and application
specific tools. Resource management systems like Torque,
Condor, and Sun Grid Engine (SGE) consist of three fun-
damental components: execute nodes, resource managers, and
submission nodes. The execute nodes run the tasks submitted
from the submission sites. Users access a submission site,
craft task description files, and submit them to a scheduler
or resource manager, which will queue tasks to the various
execute nodes. Application specific systems like Hadoop,
MPICH, and UPC do not have such a convenient layout,
but typically all-to-all connectivity is required amongst the
resources.

A user configuring grid middleware must understand the
layout of the system, install the correct software on each
resource, and then configure all the individual resources to
work with each other. Use of packaging as described in
Section IV addresses the concerns of software. While the
configuration data, users download from the “Group Appli-
ances,” determines how to configure the individual resources.
This section addresses decentralized resource configuration.
Without it, users would, potentially, need to communicate with
each other each time new resources were added, removed, or
there was some system change, like an IP address changing.
We explore the usage of both DHT and IP multicasting to
allow users to forego this configuration issue.

A. Resource Managers and the DHT Approach

The first goal of the “Grid Appliance” is to construct wide
area grids using common resource management techniques.
To do so efficiently, we employ the DHT. In this manner,
a manager places its IP address into the DHT at the key
managers. When workers and clients join the grid, the systems
automatically query this key and configure to report to one or
more managers, application dependent. Likewise, managers
can query this key and then coordinate with each other
management of the overlay.

Of the resource management middlewares that we have
surveyed, Condor was the most appealing due to its decentral-
ized properties and focus on desktop grids. These are easily
recognizable by analyzing the complexity involved in having
multiple submission sites and the ability to add and remove
resources.

Typical clusters have a single entry point for task submis-
sion, SGE and Torque make it rather difficult to support more
than one, usually requiring additional middleware, such as
Globus [10], to support this behavior. If multiple groups are
collaborating together to form a single grid, a single submis-
sion site may be very undesirable and difficult to support.
To allow for multiple submission sites, Condor separates job

queues / submission sites from resource management and so
that two entities work together to negotiate the running jobs
on resources. In our system, job queue or submission machine,
which stores everything pertinent to the user, is run by the user,
while the resource manager runs independently with Condor
handling all the interaction between it and the job queue.

To add new resources to a Condor system, an execute or
submission node must have an IP address for the manager,
the rest of the system organization is performed entirely
transparent to the user. However, in SGE and Torque, after
resources have been added into the system, the user must
manually configure the manager to control them.

One of the caveats of our approach, which remains ongoing
research, is the requirement of a manager, which means we do
not provide a completely decentralized, but rather a distributed
approach. In the meantime, we have taken advantage of a
feature known as “flocking” in Condor. Flocking allows sub-
mission sites to connect to multiple managers. This serves two
purposes: 1) to provide transparent reliability by supporting
multiple managers and 2) users can share their resources
through their own manager.

To configure Condor, we store managers IP addresses into
the DHT using the key managers. When a new peer joins, it
queries the DHT, obtains the list of all managers, and randomly
selects one as its primary manager. The rest are set to flocking.
If the system prefers managers from its group, it will randomly
contact each manager in an attempt to find a match, selecting
one at random if no match is found. If no managers are found,
the process repeats every 60 seconds. Once a manager has been
found, it is checked every 10 minutes to ensure it is online
and additional managers that have come online are added to
the flock list.

B. Hadoop, MPICH, and Multicast Discovery

Alternatively users may want to experiment with tools
meant for LANs but not want to invest the time to install and
configure them. In which case, DHT use does not translate well
if they want to install software without using our appliance
domain. To support these endeavours, we have investigated
methods to bootstrap grid middleware through IP multicast.
IP multicast works on all LANs and is used by many popular
applications for discovery, such as Windows Media Center and
iTunes by meanas of the UPNP (DLNA) and DAAP protocols,
respectively.

The two systems that we have used to configure through
IP multicast are Hadoop and MPICH. Hadoop configuration
consists of a head node and worker nodes, where the head
node distributes map tasks to the worker nodes. In MPICH,
each resource is identically configured to support interprocess
communication through the MPICH library, it is up to the
application developer to determine roles of individual nodes.
In both cases, the way multicast discovery works is to send out
a beacon requesting that all nodes supporting these services
respond.

Our appliance setup for these applications consists of a
common ssh key, so that all resources in a grid can connect
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A typical NAT interaction. The peer behind a NAT has a private address. When the packet is sent through the NAT, the NAT translates the source

information into a public mapping, keeping the original source information so that if a packet from the remote peer comes back, it can be translated and

delivered to the original source.

with each other and a multicast discovery application so a
coordinator can organize the resources. The ssh key only
enables access on host only networks and VPNs, preventing
malicious third-parties from gaining access to the grids. The
IP multicast script is run by the user on a single access node,
which will act as the coordinator. The resource discovery
sends out a beacon several times and after a 30 second
delay, the process completes and all responding resources are
automatically configured through ssh.

III. THE MOTIVATION FOR VPNS

As of 2010, the majority of the Internet is connected via
Internet Protocol (IP) version 4. This protocol has a quickly ap-
proached limit of addresses available, only 232 (approximately
4 billion). With the Earth’s population at over 6.8 billion
and each individual potentially having multiple devices with
Internet connectivity, the IPv4 limitation is becoming more and
more apparent. Addressing this issue are two approaches: 1)
the use of NAT's to enable many machines and devices to share
a single IP address but preventing bidirectional connection
initiation, and 2) IPv6 which supports 2'%2% addresses. The
use of NATSs, as shown in Figure 1, complicates grid systems
that require all-to-all communication, which include all of
those which we consider. In addition, firewalls may prevent
peers from receiving incoming connections. And while the
eventual widespread use IPv6 may eliminate the need for
address translation, it does not deal with the issue of firewalls,
and the future of NATSs in IPv6 is unclear.

VPNs motivate from more than just crossing NATs and
firewalls. With a VPN, users can avoid the headaches as-
sociated with dynamic IP addresses, as each resource can
claim an IP and, regardless of the machines physical location,
use it, an ideal condition for laptop users. In addition, it
abstracts the user from having to be concerned about network
addresses. The mixture of virtual machine NATs and VPNs
allow users inside a network to not be concerned about IP
address allocations, from the LANs perspective, the machine
has only ever been allocated one IP address, yet all grid
resources are able to communicate with each other.

Our work relies on a group enabled IPOP VPN called
GroupVPN [11]. IPOP through its underlying P2P infrastruc-
ture support NAT traversal allowing for peers behind NATsS to
communicate directly with each other in addition to indirectly
communicating by relaying across the P2P system. Many of

the key features of our grid system are enabled because of
the VPN. For example, if there were not a VPN, users of
MPI and Hadoop would need to ensure that all resources were
bridged to the LAN and not through a VM NAT, the typical
configuration, otherwise the multicast message would not be
delivered to all participants. The VPN software supports the
ability to self-organize using existing infrastructures including
IP multicast, public overlays, and Xmpp as described in our
previous work [12]. This is in contrast to other VPNs that
are either centralized and require a dedicated node to coor-
dinate peers and decentralized solutions that require manual
configuration of links between peers.

Using these techniques “Grid Appliances” can be con-
structed in one of two ways: local and wide area. The “Grid
Appliance” ships with two default configurations, one that
connects users to a globally available public system and
another that allows for LAN only grids. Local grids can be
constructed by booting the appliances, which will then use
multicast self-discovery to find other resources, create the
DHT overlay, and then form VPN links. Alternatively, the
user can connect to the default publc system or use “Group
Appliances” to create and manage their own grid, both of
which bootstrap from a public shared DHT overlay. This
does not prohibit more advanced users from downloading our
“Group Appliances,” as its available as a VM, and host their
own DHT overlay.

IV. DEPLOYING GRID APPLIANCES

The complete system is presented in Figure 2. Users join
a group and can then download one of three different types
of configurations: server, worker, and client (mapping to the
three types of typical grid nodes, resource manager, execution
site, and submission site). In addition to the configuration
data, a first time user can download the generic appliance,
or one extended with additional software customized for their
community. In the case of a VM appliance, the configura-
tion data can be added to the system as a virtual floppy
image, automatically configuring the appliance for a specific
behavior. In the case of the client, it begins searching for an
appropriate resource manager by querying the DHT. Upon
finding an entry in the DHT, the client communicates with
the resource manager via the VPN. The same procedure can
be repeated many times to add additional resources into the
grid. Resources booted using the “server” image configure
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Fig. 2.

and advertise themselves through the DHT or VPN. Each
individual grid can support multiple servers for fail-over or
load balancing, depending on the capabilities of the grid
middleware (e.g. Condor flocking). Beyond the downloading
of the appliance and the configuration data, all other steps are
performed transparently from the user.

VMs are favored for the distribution of complicated appli-
cations as experts can configure them and release the results
as a complete working system. This approach may limit non-
expert use to the VM appliance, which may be undesirable
for users that want to configure their own systems without
reuse of the existing VM. Guides may exist for the creation
of systems, most systems are too complex for non-experts to
produce similar results found in the VM. In addition to sup-
plying VMs, we also supply packages for Debian and Ubuntu
systems, DEB files. These enable easy installation in arbitrary
environments through the use of package managers, APT in
the case of Debian and Ubuntu, which handle configuration
and dependencies, allowing users can focus on the end result
and not stumbling during setup. Given an Ubuntu or Debian
installation on a physical, virtual, or cloud machine, a new
“Grid Appliance” can be configured by following these steps:
add the configuration data into the newly configured resource,
our package repository to the remote repositories list, and our
repositories signing key to the key chain for repositories and
finally selecting our packages and installing them. At which
point, the system will connect to the grid.

To verify the utility of our approach, we have evaluated the
time required to create and utilize a grid consisting of various
distributed resources using the “Grid Appliance.” The system
consists of VMware resources behind a Cisco and “iptables”
NAT at the University of Florida (UF), KVM resources be-
hind an “iptables” and KVM NAT at Northeastern University
(NEU), and cloud resources provided by Amazon’s EC2, pools

An example deployment scenario: obtaining configuration files, to starting the appliance, and connecting with a resource manager.

of 50 resources from each site were booted independently and
then together, resulting in 4 different test runs.

Each test was performed independently with an existing
manager and submit node already in the system. We measure
three times during this evaluation: “start” - begins with starting
the experiment including the copying of files and creation of
instances until all resources have been powered on, “connect”
- is the time delta between the end of “start” and when all
resources appear in “condor_status,” that is, have registered
with the manager, and “run” - time from the submission to the
conclusion of a 5 minute job to all resources Like connect,
run measures the time for VPN connections, only from the
client to the resources instead of from the negotiator. All tasks
are automated through scripts with human interaction required
only to start the events of grid boot and job submission. Results
are presented in Figure 3.

| [50-EC2 [ 50 - NEU | 50 - UF_| 150 - All |

Start 2:44 10:21 20:23 21:14
Connect || 2:27 11:36 3:53 17:13
Run 7:15 6:35 5:53 21.19

Fig. 3. Time in minutes:seconds to start and connect execute

nodes from various sites, Amazon EC2, Northeastern University, and
University of Florida, to an already online resource manager, and then
the time to run a 5 minute job from a freshly connected submission
node.

As the systems consist of various hardware and software
configurations, the time to start is only provided as a reference
to potential overheads in bootstrapping the resources. Some
of the interesting experiences of the experiment were: 1) the
combination of the “iptables” and VMware NAT was more
easily traversable than the combination of “iptables” and KVM
NAT and 2) in the experiment consisting of 150 peers, nodes
were actually well connected much earlier, but due to missed
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packets and Condor timeouts, not all resources were accounted
for in Condor as early as in the other tests. With regards to the
KVM NAT, it appears to be particularly aggressive as NAT
mappings last for less than 10 seconds, while typical NATs
keep mappings for over 30 seconds.

V. RELATED WORK

Existing work that falls under the general area of desktop
grids/opportunistic computing include Boinc [13], Bonjour-
Grid [14], and PVC [15]. Boinc, used by many “@home”
solutions, focuses on adding execute nodes easy; however,
job submission and management rely on centralization and
all tasks must use the Boinc APIs. BonjourGrid removes the
need for centralization through the use of multicast resource
discovery; the need for which limits its applicability to local
area networks. PVC enables distributed, wide-area systems
with decentralized job submission and execution through the
use of VPNs, but relies on centralized VPN and resource
management.

Each approach addresses a unique challenge in grid com-
puting, but none addresses the challenge presented as a whole:
easily constructing distributed, cross-domain grids. Challenges
that we consider in the design of our system are ensuring
that submission sites can exist any where not being confined
to complex configuration or highly available, centralized lo-
cations; ability to dynamically add and remove resources by
starting and stopping an appliance; and the ability for individ-
ual sites to share a common server or to have one or more
per site so that no group in the grid is dependent on another.
We emphasize these points, while still retaining the ease of
use of Boinc, the connectivity of PVC, and the flexibility of
BonjourGrid. The end result is a system similar in organization
to OurGrid [16], though whereas OurGrid requires manual
configuration amongst sites and networking considerations to
ensure communication amongst sites, the “Grid Appliance”
transparently handles configuration and organization issues
with a VPN to transparently handle network constraints.

VI. CONCLUSIONS

In this paper, we have described a novel grid architecture
that enables both wide area and educational grid middleware.
Our results from Section IV show that the process of connect-
ing the resources together are not significantly longer than that
of actually starting the resources. Furthermore, we have shown
that submission sites have very low overheads in connecting
to the resources. For future work, we intend on expanding
the utility of the “Grid Appliance” to support completely
decentralized grid computing.

With regards to practical experience, we have been pro-
viding a service called Archer [17], an active grid deployed
for computer architecture research, for nearly 3 years. Archer
currently spans four seed universities with 500 resources
with over hundreds of students and researchers submitting
jobs totaling over 150,000 hours of job execution in the
past year alone. Groups at the Universities of Florida, Clem-
son, Arkansas, and Northwestern Switzerland have used it

as a tool to teach grid computing. Clemson and Purdue
are constructing campus grids using the underlying VPN to
connect resources together. Recently, two private small-scale
systems have come online using our shared system available at
www.grid-appliance.org. Feedback from users through surveys
have shown that non-expert users are able to connect to our
public Grid appliance pool in a matter of minutes by simply
downloading and booting a plug-and-play VM image that is
portable across VMware, VirtualBox, and KVM.
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