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ABSTRACT
Virtual networks (VNs) provide methods that simplify re-
source management, deal with connectivity constraints,
and support legacy applications in distributed systems, by
enabling global addressability of VN-connected machines
through either a common layer 2 Ethernet or a NAT-free
layer 3 IP network. This paper presents a novel VN design
that supports dynamic, seamless addition of new resources
with emphasis on scalability in a unified private IP address
space. Key features of this system are: (1) Scalable con-
nectivity via a P2P overlay with the ability to bypass over-
lay routing in LAN communications, (2) support for static
and dynamic address allocation in conjunction with virtual
nameservers through a distributed data store, and (3) sup-
port for transparent migration of IP endpoints across wide-
area networks.

The approach is validated by a prototype implementation
which has been deployed in grid and cloud environments.
We present both a quantitative and qualitative discussion of
our findings.

1. INTRODUCTION
The implementation and use of overlay networks (ONs1 )

as Virtual Private Networks (VPNs) for distributed comput-
ing has been explored in previous research [11, 30, 15, 29,
17, 18]. ONs enable users to easily merge resources into a
homogeneous network system, providing connectivity across
nodes distributed over multiple domains as if they belonged
to a LAN. ONs also make the process of configuring the se-
curity of network environments significantly easier. By de-
coupling the public and private networks, the administrator
of an ON need not be the same as the administrator of the
physical network where the ON runs. This allows different

1Throughout this paper, the terms overlay network (ON),
virtual network (VN), and virtual private network (VPN)
will be used interchangeably. In this context a VPN/VN
runs on top of an ON providing features such as IP and
Ethernet to the ON.
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security policies for the differing networks. For example, a
public connection may be accessible by anyone but limit cer-
tain types of traffic, whereas an ON can be made accessible
to only those with proper credentials and allow all forms of
traffic.

However, current ON approaches lack the ability to auto-
nomically configure a system consisting of both clusters and
workstations in a scalable manner. Previous work on this
topic [11, 13], analyzed the use of Peer-to-Peer (P2P) VN
interfaces and the prospects of using dynamic host configu-
ration protocol (DHCP) and address lookup through the use
of a distributed hash table (DHT). However, a limitation of
this approach was the need to incur ON routing overhead for
all VN packets, including those destined to LAN hosts. The
contributions made in this paper extend upon P2P-based
overlay techniques [11, 13, 32] to support a unified frame-
work where WAN ON routing can be reconciled with direct
point-to-point LAN communication without sacrificing the
self-configuration, scalability and fault tolerance properties
of a P2P overlay. Specifically, we present a P2P-based VN
which is novel in its ability to integrate the following fea-
tures:

• Integrated support for three self-configuring methods to
connect to the VN: (1) local-host ON router for a single
VN endpoint, (2) single ON router for a cluster of VN end-
points, and (3) a novel hybrid model with a local-host ON
router which can be bypassed for intra-LAN communica-
tions

• A single layer 3 subnet across multiple domains using an
Ethernet layer gateway instead of IP layer gateway

• Machine addresses can be either automatically or statically
configured

• Scalable address and name resolution
• Transparent, self-configuring WAN migration of VN end-

points

Specifically, the contributions that separate this paper
from our previous work include the architectures of ON
router and hybrid models allowing machines on a LAN to
talk directly with each other avoiding VN software over-
heads, integration with standard networking protocols (ARP,
DHCP, DNS) that provide a portable VN solution, and sup-
port for IP migration between VPN routers. Figure 1 depicts
how the three deployment models considered in this paper
relate to the P2P overlay architecture. Furthermore, we
evaluate an implementation of the proposed approach quali-
tatively and quantitatively in environments that include dis-
tributed cloud resources.

An interesting new opportunity for virtual networking de-
ployment exists in the realm of cloud computing, specifically
infrastructure as a service (IaaS). IaaS provides an avenue
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Figure 1: Illustration of the three different deployment

models considered in this paper. In VN interface mode

(1), each node has an overlay ID and communicates to all

other nodes through VN tunneling. In VN router mode

(2), only the router has an overlay ID and routes for a set

of resources; LAN communication does not require VN

tunneling. In hybrid mode (3), each host has an overlay

ID; LAN communication does not require VN tunneling.

for users to instantiate systems on demand using remotely
managed resources. This allows the user to focus on soft-
ware in the system, thereby reducing or removing the cost of
managing hardware infrastructures. In cloud environments,
VNs provide a single private network that allows the distri-
bution of resources amongst multiple cloud vendors, as well
as seamless connection to local machines. The ability to de-
ploy a VN across multiple providers, with the potential for
supporting transparent migration, helps avoid vendor and
data lock-in, which have been recognized as key challenges
to the adoption of the cloud model [3]. In this context, we
qualitatively evaluate the ability of our overlay to integrate
with two of today’s leading cloud providers (Amazon and
GoGrid), demonstrating the ability to create a VN span-
ning two remote cloud infrastructures, local resources, and
an overlay bootstrap deployed over hundreds of nodes dis-
tributed over PlanetLab [24].

This paper’s organization follows. Section 2 provides the
necessary background to understand the framework for our
contributions by reviewing related and previous work. Sec-
tion 3 introduces our VN models from a high level systems
point of view. Section 4 describes the networking concepts
used to implement a VN router, interface, and hybrid. Sec-
tion 5 presents and evaluates our migration strategy. Sec-
tion 6 qualitatively describes deployment and quantitatively
evaluates VN routers and interfaces in cloud environments.
Section 7 concludes the paper.

2. BACKGROUND
Three important areas that concern distributed systems

are connectivity, security, and growth. In the field of grid
systems, traditional environments consist of aggregate clus-
ters, where each cluster has a head node that provides access
and enforces security. However, the details of implementing
and maintaining this environment, specifically the connec-
tivity between resources and the head node as well as growth
are left to the system administrator. To allow different clus-

ters to merge into a unified system, administrators would
have to place all resources on mutually accessible networks
or create complex pathways between the two domains, creat-
ing potential security issues, limiting growth, and reducing
the independence of that cluster. A popular solution to this
problem involves the use of middleware brokering agents,
such as Globus [10], which provide secure connections be-
tween clusters by requiring that each participating cluster’s
head node has a signed certificate and be publicly accessible
to the brokering agent. This approach allows many small
clusters to be aggregated together to form a distributed grid
provided that the used cluster management software [2, 22,
6, 28] supports communicating with the brokering agent.

Cloud computing [3, 19], namely Infrastructure as a Ser-
vice (IaaS), offers a new opportunity for distributed com-
puting. IaaS allows users to focus on software and rele-
gate the maintenance of hardware to cloud providers. Cloud
providers offer features such as wide-area distribution of re-
sources for fault tolerance, persistent storage, back-end pri-
vate networking, and public network interfaces. Unlike grid
environments, there has not been much discussion on cloud
interoperability and user resources interacting with clouds,
but interoperability is recognized as a hindrance to adop-
tion. Efforts towards defining open clouds are beginning to
appear with initiatives like the Open Cloud Manifesto [1].
In the context of our work and in its first revision, the Man-
ifesto does not define the networking expectations of a cloud
infrastructure.

In grids, not all scenarios require a layering approach to
support multiple administrative domains provided by host-
ing one’s own cluster. A scenario that is mutually benefi-
cial for clouds exists in an environment where all-to-all con-
nectivity is available for distinct and distributed resources.
Virtual networking provides a framework enabling all-to-all
network connectivity while retaining isolation from the phys-
ical network to facilitate the enforcement of security policies.
This form of virtual networking is similar to Virtual Private
Networking (VPN) services (e.g. OpenVPN [33] and Cis-
coVPN [5]) where all participants are in the same layer 3 net-
work and thus have all-to-all connectivity. Bandwidth con-
straints, complex configuration/management, latency, and
reliance on a single site are issues presented by traditional
VPN configurations and led to the desire for better commu-
nication pathways provided by distributed overlay networks
to support such infrastructures.

2.1 Related Work
Related work in the field of virtual networking on top

of overlay networks for distributed computing includes Vi-
olin [15], VNET [29], ViNe [30], SoftUDC VNET [18],
OCALA [17], N2N [8], and IPOP [11]. The primary feature
found in all virtual networking software is the support for
all-to-all native IP communication amongst peers in the vir-
tual network, though their mechanisms for supporting this
are different. Table 1 summarizes key differences amongst
these approaches, which have been motivated by different
assumptions about the target environment and use. The
contributions of this paper largely stem from and extend
initial work done in the IPOP overlay as described in [11,
13], which is detailed in the following subsection.

2.2 IPOP: P2P Virtual Networking



Overlay Routing Configuration Miscellaneous

IPOP Structured P2P overlay
with O(Log N) routing
hops, where N is the size
of P2P network. Self-
optimizing shortcuts and
STUN-based NAT traver-
sal.

Mapping stored in DHT
resolves virtual IP address
to P2P address. Virtual
network packets are routed
to corresponding P2P ad-
dress.

Each machine runs P2P
VPN software with a dy-
namic IP address in a
common subnet. Com-
mon configuration shared
amongst all hosts.

Supports encrypted P2P
links and end-to-end VPN
tunnels (unpublished
work). Migration possi-
ble; routes self-configure
without user interven-
tion, product of the P2P
overlay.

N2N Unstructured P2P net-
work, super nodes provide
control paths, forms direct
connections for data.

Broadcast for discovery
and overlay for control. No
organization, no guaran-
tees about routing time.

Requires N2N software at
each host, must connect to
a super node. Supports
layer 2 Ethernet network.

Supports shared secrets to
create private tunnels be-
tween edges. Migration
not discussed, but poten-
tially free due to layer 2 ap-
proach.

OCALA Not tied to any specific
overlay, layer 3 middle-
ware.

Based upon chosen overlay. Requires OCALA stack,
overlay configuration, and
IP to overlay mapping.

Security is overlay based
or SSH tunnels. Migration
not mentioned.

SoftUDC
VNET

Decentralized with ex-
plicitly configured overlay
routes.

Broadcast for discovery. Requires software on each
host and one proxy per
site. Layer 2 networking.

Security is not discussed
nor is wide-area migration.

ViNe ViNe authority configures
global network descriptor
table (GNDT) explicitly
at each router. Supports
proxying to one location
through another and NAT
traversal.

GNDT provides overlay
routes for all routers in
overlay.

Each subnet is allocated a
single router. Each host
must be configured for reg-
ular and ViNe networks,
but no VN software needed
on host.

Supports encrypted
tunnels between ViNE
routers, migration not
discussed.

Violin Decentralized network
with statically configured
overlay routes.

Broadcast discovery for
Ethernet, static routes for
IP subnet.

Virtual hosts connect VMs
to the VN. Hosts connect
to virtual switches or prox-
ies (gateways). Switches
connect to proxies. Sites
are typically allocated an
IP address space.

Security potentially
through the use of SSH
Tunnels. Migration
possible; requires reconfig-
uration of switches.

Virtuoso
VNET

Decentralized with ex-
plicitly configured overlay
routes.

Broadcast for discovery.
Bridging learns paths after
initial discovery. Virtual
network packets are routed
between VNET proxies.
Can be configured manu-
ally.

Each site runs a proxy pro-
viding Ethernet bridge to
other proxies. VM hosts
forward packets to local
proxy. Proxies configured
to connect to other prox-
ies.

Security through the use
of SSL and SSH Tunnels.
Layer 3 migration, product
of layer 2 virtualization.

Table 1: Virtual Network Comparison

IPOP uniquely differentiates itself from related virtual
network techniques in how it builds upon a Peer-to-Peer
(P2P) overlay for virtual IP packet routing and for dis-
tributed hash table (DHT)-based object storage/lookup. In
doing so, it removes the requirement of having any central-
ized hosting mechanism. Furthermore, a P2P system can
provide features that allow two private-addressed machines
constrained by distinct NATs (Network Address Translation
devices) to communicate with each other through traversal
techniques as well as through the P2P overlay without con-
figuring any routing rules, similar to the proxying techniques
used in other VNs. This section discusses the features of P2P
in IPOP that reduce the complexity in configuring a VN.

In a P2P system, each node has two ways to be addressed:
via the lower layer network, e.g. an IP address, and through
the overlay via a P2P address. The machine’s IP address is
only used to help bootstrap overlay connections; the P2P ad-
dress is then used when communicating through the overlay.
As described previously [13], IPOP introduced two concepts
that allowed namespaces and multiple virtual IP networks
to share the same P2P system, and the use of a method
for dynamic allocation of IP addresses. In this method, the

namespace and the virtual IP are hashed to create a key for
lookup of the P2P address.

Supporting distributed address allocation and lookup re-
quires access to a distributed data share that supports atomic
and idempotent writes. To this end, IPOP uses a DHT pro-
vided by the underlying P2P system. A DHT is similar to a
hash table: a database where data is stored in a (key, value)
format. During address allocation, a machine attempts to
perform an atomic write where the DHT key is the names-
pace and requested IP address and the value is its P2P ad-
dress. The DHT is also used to store information about the
namespaces that is used during DHCP configuration, such
as the valid address range, lease time, and reserved IP ad-
dresses.

Furthermore, because IPOP uses the P2P address for mes-
sage routing, which is decoupled from the physical network
address of a host, virtual IP address migration happens
transparently to applications (even across domains), and
connectivity can be established as quickly as it takes for
P2P links to be reestablished.

As mentioned in Table 1, IPOP handles only layer 3 virtu-
alization and has limited interaction with layer 2. As such,



prior to the techniques described in this paper, IPOP could
only support a one-to-one mapping of IPOP instance to host.

3. VIRTUAL NETWORK MODELS
Traditionally, VNs provide either an interface model, where

there exists one VN software stack per host, or the router
model, where there exists one VN software stack per some
subset of machines in a LAN. In this section, we present a
comparison of qualitative advantages and disadvantages of
the two approaches. We also present a new model, hybrid,
that bridges the gap between the two models by taking a
subset of features from both. Graphical representations of
the models can be found in Figures 2, 3, 4. In this section,
we focus on the basic architecture of the VNs leaving the
system independent networking features for the following
section.

Figure 2: A VN deployed as an interface for single ma-

chine usage. The user of the machine is presented two in-

terfaces on two different IP subnets. All non-VN subnet

based traffic is routed normally via the default interface.

Figure 3: A VN deployed as a router providing vir-

tual network access for an entire layer 2 network. Each

machine in the network only has a VN-based address,

though they can communicate directly with each other

(and with proper routing rules and NAT setup the In-

ternet as well). The machine hosting the VN can also

have an IP address in the network by assigning one to

the bridge.

The prime factor which the three designs share is the
TAP [21] device, a Virtual Ethernet device that is available

Figure 4: A VN deployed in a hybrid mode providing

virtual network access for a single machine but bypassing

the VN when a VN peer is local. This model is similar to

having two network cards from a single machine going to

one switch. The key feature is that this model allows a

machine to be in multiple IP address space subnets and

have layer 2 traffic as well.

for almost all modern operating systems, including Win-
dows, Linux, Mac OS/X, BSD, and Solaris. The TAP de-
vice functions by letting software write incoming packets to
the device which are treated as packets that came from over
the network. Packets that are written to the TAP device by
O/S sockets are available by reading the TAP device. The
VN receives incoming packets from the overlay and writes
them to the TAP device, and receives outgoing packets from
the TAP device and sends them through the overlay.

The added feature of the router model (Figure 3) is that
the TAP device is now bridged to the entire network. In
other words, the TAP device virtualizes a bridge to other
physical networks. Thus packets can be routed to it and sent
through the overlay. Packets received by the VN can be writ-
ten to the TAP device with the destination being a machine
physically connected to the machine hosting the VN router.
This approach eliminates overhead between two machines
in the same physical network as they can talk directly with
each other without any VN middleware. Furthermore, the
router can easily be deployed in existing systems, simplify-
ing the migration to virtual networking. This model suffers
from having a single point of failure for a LAN (namely, the
VN router). This is a situation that does not occur in the
interface mode. Nonetheless, depending on deployment sce-
narios, this VN model reduces overall resource utilization,
since each machine using the VN router would not have to
deal with network virtualization as that is dedicated to a
specific VM.

Finally, we present the VN hybrid model (Figure 4) which
takes from the VN router the ability to allow machines on
the same LAN to communicate directly with each other
without VN overhead while still providing the fault toler-
ance that the VN interface provides. Assuming that there
is no overhead in the O/S’ pseudo-drivers, the performance
should be identical in the LAN to the VN router and to the
VN interface for WAN. From a high level point of view, the
piece that makes this possible is the VETH pseudo device



that provides a virtual Ethernet pair. This allows users to
add additional network cards to a bridge and thus allow mul-
tiple IP addresses in this environment. The reason for this
lies in the nature of the state of the interfaces connected to
the bridge. Devices directly connected to the bridge go into
promiscuous mode, that is, all packets sent to them are for-
warded on as if they are a wire. In non-promiscuous mode,
the network card will drop packets that are not destined for
that network card. So in that case, it is not possible to as-
sign more than one IP address to a bridge, because it and
all devices connected to it are viewed as one big network
interface. By connecting the VETH device, we are able to
uniquely identify Ethernet addresses and thus additional IP
addresses. In contrast, aliasing a Ethernet card only pro-
vide additional IP addresses and services that rely on layer
2 networking. In this case, some services may not work, for
example, DHCP does not work on aliased network cards.

To summarize, Table 2 presents a qualitative comparison
of the three deployment models.

4. IMPLEMENTATION
A self-configuring system must be transparent to the en-

vironment where it resides and require no interaction from
the administrator besides starting the system. For VNs, it
means the ability to join a network without explicitly adding
network rules or routing tables. In this section, we present
the methods used in layer 2 and layer 3 networking that
allow the deployment of self-configuring VNs alongside an
existing system. Specifically, we dissect Figure 5 and de-
scribe the sections in terms of the networking protocols and
features, namely:

• ARP, Address Resolution Protocol, to allow communication
in a LAN

• DHCP, Dynamic Host Configuration Protocol, for dynamic
address allocation

• IP, Internet Protocol, for static addresses
• DNS, Domain Name Servers, for virtualized name services

4.1 Layer 3 Communication in a LAN
IP is a layer 3 protocol. Layer 2 devices such as switches,

bridges, and hubs are not aware of IP addresses. When a
layer 3 packet is being sent on a layer 2 network, the ad-
dress resolution protocol (ARP) is used to determine the
layer 2 address. This process, as shown in Figure 6, begins
by the sending of a layer 2 broadcast message which con-
tains an ARP request, requesting that a node owning the
target IP address respond to the sender of this packet. If a
node owns the target IP address, they respond with an ARP
reply, making themselves the sender and the original sender
is the message recipient. The Ethernet header consists of
the source address being the sender and the target being
the destination. By listening to these requests, layer 2 de-
vices such as a switch can autonomously learn the location of
nodes holding Ethernet addresses are and can forward pack-
ets through appropriate ports as opposed to broadcasting or
dropping them.

In a typical IP subnet, all machines talk directly with
each other through switches. As such, they must learn each
other’s Ethernet address. In our virtual network model, we
aim to provide a large, flat subnet spanning across all nodes
connected to the VN. To accomplish this, the VN provides
the ability to virtualize a bridge, similar to proxy ARPs [25]
used to implement a transparent subnet gateway [4]. In this

Figure 6: ARP Request/Reply Interaction.

scenario, the VN would need to respond to the ARP packets
with a fake layer 2 address. Layer 2 devices in the system
would then route all packets destined for that layer 2 address
to the VN.

In our model (Figure 5), ARPs are only responded to if
(a) they are inquiring about a VN IP address, (b) the VN
address is not locally allocated, and (c) there is a P2P:IP
mapping. If all those are true, then an ARP response is sent
back to the sender. ARPs are occasionally sent out during
the course of communication and thus if a machine migrates
to a VN router, the VN router will no longer respond with
ARPs. An ARP response sent by the VN requires a source
Ethernet address, bridges and switches will see the response
and will forward all traffic towards the TAP device for that
Ethernet address. A VN device can use the same Ethernet
address for remote entities.

Prior to the introduction of the VN hybrid, our systems
used the Ethernet address FE:FD:00:00:00:00 to refer to re-
mote entities. If each VN hybrid used this address, there
would be layer 2 collision causing a single hybrid to have all
traffic sent to it. In hybrid mode, each VN must generate
a unique “remote” Ethernet address at run time. Our ex-
perience and research has led us to the following solution:
(1) use FE:FD for the first two bytes as they tend to be un-
allocated and (2) assign random values to the 4 remaining
bytes. Applying the birthday problem in this context, the
expected probability of address collisions is small for typical
LAN environments (less than 50% if the average number of
VN hybrid nodes on the same L2 network is 65,000).

4.2 Allocating Addresses
If a packet is an IP packet, the VN has a new decision to

make: whether or not it should attempt to route the packet.
This decision is made by checking 1) does the VN own the
address and 2) can the VN route the packet. So we begin by
discussing methods of how a VN may own an address and
then discuss how to determine IP packet routing.

IP addresses are traditionally allocated in one of three
ways: 1) statically, 2) dynamically through DHCP, or 3)
through pseudo-random link-local addressing. In our model,
we focus on static and dynamic addressing.

DHCP as defined in the RFCs [9, 27] enables dynamic
configuration of addresses, routing, and other networking
related features. While many different client and servers
exist, they all tend to support the basic features of allowing
the server to specify to a client and IP address, a gateway
address, and domain name servers. As shown in Figure 7,
the steps in DHCP are:

1. Client sends Discover packet requesting address.
2. Server receives the packet, allocates an address, and sends

an Offer of the address and other network configuration.
3. Client receives and acknowledges the Offer by sending a

Request message to accept the Offer.



Interface Router Hybrid

Host LAN No assumption Ideally, VLAN No assumption, though may
have duplicate address alloca-
tion in the same subnet for dif-
ferent namespaces.2

Host software IPOP, tap End node: none. Router:
IPOP, tap, bridge

IPOP, tap, veth, bridge

Host overhead CPU, memory End node: none. Router:
CPU, memory

CPU, memory

LAN traffic Through IPOP Bypasses IPOP
Migration Handled by node Involves source and target

routers
Handled by node

Tolerance to
faults

Nodes are independent Router fault affects all LAN
nodes

Nodes are independent

Table 2: Qualitative comparison of the three deployment models

Figure 7: DHCP Client/Server Interaction.

4. Server receives Request message and returns an Ack mes-
sage containing the same details as the Offer.

During the DHCP phase, the VN will communicate with
the overlay and allocate an address for the requester. Sim-
ilarly, a VN model can review packets coming into the VN,
review the sender IP address, and request from the overlay
that the address be allocated to the VN. Thus to the overlay,
static addressing is identical to dynamic addressing. There
is one caveat with static addressing: it is difficult to handle
address conflicts. In our model, this is done by the overlay
dropping address allocation requests made for a previously
allocated address. DHCP does support requesting an ad-
dress and thus one could argue that this method is superior
to using static addresses. Another key feature of DHCP is
that it provides network information, namely in our case,
DNS server addresses.

If an overlay allocates an address to the VN, then the
VN owns it. The other address that the VN owns is the null
address, 0.0.0.0, which is sent during DHCP to indicate that
the machine has no address prior to the request.

Routing is contingent on the ability of the overlay to an
address and whether or not it supports broadcast and multi-
cast packets. In our models, we implemented broadcast and
multicast by having all members of a subnet associate on
the DHT a value (the overlay address) to a specific key, i.e.,
namespace:broadcast. Then when such a packet is received,
it is sent to all addresses associated with that key. Then
it is up to the VN at each site to filter the packet. This is

2A namespace provides a unique global address space inside
a VN. The filtering for namespace occurs in the VN software
and bypassing that software, as in the case of the hybrid, can
result in undesirable behavior.

sufficient to support deployments where multicast or broad-
cast is not relied upon extensively; we consider support for
scalable multicast as a topic for future work.

4.3 Domain Name Servers and Services
Name services allow machines to be addressed with names

that are more meaningful to users than numeric addresses.
Certain applications and services require domain name check-
ing, such as Condor. To support DNS, this requires that the
OS be programmed with the VN’s DNS servers IP, which we
take generically to be the lowest available IP address in a
subnet. In static configuration, this process requires the user
to manually add this address, though through DHCP this is
set automatically.

In the state representation of the VN (Figure 5), the VN
checks the IP packet to ensure that the destination IP and
port match that of the virtual DNS server and the well-
known DNS port, 53. In the event of a match, the packet
is passed to the VN’s handler for domain names. From our
experience, there are two common uses for names, 1) be-
cause applications require it, and 2) to assist users in find-
ing resources. For 1), we have implemented a system that
takes in an IP address and maps it directly to a name, such
as, 10.250.5.5 maps to C250005005. For 2), we take ad-
vantage of the DHT and perform a Put in the key names-
pace:hostname with the value being the mapped IP address.

4.4 Hybrid Configuration
The key difference from the hybrid and router models is

that the hybrid model routes for only a single network de-
vice, say A, and thus must ignore messages that do not origi-
nate from A. This has other ramifications, strictly speaking,
the hybrid model does not know about the existence of all
machines in a local area network, because it does not own
them. So when an ARP request of some remote machine,
say B, is sent by A, the hybrid interface must receive the
result. For this, we suggest sending a similar message to
B requesting the local Ethernet address with the requester
being the same pseudo-entity used for the transparent sub-
net gateway. If no message is returned after a set amount
of time (we use 2 seconds) then the original ARP can be
responded to with the pseudo-entity being the target.

To determine which Ethernet the hybrid routes, it can be
given the name of the device at startup and query the op-
erating system for the Ethernet address. Other potentially
interesting approach involve the use of a few hybrid nodes to
route for many LAN machines, akin to the topic discussed



Figure 5: The state diagram of our proposed VN. In this model, a VN interface is identical to a VN router with the

caveat that the TAP device is not bridged, thus isolating the VN traffic. The “Should Handle” with dashed lines is a

feature that is specific to the VN hybrid; that is, a VN hybrid must be configured to communicate for a single network

device.

in [32] regarding a few routers for many machines, though
this is left as future work.

5. SUPPORTING MIGRATION
Apart from advantages like performance isolation, secu-

rity, and portability, one of the significant advantages of us-
ing VMs is the capability to migrate the VM with its entire
software stack from one physical host to another. This mi-
gration may be performed in a stop-restart manner, where
the VM is paused, migrated to another host and restarted,
or in a live mode, which attempts to minimize down time to
reduce interruption of services running on the VM.

VMs including Xen [20], VMware ESX [23] and KVM [26]
support migration with two critical requirements: (1) file
systems (disk images) must be on a shared storage system
(i.e. network file systems or storage area networks) and (2)
to maintain network connectivity, the migration must occur
within an IP subnet. In order to retain network connectivity
after migration, the VMM must notify the LAN of the VM’s
new location. The new VMM host generates an unsolicited
ARP reply which broadcasts to the entire network the VM’s
new location.

The VN interface and hybrid models support migration
of the virtual address using techniques previously described
in [11]. This is a product of the decentralized, isolated over-
lay approach where each overlay end point has a one-to-one
mapping to VN end point, e.g., P2P to IP. When a VN in-
terface or hybrid model migrates, the overlay software must
reconnect to the overlay, at which point, packets will begin
to be routed to the VN endpoint again, completing migra-
tion.

Unlike interface and hybrid models, the VN router does
not support a one-to-one mapping. In fact, a VN router
tends to have one P2P address for many IP addresses. When
a machine with a VN IP wants to migrate, it cannot also take
its P2P address with it otherwise it would end connectivity
for the rest of the members of the VN router shared overlay
end point. A solution to this problems requires the ability
to delete IP-to-P2P mappings in the DHT, detect new ad-
dresses on the network, and inform senders that an IP is no
longer located at that overlay end point. With these capa-
bilities, transparent migration can be achieved for the VN
router model as follows.

The VMM initiates a migration on a source node. Until
the migration completes, the VN router at the source contin-
ues to route virtual IP packets for the VM. Upon completion



of migration, the VN router at the target learns about the
presence of the migrated VM by either receipt of an un-
solicited ARP or by proactively issuing periodic broadcast
ICMP messages on its LAN. The VN router attempts to
store (Put) the IP:P2P address mapping in the DHT, and
queries for the existence of other IP:P2P mapping(s). If no
previous mappings are found, the VN router assumes re-
sponsibility for the IP address. Otherwise, the VN router
sends a migration request to each P2P address returned by
the DHT. The VN router receiving a migration request con-
firms the existence of the IP address in its routing table and
that if there is that there is no response to ARP requests
sent to the IP address. If these conditions hold, it deletes
its IP:P2P mapping from the DHT and returns true to the
migration request; otherwise, it returns false. If the migra-
tion request returns true, the VN router at the target LAN
starts routing for the virtual IP address; if it returns, false,
the VN router does not route for the virtual IP address until
the previous IP:P2P mapping expires from the DHT.

In addition to VN routers synchronizing ownership of the
migrated virtual IP address, any host that is connected to
that machine must be informed of the new P2P host. Over
time, this will happen naturally as ARP cache entries expire
and the IP:P2P mapping is looked up from the DHT. Addi-
tionally, the VN router at the source may keep forwarding
rules for the migrated IP address for a certain period of time,
akin to mobile IP but not on a permanent basis. A more
direct approach, as implemented in our prototype, involves
the VN router notifying the connected host of a change in
ownership, resulting in the host querying the DHT for the
updated P2P end point. An evaluation of tradeoffs in the
migration design, while interesting, is outside the scope of
this paper.

6. EVALUATION
In this section, we present an evaluation of the different

VN models, using prototype implementations built upon
IPOP. In the Grid evaluation, we simulate a client/server
environment and investigate CPU / networking overheads
related with each approach. We also present results with
cloud deployments: an evaluation of a proof of concept inter-
networking of multiple clouds and local resources, and eval-
uation of the overhead of the different approaches in WAN
and LAN environments. In all WAN experiments, a wide-
area IPOP overlay network with approximately 500 overlay
nodes distributed across the world on PlanetLab resources
is used to bootstrap VN connections and to support DHT-
based storage and P2P messaging.

6.1 Tools
The proposed VN models place varying demands on the

resources of the systems involved. We chose to focus on
CPU as our experience suggests that this is the most sig-
nificant limiting factor. As we will present, the CPU load
offered by these models depends on the bandwidth of the
underlying network link, since a larger bandwidth requires
more processing of packets.

To evaluate these VN models, we employed Netperf [16]
and SPECjbb [7]. These tools were used as follows:

Netperf is used to estimate the latency and bandwidth of
the different VN models. The latency is measured by de-
ploying Netperf in the TCP RR mode, which measures the
number of 1-byte request-receive transactions that can be

completed in a second. The bandwidh is estimated by run-
ning Netperf in the TCP STREAM mode, which is a bulk
transfer mode. It should be noted that in situations where
the link bandwidths were asymetric, we deployed Netperf in
both directions. Since both the latency and bandwidth are
dependent on the CPU available, we ran Netperf in situa-
tions where it was the only active workload (referred as “no
spec” in Figures), and in situations where there was a CPU
intensive benchmark running on the system.

SPECjbb simulates a three-tier web application with all
the clients, the middle tier, and the database running on a
single system in a single address space (inside a JVM). On
completion, the benchmark provides the metric in terms of
business of operations per second (bops). The bops score
of the system under test depends on both the CPU and the
memory in the system, as the entire database for the bench-
mark is held in memory. This benchmark generates negligi-
ble disk activity and no network activity. Thus, by compar-
ing the bops value when SPECjbb is run with and without
the Netperf (with different VN models), we get an insight
into the CPU load offered by the VN model. SPECjbb was
configured to run for 4 minutes with 1 warehouse and a JVM
heap size of 256 MB. The running time of Netperf was also
set at 4 minutes.

6.2 On the Grid
Our initial evaluation involves testing a client-server en-

vironment. Our baseline hardware consisted of quad-core
2.3GHz 5140 Xeon with 5 GB memory and Gigabit network
connectivity. Each VM was allocated 512 MB of RAM and
ran Debian 4.0 using a Linux 2.6.25 kernel. The client side
consisted of 4 VMs on 5 machines. The server side consisted
of 5 VMs on one machine with 4 acting as servers and 1 act-
ing as a gateway, which was necessary to control bandwidth
into the system, done through the Linux utility tc [14], traf-
fic control. In this environment, each server had 5 clients
communicating with it. The setup is shown in Figure 8.

Figure 8: The system setup for our grid experiments.

The VM “Servers” ran SPECjbb and were also the site

for the collection of the netperf benchmarks. All the

VM “Servers” were connected through the TC Gateway

through host-only networking to the VM “Clients”. All

traffic for the VM“Servers”passes through the TC Gate-

way, which also doubled as the Router in the Router

experiments.

The evaluation results are presented in Figure 9 and 10.
The maximum bandwidth of 600 Mbps is achieved when
neither virtual network nor traffic shaping are enabled (“no
spec.phys” at 1000 Mbps limit in Figure 9(a)), which is only
60% of the theoretical maximum. We attribute this limit
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to the cost of VMMs, specifically the time required for a
packet to traverse both VMMs networking stack as well as
the hosts networking stack. Another observation was that
transactions per second (Figure 10 (b)) do not improve sig-
nificantly for tc bandwidth limit above 25 Mbps in all cases;
thus we focus on the relevant data up to this limit.

Distinguishing features of the different VN models include
the following. Figure 9(a) shows that bandwidth in all VN
models is comparable with traffic control limit up to 75
Mbps. Beyond this point, the interface model achieves bet-
ter bandwidth than the router model (VN processing is dis-
tributed across multiple processes); the spec/no spec ratio
in the router model is smaller than in the interface model
because there is less resource contention caused by VN pro-
cessing on end nodes. For the same reason, the router
tends to achieve better SPEC results (Figure 10(a)) than
the interface. Figure 9(b) shows that the router performs
poorly compared to the interface model in terms of transac-
tions/second, though it achieves a better ratio of SPECjbb
score (Figure 10(b)) to transactions than the interface at
constrained bandwidths (less than 5 Mbps).

The hybrid method was tested, and results were nearly
identical to those of the interface, from the point of view of
the WAN part of the VN, it is the same architecture. These

results are not reported in the plots as they add little value
and further obfuscate the results.

The bandwidth cap observed in the router approach re-
flects the performance achieved by the current prototype of
the router, subject to VM overheads. The use of VM is
an assumption that is valid in the domain of cloud com-
puting where all resources run in a VM. In this experi-
ment, we focused on the interplay between resource con-
sumption by overlay routers and application performance.
Optimized user-level overlay routers running on dedicated
physical machines have been reported to achieve perfor-
mance near Gbit/s in related work [31]; we expect that such
cap can be raised substantially with improved VM handling
of network packets and user-level router optimizations.

6.3 In the Clouds
The goal of this experiment is to demonstrate the feasi-

bility of connecting multiple cloud providers as well as local
resources together through virtual networking. The sites
chosen for evaluation were local resources at Universty of
Florida and cloud resources provided by Amazon EC2 and
GoGrid. A qualitative observation here was that the differ-
ences in the networking infrastructure exposed by different
cloud providers reinforce the importance of the virtual net-
work to allow flexibility in how end nodes are connected.



EC2 / UF EC2 / GoGrid UF / GoGrid
Stream Phys 89.21 35.93 30.17
Stream VN 75.31 19.21 25.65
RR Phys 13.35 11.09 9.97
RR VN 13.33 10.69 9.76

Table 3: WAN Results for inter-cloud networking.
Stream is in Mbs and RR is in trans/s (The inverse
of trans/s would be equal to the average latency).

VN Interface VN Router VN Hybrid Physical
Stream 109 325 324 327
RR 1863 2277 2253 3121

Table 4: LAN results performed at GoGrid. Stream
is in Mbs and RR is in trans/s. Interface and Phys-
ical used the eth0 NIC, while Router and Hybrid
used eth1. Different VLANs may give different re-
sults.

Specific network configurations for the clouds were as fol-
lows:

• Amazon EC2 provides static IP networking (public and pri-
vate), no Ethernet connectivity, and no ability to recon-
figure IP addresses for network. Currently, only the VN
interface model is supported.

• GoGrid provides 3 interfaces (one public, statically config-
ured, and two private, which can be configured in any man-
ner); the 2 private interfaces are on separate VLANs sup-
porting Ethernet connectivity. The VN interface, router,
and hybrid models are supported.

In this experiment, we have narrowed down the perfor-
mance evaluation to focus on WAN and LAN performance
of VNs in cloud environments and consider Netperf single
client-server interactions only. Because Amazon only sup-
ports Interface mode, we only evaluate it in the WAN ex-
periment. We have observed that, within Amazon, the VN
is able to self-organize direct overlay connections [12]. Each
test was run 5 times for 30 seconds, the standard deviation
for all results was less than 1. Because of this, we only
present the average in Table 3.

It can be seen in Table 3 that the VN adds little overhead
in the Netperf-RR experiment. Between UF and GoGrid
as well as between UF and Amazon EC2, the overhead for
the Stream experiment was about 15%. This may be at-
tributed to the additional per-packet overhead of the VN
and the small MTU set for the VN interface (1200). The
MTU, or maximum transmission unit, is the larget packet
that is sent from an interface. IPOP conservatively limits
the VN MTU to 1200 down from the default 1500 to al-
low for overlay headers and to work properly with poorly
configured routers, which we have encountered in practical
deployments. A more dynamic MTU, which will improve
performance, is left as future work. The EC2 / GoGrid
experiment had greater overhead which could possibly be
attributed to by the VM encapsulation of cloud resources.

Table 4 shows that some of our performance expectations
for the different models in a LAN were accurately predicted
while others were not so clear. Stream results match the ex-
pectation that VN models hybrid and router bypass virtual-
ization and get near physical speeds, whereas interface does
not. Interestingly, RR had rather poor results for Router
and Hybrid though further testing seems to indicate that

this is an issue of using the VLAN connected network inter-
faces as opposed to the public network connected interface.

6.4 VN Router Migration Evaluation
For the analysis of our implementation, we setup two Xen-

based VMware VMs co-located on the same quad-core Xeon
5335 2 GHz machine each with 1 GB memory allocated run-
ning only a minimal configuration with a SSH server. The
goal of the evaluation was to determine overlay overheads
and attempt to minimize the cost of the VM migration. The
experiment, as shown in Figure 11, involved migrating a Xen
guest VM between two Xen host VMMs running in VMware.
Although they are hosted in the same infrastructure, the
two domains are connected to two separate VLANs, and
thus isolated. As mentioned earlier, resource information is
stored in a DHT running on top of our ON which is deployed
on PlanetLab. Thus the migration overheads in the experi-
ment capture the cost of wide-area messaging in a realistic
environment. During the course of the experiment, we tried
over 50 different IP addresses migrating them about 10 times
each in attempt to gain some insights in the cost of using
the DHT with support for deletes and VN router messages
as a means to implement migration. The result, presented
in Figure 12 gathered from the experiment was how long
the VN IP was offline, measured by means of ICMP ping
packets. On average, the overhead of VN migration was 20
seconds. This overhead is in addition to the time taken to
migrate a VM, since the VN routers begin to communicate
only after migration finishes.

Figure 11: The VN operations that occur after a guest

(VM) has been migrated. (1) The destination retrieves

the P2P information of the source from the DHT and

optimistically places its information into the Dht. (2)

The destination requests that the source delete its infor-

mation from the DHT. (3) The source confirms that the

VM is no longer present and performs the delete. (4)

The source notifies the destination that its request has

finished successfully.

7. CONCLUSIONS
A key aspect of our contribution is the use of common

network protocols as the building blocks for self-configuring,



Figure 12: Over 50 different IPs migrated about 10

times each. The average was 20.11 seconds with a stan-

dard deviation of 10.89. In this experiment, the majority

of this time comes from VN migration, whereas VM mi-

gration requires less than a second.

transparent VNs. The discussion focuses on address alloca-
tion and resolution through methods such as packet pars-
ing, DHCP, ARP, and ICMP. Knowledge of these protocols
helped in the formation of a novel VN model that supported
key features of both router and interface VN models, bypass-
ing overlay overheads in LANs while still providing fault tol-
erance by having each end point support its own VN software
stack.

Through the qualitative and quantitative discussion pre-
sented in Sections 3 and 4, respectively, we have come to the
following conclusions:

1. VN interface provides good isolation, best networking per-
formance over WAN, and is the easiest to configure. How-
ever, it suffers LAN performance overheads, requires host
software and incurs resource contention on end hosts.

2. VN router allows for quick bootstraping of an environment,
allows for resource consolidation, and avoids overlay over-
heads in the LAN. However, it can be a bandwidth bottle-
neck in network-intensive applications and can be a single
point of failure.

3. VN hybrid offers equivalent WAN performance of the inter-
face and LAN performance equivalent to that of the router.
However, it requires additional software at each VM and
may cause potential address conflicts within a subnet.

Therefore, it is our opinion that no one model is the overall
best. The decision on choosing which one is appropriate is
largely a function of the configuration of the environment
where it will be deployed. The flexibility of the proposed
approach allows for a VN overlay to support all proposed
VN deployment models and not imposing a single model to
all resources.
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