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Abstract— With recent advances in virtual computing and the 

revelation that compute-intensive tasks run well on system virtual 
machines (VMs), the ability to develop, deploy, and manage 
distributed systems has been ameliorated. This paper explores the 
design space of VM-based sandboxes where the following 
techniques that facilitate the deployment of secure nodes in Wide-
area Overlays of virtual Workstations (WOWs) are employed: 
DHCP-based virtual IP address allocation, self-configuring virtual 
networks supporting peer-to-peer NAT traversal, stacked file 
systems, and IPsec-based host authentication and end-to-end 
encryption of communication channels.  Experiments with 
implementations of single-image VM sandboxes, which incorporate 
the above features and are easily deployable on hosted I/O VMMs, 
show execution time overheads of 10.6% or less for a batch-
oriented CPU-intensive benchmark. 
 

Index Terms— Grid Computing, Virtual Computing, Virtual 
Machines, Virtual Networking. 

I. INTRODUCTION 
Virtualization techniques can greatly facilitate the 

deployment of wide-area distributed computing infrastructures 
with low administrative overheads while keeping resources 
secure. Virtual machines (VMs) assist in the deployment of 
compute nodes, because of their decoupling from the 
operating system running on the physical machine [1] and 
ability to package entire virtual disks as regular files stored on 
a host.  Virtual networks facilitate the interconnection of VMs 
deployed across different network domains, particularly in the 
presence of firewall and NAT (Network Address Translation) 
routers, by decoupling the virtual IP address space from the 
underlying physical network. Leveraging on these capabilities, 
previous studies have motivated the deployment of virtualized 
infrastructures for wide-area computing [6,27,28,29], 
including self-organizing Wide-area Overlays of virtual 
Workstations [5] (WOWs). This paper explores the design 
space of VM-based sandboxes enabling self-configurable, 
scalable, secure deployment of computing nodes in a WOW. 

Because of the extensive use of virtualization, the 
techniques described in this paper reuse and integrate various 
software components such as VM monitors (VMMs), DHCP 
clients, IPsec, and UnionFS stacks. The novelty of this 
approach lies in how the system is architected and integrated 
to leverage the encapsulating capabilities of system VMs 
coupled with the homogeneous virtual IP address space 
provided by virtual networks to integrate all such software in 

an easy to deploy VM-based distributed system. This is 
achieved by requiring only a single software package to be 
installed on the VM’s host (a free VMM) and a single VM 
image. Furthermore, no physical IP address needs to be 
allocated by the host site – the VM can use a NAT-based 
virtual network interface. 

 
 

 

Specifically, this paper describes and evaluates approaches 
to: 1) support host and network isolation by means of machine 
virtualization, network tunneling and network traffic filtering; 
2) support site-specific customization and system upgrades 
through the use of stacked file systems; 3) automatically 
provide virtual IP addresses and names to WOW nodes 
running unmodified O/Ss by means of virtualized DHCP and 
DNS servers; and 4) support end-to-end payload encryption 
and public-key based host authentication at the virtual IP layer 
by enabling scalable deployment of X.509-based 
authentication and host-to-host IPsec transport mode.  

These techniques can be used in supporting collaborative 
environments where resources from individual participants 
from a community can be pooled together with very little 
administrative overheads. The VM image of a WOW node is 
defined once by a system administrator who is mindful of the 
configuration needs of the community, and then can be 
instantiated in many hosts across the wide area to form a 
homogeneously configured virtual infrastructure. Examples of 
collaborative environments where these virtualization 
techniques are currently being applied include user-
contributed Condor nodes in the nanoHUB cyberinfrastructure 
for nano-electronics simulation [33] and a virtual cluster to 
run forecast and hindcast storm surge models in the SURA 
Coastal Ocean Observing and Prediction (SCOOP) Program 
[34]. 

These techniques have been successfully applied in the 
design of a VM-based “appliance” for grid computing termed 
throughout this paper as WOW sandbox (appliance), which 
allows the dynamic creation of Condor-based [26] pools for 
wide-area high-throughput computing. The appliance employs 
virtual machines in the form of VMware [12] and Xen [4] and 
virtual networking through IPOP [2, 5].  Through the use of 
free VMMs such as VMware's Player or Server or 
XenSource's Xen, deployment of a fully configured WOW 
sandbox appliance is as simple as setting up a VMM and 
opening a file1; once instantiated, the virtual machine acquires 

1 A VM image with the current release of a WOW sandbox is available for 
public download and use from http://www.acis.ufl.edu/~ipop/grid_appliance. 
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a virtual IP address and automatically connects itself to the 
virtual network to become a submit/execute node of a Condor 
pool. 

Quantitative experiments are performed to analyze the 
performance of the WOW sandbox appliance for workloads 
that exercise CPU, disk and network I/O subsystems: 
SimpleScalar (a computer architecture simulator), PostMark (a 
file system benchmark) and IPERF (an application to measure 
TCP network throughput). Appliance configurations where 
the virtual networking software runs on either the VM host or 
the guest are studied. Results show that the slowdown due to 
virtualization for the CPU-intensive workload is at most 
10.6%. For the disk I/O benchmark, the overall observed 
virtualization overhead ranges from 55% to 64%. Results for 
the network benchmark show that the virtualized network 
interface delivers TCP throughput ranging from 10.3Mbps to 
26.5Mbps, depending on the VMM and virtual networking 
configurations. 

This paper is organized as follows.  Section II discusses the 
architecture of the system, and Section III discusses security 
techniques.  Section IV details current distributions of the 
WOW sandbox.  Section V presents results and analyses of 
the quantitative performance experiments.  Section VI 
discusses related work, and Section VII concludes the paper 
and presents directions for future work.  

II. SYSTEM OVERVIEW 
Virtualization techniques expedite the deployment of 

distributed systems by enabling systems with homogeneous 
configurations to be instantiated on resources that are 
heterogeneously configured. Previous work has presented a 
case for the deployment of virtualized wide-area overlay 
networks of workstations, where heterogeneity in the O/S 
configuration of hosts and in the configuration of IP address 
spaces and NAT/firewall devices at different sites are dealt 
with by the virtualization layer [5]. Related approaches based 
on the use of system VMs and different virtual networking 
techniques are discussed in [27, 28, 29].  

This paper considers the design of VM sandboxes that 
facilitate the deployment of wide-area collaborative 
environments. The target usage is a scenario where the VMs 
are developed, tuned and configured by administrators of the 
collaborative environment, and deployed by a potentially large 
number of users. This model of deployment in distributed 
systems has been successfully applied in projects including 
PlanetLab [32], where system configurations tailored to wide-
area networking experimentation are prepared and 
disseminated by “PlanetLab Central”, and the Open Science 
Grid [31], where system configurations tailored to grid 
computing are provided to system administrators as reference 
implementations with an easy to install collection of common 
services. These systems, however, do not make use of a 
virtualized network interconnecting the nodes of the 

                                                                                                     
This WOW sandbox self-configures a Condor submit/execute node and 
connects to a pool of resources upon instantiation. 

distributed system. This paper focuses on systems where both 
nodes and network interconnections are virtualized.  

The approach analyzed in this paper is based on the design 
of sandboxes as VM “appliances” [32] which a) encapsulate 
all the software configuration of a node into a single, easy to 
disseminate VM image, and b) self-configure its virtual IP 
address on an overlay network upon instantiation, building 
upon the peer-to-peer discovery, routing and NAT-traversal 
techniques implemented in IPOP [2].  The following 
subsections describe the different components of such 
sandboxes. 

A. Virtual Machines 
The creation of sandboxes [3, 8] and the ease of deployment 

images are key features for virtual machines being the base of 
this design.  Prior to discussing these two points, it is 
important to state that in the case of running computationally 
intensive jobs virtual machines perform nearly identical to 
physical machines [1].  Furthermore, in the case of wide-area 
systems, the overheads associated with network virtualization 
are sufficient for applications such as high-throughput 
distributed computing [5]. 
 Two VM-based sandboxing techniques are considered; the 
first relies on a hosted I/O VMM (currently VMware) where 
both the IPOP virtual networking software and WOW users 
run in the same “guest” O/S; the second is based on running 
IPOP and jobs from remote users on distinct “domains” (e.g. 
domU and dom0 in Xen, guest and host in VMware).  The 
former case is the simplest to deploy, requiring only a hosted 
I/O VMM on the host – no additional software on the host is 
needed. The latter is motivated by virtual networking isolation 
and security issues which are discussed in detail in Section III. 
The common features in both cases include the use of file 
based disk images for hard drives or file systems.  VMs are 
assumed to have a connection to the Internet, and the virtual 
networking techniques in use allow VMs to join IP overlay 
networks even if they are behind one or more levels of NATs 
[2, 6, 13]. 

B. Virtual Network 
In order to create a virtual private network capable of self-

configuring NAT traversal, this design employs the IPOP (IP-
over-P2P) overlay [2].  IPOP is deployed as a user-level 
application that reads and writes packets to a virtual Ethernet 
device (“tap” [10]) and sends and receives them over a peer-
to-peer virtual network based upon Brunet [11].  From a 
user’s perspective, IPOP acts as any other networking device, 
so its embedding into the sandbox requires no extra 
configuration from a user of the system.  Both IPOP and 
Brunet are coded in C#; runtime environments for this 
language are available for various Unix platforms and 
Windows; currently IPOP runs in Mono for Linux. 

With the goals of facilitating the configuration of sandboxes 
and the integration with a variety of O/Ss, the ability to handle 
DHCP [14, 15], ARP [20], and DNS [16, 17] has been added 
to the baseline IPOP design.  DHCP supports simple 
configuration of IP addresses and integration with existing 
DHCP clients that are ubiquitous in modern O/S distributions. 
ARP handling complements the DHCP support by automating 
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the configuration of the virtual MAC address of the IPOP 
gateway and of the routing tables for the virtual IP address 
space routed by IPOP. DNS allows supporting applications 
that require name resolution [7].   

DHCP provides the ability for dynamic configuration of 
virtual IPs for IPOP.  Currently this is achieved by specifying, 
in the IPOP configuration file, the address of a virtualized 
DHCP server2.  The VM runs a DHCP client on the TAP 
device; IPOP captures DHCP client requests from the tap 
device and forwards them to the DHCP server, which then 
responds with a virtual IP address and lease information.  The 
implementation follows the DHCP protocols [14, 15] and 
handles ARP requests automatically, so that IPOP should be 
able to run on any operating system that supports DHCP and a 
C# runtime environment. 
 Many programs, including Condor [13], require the use of 
host names, and therefore some means of resolving host 
names to virtual IP addresses on IPOP. While 
implementations based on the use of hostname files suffice for 
many applications where names are statically bound to IP 
addresses (e.g. in many private networks within a cluster), 
they do not scale well for large numbers of hosts. For 
example, tests were run with ‘hosts’ files containing millions 
of entries with lookup times taking up to a few seconds. 
Instead, a DNS server has been implemented in Python [24] 
which can be run either on a remote server (important if name-
IP mappings change over time), or locally on the client, (for 
low-latency name resolution in the case of static name-IP 
mappings).   
 To keep administration simple, a script has been added to 
the sandbox to automatically update IPOP.  The script checks 
for the latest version information from a server, which is then 
compared against a local version for an update decision.  
During an update, the sandbox downloads IPOP, moves it into 
the location of the local version, and restarts the IPOP service. 
This is perceived as a temporary loss of network connectivity, 
which is typically within the timeframe where the TCP 
protocol is able to maintain established connections [5]. 

C. Modules 
  To achieve the goal of easy deployment, it is important 
that the sandbox design supports updates (e.g. security 
patches, bug fixes, new features) of existing VMs and user 
customizations required to cater to specific needs of a user 
community. This issue is addressed through the use of a 
stacked file system based on UnionFS [9]. The stacked file 
system design (Figure 1) allow changes to the base VM 
configurations to be easily merged with local changes to the 
file system of already-deployed appliances, and allows 
domain-specific modules to be developed independently from 
the base image. 
  The stacked file system design enables two models of use: 
‘develop’ and ‘release’.  In ‘develop’, a developer adds 
domain-specific features to the VM image, such as particular 
libraries or packages of interest to a user community. The 

results of the developer’s work will be found in the “module” 
image, which the developer can distribute to any end users. 
End users will run the machine in ‘release’ mode, which 
employs the module, but stores user files in another image.  
Furthermore, it is possible to update the underlying “base” 
image by simply replacing the existing disk image without 
loss of any data stored in upper-level stacks. 

 
2 It is also possible to deploy a decentralized DHCP server by using a 

distributed hash table deployed across IPOP nodes, a feature which is under 
on-going implementation in IPOP. 

A stackable file system supports the merging of many read-
only and read-write file systems together into one file system.  
If there are one or more read-write file systems, the top most 
file system is where all the changes reside.  If only the top 
most file system were cleared, independently of the stack, then 
the stacked file system would revert to its original form. 
 In development mode, only two file systems are used in the 
stack: “base” as read-only, and “module” as read-write.  The 
base is the Grid Appliance’s base files and on first use, the 
module is an empty file system.  The union is made at root '/', 
therefore any changes to the system will be reflected in the 
module file system.  After a user has configured the module, 
they must run a script which will remove any files which have 
been predetermined to not belong on a released clean virtual 
machine, such as ‘/var/log’ and ‘/usr/local/ipop/var’.  The user 
is responsible for deleting any files not in this directory that 
should not be released.  After which, the user can distribute 
their module file system to other users.  These users would 
place this in the same directory as their sandbox and upon 
booting would have the functionality provided by the module. 
 

 
Fig. 1.  Example of UnionFS file system stack showing the WOW appliance.  
In release mode, files can be read from any of the three layers, but all writes 
are sent to only the top file system.  The folders read to or written from are not 
limited to those listed in parentheses. 
 

This approach allows the creation of a generic baseline 
image that does not contain any large, domain-specific 
application but allows for easy addition of such tools. The 
choice of modules added to the baseline image is often 
dependent on specific needs of users of an application domain. 
For example, in coastal ocean modeling applications  
developed for the SCOOP project there is often the need for a 
variety of Perl scripts which require several modules not 
found in default configuration, as well as packages to handle 
GIS (Geographic Information System) data and visualization 
(e.g. Google Earth). The nanoHUB collaborative environment 
has a different set of requirements, including the Rappture 
Tcl/Tk-based GUI toolkit and a WebDAV file system client. 
These domain-specific configurations can be kept in separate 
stacked file system modules, which help both keeping the 
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baseline WOW sandbox appliance as small as possible, and 
greatly expediting the release of updated appliance baseline 
images, since modules should not need to be updated or re-
released. 
  In release mode, three file systems are stacked: “base”, 
“module”, and “home” with the last being the only read-write.  
With this system, a user can easily erase all data accumulated 
while running in release mode by simply erasing the home file 
system.  This can be used for security purposes, if a user 
wishes to copy a used appliance but does not want to go 
through the process of re-downloading software. In the base 
distribution of the WOW appliance, there are scripts to 
facilitate the management of modules, with commands to 
replace either their module or home file system.  Fig. 1 
presents a working example of how ‘release’ mode works. 

III. SECURITY 
An important concern in the design of WOW sandboxes are 

the potential security risks that may arise when a site hosts a 
WOW node. The overall design approach to securing WOW 
sandboxes is based on a combination of techniques to enforce 
resource isolation and authentication among virtual hosts. 

Isolation of the WOW node from the underlying physical 
machine is provided by the VM monitor. Isolation of WOW 
virtual network traffic from the physical network is provided 
via tunneling by IPOP. The approach which delivers strongest 
isolation is to run IPOP in a different domain (e.g. dom0 in 
Xen, or the host in VMware) from the WOW node which is 
accessible by remote users (domU in Xen, guest in VMware, 
Figure 2). These are discussed in subsections III.A and III.B.  

In addition to host and network isolation, sites hosting 
sandboxes may also require that only authenticated nodes can 
join a given network. To this end, WOW appliances can be 
deployed with a mechanism to enforce IP-layer authentication 
based on X.509 certificates. Such host certificates can be 
signed by an authority which oversees the administration of a 
given WOW deployment. With IPsec, VM authentication and 
end-to-end traffic encryption can be provided, which is key to 
supporting many existing applications developed for LANs 
(e.g. network file systems) on WOWs. Subsection III.C 
describes the IPsec-based WOW sandbox setup in detail. 

A. Virtual network tunneling on host 
VMs such as Xen and VMware provide sandboxing 

mechanisms to isolate guest from host execution domains [3].  
The first approach explored confines the sandbox network 
traffic to a virtual network by running the tunneling software 
on a separate domain, In this scenario, the remote user is 
contained in a VMware guest (or Xen domU), while IPOP 
runs in the VMware host (or Xen dom0’). A bridge on the 
host allows the IPOP process to capture packets from the 
VM’s virtual network interface and to tunnel them through the 
physical network interface.   

With this in place, all traffic generated by a user of the 
WOW sandboxed is completely isolated from the physical 
network by means of tunneling, and the network interface 
presented to the sandbox is only routable on the virtual IP 
address space. Because the IPOP process runs on a separate 

execution domain, even if a remote user were to escalate 
privileges within the VM, their network traffic would still be 
confined to the WOW network; hence, users would not be 
able to launch attacks on physical machines in the hosting site 
or public Internet hosts from the WOW node. Communication 
between virtual and physical machines (e.g. for file transfers) 
can be achieved, by establishing host-only interfaces which 
are firewalled to enable only specific protocols, such as SSH. 

 

 
Fig.  2.  IPOP deployed in a separate execution domain from the compute 

VM.  The application sends and receives over its logical Ethernet device, 
which is revealed to the host as a VIF (virtual interface).  The IPOP bridge 
connects the VIF to the TAP device, which IPOP reads and writes.  IPOP 
sends and receives packets for the 10.128.0.0/255.128.0.0 virtual network 
over the host’s physical Ethernet device. 

 
It is also conceivable to isolate the compute VM from the 

execution environment where network tunneling takes place 
by deploying nested VMs. For example, Xen dom0 and domU 
may run inside of a VMware virtual machine. This is a 
scenario motivated by situations where it may not be possible 
to deploy additional software on the host (except for the 
VMM).  

B. Virtual network tunneling on guest 
An alternative sandboxing deployment consists of running 

IPOP on the compute VM. This setup is useful to facilitate the 
deployment of WOW nodes on a wide variety of hosts, by 
leveraging the ease of deployment of hosted I/O VMMs. In 
this setup, the sandbox has both network interfaces (the VM’s 
and the IPOP “tap”) running in the same operating system. In 
this case, IPOP is protected from WOW users by means of 
UNIX protection mechanisms, and virtual network traffic is 
restricted to the WOW network by means of host firewall 
rules (e.g. iptables)..  This method can be seen in Fig. 3.  This 
approach is easier to deploy than the previous case; however, 
because IPOP shares the same execution domain as processes 
initiated by remote users, if a malicious user is able to escalate 
privileges and gain “root” access on the sandbox, they will be 
able to lift firewall rules and send packets to hosts on the 
physical network. 
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Fig. 3.  IPOP deployed in the same domain as the compute VM.  The 
application sends and receives on the TAP device, while IPOP reads and 
writes to the TAP device.  Incoming packets are received by IPOP and written 
to TAP.  Outgoing packets are read by IPOP, converted, and sent over the 
physical Ethernet device. The IPOP virtual network address space is 
10.128.0.0/255.128.0.0 in this example. 

C. IPSec 
With the previously discussed techniques, the ability to use 

the system for attacks on the internet or other networks 
outside of the WOW is minimized. In addition, for a secure 
way of ensuring that only nodes authorized by an 
administrative entity can connect to a WOW, the sandbox 
supports IPSec with X.509-based authentication and end-to-
end encryption. The deployment of such IPsec-based 
infrastructure in the current Linux-based is based on existing 
kernel support for IPsec tunneling and the user-level Racoon 
[49] application.  

This setup illustrates how using a virtualized environment 
which is homogeneous in terms of both node configurations 
and virtual IP address space can greatly facilitate the 
deployment of a complex public key based infrastructure. The 
sandbox image is customized once by an administrator – with 
a kernel which supports IPsec, with the administrator’s 
certificate authority (CA) public key and with a single 
configuration file for the Racoon application. It is then 
possible to enforce that all pair-wise communication taking 
place between any two hosts in the WOW (e.g. a class A, 
10.255.255.255 private address space) must be authenticated 
and encrypted with IPsec in a simple manner, with the use of a 
netmask. In the absence of a virtual network, and with nodes 
running different O/S versions and potentially behind NATs, 
the deployment of the same kind of IPsec infrastructure would 
be extremely complex to manage. 

This deployment model requires a CA, which signs 
individual nodes’ host certificates.  To ensure that a user can 
not use the same signed certificate on multiple nodes, the IP 
address of the certificate requester is embedded into the 
certificate request signed by the CA. The mechanism to 
provide signed IPsec certificates to hosts works as follows.  
Upon first boot, the WOW node joins the virtual network and 
obtains an IP address from the DHCP server as previously 
described. The system may be configured such that at this 
point the user has limited access to nodes which have been 
designated as non-IPsec nodes, e.g. so the user can interact 
with demonstration applications. In order to access private 
nodes, the user must run a script which will create a certificate 
request and submit it to the CA node managed by the 
administrator of the WOW. The request may be automatically 
or manually signed by the CA and sent back to the requesting 
VM.  Upon reception of the signed certificate, the script 
places the signed certificate and CA’s public key in the 
appropriate place and starts Racoon.  Most importantly, the 

node is now given access to the private nodes. Updated 
certificate revocation lists (CRLs) can be distributed across 
the WOW using similar techniques employed to update the 
IPOP code as described earlier. 

IV. USAGE SCENARIO EXAMPLES 
The WOW sandbox, packaged as an easy to distribute VM 

“appliance”, is currently being used by different application 
domains. A Condor pool with WOW appliance nodes is 
available to the nanoHUB for the execution of batch jobs, and 
customizations are underway to enable an application 
development environment intended to foster the addition of 
graphical, interactive applications to the nanoHUB [33] cyber-
infrastructure by its community.  
   

WOW sandboxes are also being deployed in support of 
hurricane storm surge models as part of the SCOOP [34] 
project. In this context, the WOW appliances are used in two 
different ways: on-line, dynamic data-driven execution of 
models, and off-line retrospective analysis. In the event-driven 
scenario, the computation on WOW nodes is triggered by data 
streams made available by sources such as the National 
Hurricane Center, and model simulation results are published 
to the SCOOP community through SCOOP’s data transport 
system (UniData's LDM [35]).  Event-triggered jobs can be 
scheduled to run locally on individual WOW nodes, or 
submitted to other nodes in the WOW through Condor. In the 
retrospective analysis scenario, data is retrieved from the 
SCOOP archive, simulation model executions are dispatched 
to a WOW Condor pool, and results are published back to the 
SCOOP archive through LDM. Currently, a total of 32 WOW 
nodes serving these purposes have been deployed at four 
SCOOP sites. 

Another usage scenario where WOW sandboxes are being 
developed in the domain of coastal sciences is an appliance 
for education and training of researchers, students, and the 
public at large in cyber-infrastructure techniques. In this usage 
scenario, the appliance integrates surge simulation models, 
Condor middleware, visualization software, as well as 
tutorials and educational material on cyber-infrastructure and 
coastal and estuarine science. As a result, it enables end-to-
end usage, including application development, data input, 
simulation execution, data post-processing and visualization. 
Users who are not familiar with Grid computing can 
download and install an appliance, and submit a sample 
simulation from their own home or office computer to other 
WOW nodes – all within minutes. In contrast, configuring 
physical machines to run the appropriate middleware and 
simulation models takes a level of familiarity with installing 
and configuring various software and middleware packages 
that is a significant barrier to adoption by many scientists, 
engineers and students. 

V. EXPERIMENTAL SETUP 
To evaluate the performance of the sandbox, three 
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benchmarks were used on the Condor-based deployment 
described in Section III.  The benchmarks are: SimpleScalar 
[19], a CPU-intensive computer architecture simulator which 
models the executions of applications with cycle-level 
accuracy (the experiments employed the SPEC 2000’s [20] 
Go benchmark); PostMark [21], a file system benchmark; and 
IPERF [22], a TCP throughput benchmark.  The performance 
of these applications is evaluated with 3 different platforms: 
WOW sandbox as both VMware Server and  Xen VMs, and 
Linux on the physical host.  

The purpose of these benchmarks is not to compare 
VMware to Xen or the physical hardware, but to investigate 
the cost of using virtual machines and networking for the 
WOW sandboxes, with focus on machine configurations that 
would be expected in a desktop-Grid type environment. The 
hardware configuration of the physical host is a desktop-class 
system, with a Pentium IV 1.7GHz CPU with 256KB on-chip 
cache and 512MB RAM.  The software versions used are 
VMware Server 1.0.1, Xen Testing Nightly Snapshot 
09/26/06, Debian Etch for the physical host, and Debian Sarge 
for the WOW sandbox. 

The benchmarks were conducted on identically configured 
VMs, where only one uniprocessor virtual machine per 
physical CPU was deployed, and no other active processes 
running on the machines. A total of 256 MB of memory was 
given to each virtual machine. For networking tests, the VMs 
were run on two distinct, identically configured physical 
machines connected over 100 Mbit Ethernet. 
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Fig 4.  Execution times for Go using SimCache.  The application was 

launched from Condor.  The results are in seconds and based upon 
completion, therefore, less time (smaller) is better.   
  

A.  SimpleScalar 
SimpleScalar (version 3.0d) is used for benchmarking CPU 

performance.  For the SimpleScalar test, SPEC 2000’s Go was 
run using the alpha binaries found at [26].  The tests were 
executed over Condor.  The parameters for go were “13 29 
2stone9.in”.  The SimpleScalar executable used was Sim-
Cache.  Figure 4 shows the overall execution times (in 
minutes) for the execution of SimpleScalar in the three 
different sandbox configurations considered. 

The results are consistent with previous findings; virtual 
machines show low overhead in the case of processor 
intensive tasks (0.4% for Xen, 10.6% for VMware). 

 
B.  PostMark 
PostMark (version 1.51) is used for benchmarking disk 

performance, mainly for heavy I/O for many small files.  For 

this test, the minimum and maximum size of files was 500 
bytes up to 5,000,000 bytes (4.77 megabytes).  To obtain 
steady state results, PostMark was configured with 5,000 file 
transactions. 
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Fig. 5.  PostMark I/O throughput results, in  read / write MB/s.   
 
The use of file-backed VM drives and file system stacks 

greatly facilitate the deployment of the sandbox, but come 
with an associated performance cost. The measured 
performance of the sandbox with this I/O intensive benchmark 
is 55% to 64% of the physical host. 

 
C.  IPERF 
IPERF is used to benchmark TCP network throughput.  In 

this case, a 30 second transfer takes place and the throughput 
is measured at the end of this period.  IPERF was run with the 
parameters ‘-t 30’. Given that the tests were conducted on  
100 Megabit Ethernet, the results are not meant to suggest the 
sandbox results in a wide-area environment, but to show the 
expected peak bandwidth of the sandbox configured with the 
IPOP user-level virtual networking software.  

The results establish that the VMware implementation 
where the virtual networking runs on the guest VM, without 
IPSec, delivers a bandwidth of 11.8 Mbps, whereas with 
IPSec the bandwidth is decreased to 10.3 Mbps. When the 
IPOP virtual network runs on the host, the virtual network 
bandwidth is improved substantially to 26.5 Mbps. This can 
be explained by the fact that the IPOP software is network-
intensive; when it runs on the host, it is not subject to the 
virtualization overhead during its execution and can deliver 
better performance. Xen delivers 11.9 Mbps with IPOP on 
domU, and 14.1 Mbps with IPOP on dom03. 
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Fig. 6.  Results from the IPERF experiment.  The results are given in 

megabits per second, that is bigger is better.  Superscript 1 implies virtual 
networking tunneling inside the VM, whereas 2 means virtual networking 
tunneled through the host. 

 
3 As of this writing, Xen responds with a warning message stating that 

“negative segmentation is not supported” when running IPOP. It is 
conceivable that the mono runtime environment uses negative segments and 
performance may be degraded due to this fact. 
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D. Discussion 
The experimental results show a small overhead of the 

sandbox for compute-intensive applications, a conclusion that 
has been also observed in previous work [1],[3]. A substantial 
source of overheads in network throughput performance 
comes from the IPOP virtual network implementation, which 
currently is entirely in user space. Nonetheless, the sandbox 
network throughput performance levels are acceptable for the 
intended application of this sandbox for compute-intensive 
applications and in wide-area environments.  

Running the IPOP software on the host allows for stronger 
isolation of the virtual network traffic because the process that 
captures and tunnels packets resides on a separate “domain” 
from the compute sandbox.  Furthermore, virtual networking 
on the host provides the best observed throughput. However, 
it comes with the downside of requiring a user to install 
additional software.  An alternative that does not require IPOP 
to run on the host but still provides strong virtual network 
isolation is to add a second level of virtualization (e.g. by 
running the Xen appliance within a VMware hosted I/O 
environment),. This is the subject of on-going investigations. 

VI. RELATED WORK 
While using virtual machines for distributed computing is 

not a new idea, the implementation discussed herein offers a 
unique approach to this problem based on easy to deploy, self-
configuring VM “appliances” and the overlay network 
interconnecting them.  It was first discussed in [1] that virtual 
machines would make for good grid nodes due to their low 
overhead for CPU-intensive workloads.  

In [3], four ways in which Xen can be used for sandboxing 
in the context of Condor have been evaluated. The approaches 
mentioned did not build upon the use of a virtual network, and 
relied on blocking network access with the exception of 
Condor-mediated remote I/O accesses, to isolate the VM 
sandbox from the physical network. In contrast, the WOW 
approach to sandboxing network traffic is not dependent on 
any specific middleware, and allows bidirectional TCP/IP 
connectivity of the sandbox with all other VM in the virtual 
network while preventing connections with machines outside 
the virtual network.   

In [36], the authors discuss the integration of VMs and 
virtual networks using Virtual Distributed Ethernet [37]. Both 
[39] and [40] have proposed a Xen based single-computer 
Grid gateway.  These approaches focus on LAN environments 
and do not address cross-domain issues such as NAT/firewall 
traversal which are a key enabling technology in WOW 
sandboxed. 

In [41] and [42], Keahey et al describe virtual workspaces 
as a configurable and controllable remote execution 
environment based on virtual machines based on Globus [48]. 
Similarly, OurGrid [43, 44] uses the Xen based SWAN 
(Sandboxing Without A Name) in their implementation; 
however, their main motivation towards this is to address the 

security issues rather than a generic appliance based solution 
for wide-area and large scale deployments. In [45] the authors 
propose an adaptive, self-configuring and self-distributing 
virtual machine for clusters of heterogeneous, dynamic 
computer resources; however their approach is not focused on 
system VMs. 

 The Minimum Intrusion Grid [38] project focuses on 
developing grid middleware allowing users and resources to 
install and maintain a minimum amount of software to join the 
grid.  The basic theme is similar to the WOW sandbox, but 
their implementation is not based on system VMs connected 
by virtual networks. 

VII. CONCLUSIONS AND FUTURE WORK 
The use of WOW sandboxes in distributed systems has 

great potential because of the simplicity in which nodes across 
wide area domains can be added to the virtual network.  This 
paper shows that different degrees of sandboxing can be 
provided, and quantifies the performance overheads with 
current state of the art VM monitors. The focus of WOW 
sandboxes is on providing a new capability that facilitates the 
deployment of wide-area collaborative environments; one 
particular application of the sandbox for Condor based wide-
area high-throughput computing has been successfully 
demonstrated. Experiments show that the overhead in CPU-
intensive applications is small, and quantify the disk I/O and 
virtual networking overheads of WOW sandboxes. As 
improvements in VMM implementations and virtualization-
enabled hardware yield more efficient virtualized systems, it is 
anticipated that the VM results will more closely match that of 
the host. 

In the course of several months, the WOW sandbox for 
Condor-based computing has been made available to the 
public for download. Dozens of individual nodes have logged 
in joining a demonstration virtual network (and submitting 
example Condor jobs) from all over the world, which 
indicates that this self-configuring system is a simple one to 
deploy. Future plans include conducting user surveys and 
careful monitoring of WOW nodes to better understand not 
only the performance of the distributed system, but also how 
users perceive its capabilities and limitations. 
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