
0

Security Analysis of Accountable Anonymity in Dissent

EWA SYTA, HENRY CORRIGAN-GIBBS, SHU-CHUN WENG, DAVID WOLINSKY,
BRYAN FORD, Yale University
AARON JOHNSON, U.S. Naval Research Laboratory

Users often wish to communicate anonymously on the Internet, for example in group discussion or instant messaging forums.
Existing solutions are vulnerable to misbehaving users, however, who may abuse their anonymity to disrupt communication.
Dining Cryptographers Networks (DC-nets) leave groups vulnerable to denial-of-service and Sybil attacks, mix networks are
difficult to protect against traffic analysis, and accountable voting schemes are unsuited to general anonymous messaging.

DISSENT is the first general protocol offering provable anonymity and accountability for moderate-size groups, while
efficiently handling unbalanced communication demands among users. We present an improved and hardened DISSENT

protocol, define its precise security properties, and offer rigorous proofs of these properties. The improved protocol system-
atically addresses the delicate balance between provably hiding the identities of well-behaved users, while provably revealing
the identities of disruptive users, a challenging task because many forms of misbehavior are inherently undetectable. The
new protocol also addresses several non-trivial attacks on the original DISSENT protocol stemming from subtle design flaws.

Categories and Subject Descriptors: C.2.2 [Computer-Communication Networks]: Network Protocols

General Terms: Algorithms, Security

Additional Key Words and Phrases: Anonymous communication, accountable anonymity, provable security

ACM Reference Format:
Ewa Syta, Aaron Johnson, Henry Corrigan-Gibbs, Shu-Chun Weng, David Wolinsky, and Bryan Ford. 2013. Security Analy-
sis of Accountable Anonymous Group Communication in Dissent. ACM Trans. Info. Syst. Sec. 0, 0, Article 0 (January 2013),
30 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Anonymous participation is often considered a basic right in free societies [Yale Law Journal 1961].
The limited form of anonymity the Internet provides is a widely cherished feature enabling people
and groups with controversial or unpopular views to communicate and organize without fear of per-
sonal reprisal.Yet anonymity makes it difficult to trace or exclude misbehaving participants. Online
protocols providing stronger anonymity, such as mix-networks [Chaum 1981; Adida 2006], onion
routing [Goldschlag et al. 1999; Dingledine et al. 2004a], and Dining Cryptographers Networks
or DC-nets [Chaum 1988; Waidner and Pfitzmann 1989; Sirer et al. 2004; Golle and Juels 2004],
further weaken accountability, yielding forums in which no content may be considered trustworthy
and no reliable defense is available against anonymous misbehavior.

DISSENT (Dining-cryptographers Shuffled-Send Network) is a communication protocol that pro-
vides strong integrity, accountability, and anonymity, within a well-defined group of participants
whose membership is closed and known to its members [Corrigan-Gibbs and Ford 2010]. DISSENT
enables members of such a group to send anonymous messages – either to each other, to the whole

The work of Ewa Syta, Henry Corrigan-Gibbs, Shu-Chun Weng, David Wolinsky, and Bryan Ford was supported by the
Defense Advanced Research Projects Agency (DARPA) and SPAWAR Systems Center Pacific, Contract No. N66001-11-C-
4018. Aaron Johnson was supported by DARPA. Any opinions, findings and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the views of DARPA or SPAWAR.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the
first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee.
Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701
USA, fax +1 (212) 869-0481, or permissions@acm.org.
c© 2013 ACM 1094-9224/2013/01-ART0 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: January 2013.

0:2 Syta et al.

group, or to a non-member – such that the receiver knows that some member sent the message, but
no one knows which member. DISSENT also holds members accountable – not by compromising
their anonymity, but rather by ensuring that communication resources are allocated fairly among
all communicating members, and that any disruption results in the identification of some malicious
member during a “blame” process. Misbehaving members are thus unable to corrupt or block other
members’ messages, overrun the group with spam, stuff ballots, or create unlimited anonymous
Sybil identities [Douceur 2002] or sock puppets [Stone and Richtel 2007] with which to bias or
subvert a group’s deliberations.

DISSENT builds on the sender-verifiable shuffle of Brickell and Shmatikov [2006], combining
a similar shuffle scheme with DC-net techniques for efficient bulk communication. DISSENT uses
only readily available cryptographic primitives and handles arbitrarily large messages and unbal-
anced loads efficiently. Each member sends exactly one message per round, making it usable for
voting or assigning pseudonyms with a 1-to-1 correspondence to real group members. DISSENT has
limitations, of course. It is not intended for large-scale, “open-access” anonymous messaging or file
sharing [Goldschlag et al. 1999; Clarke et al. 2000]. DISSENT’s accountability property assumes
closed groups, and may be ineffective if a malicious member can leave and rejoin the group under
a new (public) identity. Finally, DISSENT’s serialized GMP-SHUFFLE protocol imposes a per-round
startup delay that makes DISSENT impractical for latency-sensitive applications. Further discussion
on related anonymous communication systems is included in Section 2.

DISSENT was introduced by Corrigan-Gibbs and Ford [2010], who sketched the basic protocol
and informal security arguments, described practical usage considerations, and experimentally eval-
uated the performance of a prototype implementation. This paper revisits and substantially modifies
the DISSENT protocol, to offer a precise formal definition and exposition of the protocol and a rig-
orous analysis of its security properties. Though the overall structure and function remains similar,
the new protocol re-formulates and heavily revises the original to address flaws our formal analy-
sis revealed, and to provide a modular framework for defining and rigorously reasoning about the
DISSENT protocol’s nontrivial composition of verifiable shuffle and DC-nets techniques. While our
primary focus is on hardening the DISSENT protocol through rigorous formal analysis, some of the
techniques we develop may be of independent interest, such as our methods of modular reasoning
and ensuring accountability throughout complex protocols, including capabilities to identify and
prove the source of any disruption attempt without compromising other security properties.

For this improved protocol we are able to offer proofs of all three key security properties: in-
tegrity, accountability, and anonymity. Obtaining a provably secure protocol required a surprising
amount of additional work given the relative simplicity and maturity of the underlying ideas. How-
ever, as observed by Wikström [2004], the complexity of anonymous communication protocols has
frequently resulted in incomplete proofs and subtle errors (see further discussion in Section 2). Sec-
tion 3.4 discusses in greater detail the discovered flaws and the resulting changes to the protocol.
The full version of this paper [Syta et al. 2013] details the discovered flaws and their fixes, and also
includes full details of protocols, properties, and proofs.

The main contributions of this paper, therefore, are (1) we provide a full description of an im-
proved and hardened DISSENT protocol, (2) we present precise formal definitions of its security
properties, and (3) we give rigorous proofs that the protocol satisfies those definitions.

2. RELATED WORK
DISSENT’s shuffle protocol builds on an anonymous data collection protocol by Brickell and
Shmatikov [2006], adding accountability via new go/no-go and blame phases. DISSENT’s bulk pro-
tocol is inspired by DC-nets [Chaum 1988], an information coding approach to anonymity.

Mix networks [Chaum 1981] offer high-latency but practical anonymous communication, and can
be adapted to group broadcast [Perng et al. 2006]. Unfortunately, for many mix-network designs,
anonymity is vulnerable to traffic analysis [Serjantov et al. 2003] and performance is vulnerable to
active disruption [Dingledine and Syverson 2002; Iwanik et al. 2004]. Cryptographically-verifiable
mixes [Neff 2001; Furukawa and Sako 2001; Adida 2006] are a possible solution to disruption at-

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: January 2013.

Security Analysis of Accountable Anonymous Group Communication in Dissent 0:3

tacks and a potential alternative to our shuffle protocol. However, verifiable shuffles alone generally
verify only a shuffle’s correctness (i.e., that it is a permutation), and not its randomness (i.e., that
it ensures anonymity). All existing techniques of which we are aware to assure a shuffle’s random-
ness and anonymity, in the presence of compromised members, require passing a batch of messages
through a series of independent shuffles, as in DISSENT or mix-networks [Dingledine et al. 2004b].

Low-latency designs can provide fast and efficient communication supporting a wide variety
of applications, but they typically provide much weaker anonymity than DISSENT. For example,
onion routing [Goldschlag et al. 1999; Dingledine et al. 2004a], a well-known and practical ap-
proach to general anonymous communication on the Internet, is vulnerable to traffic analysis by
adversaries who can observe streams going into and out of the network [Syverson et al. 2000]. Sim-
ilarly, Crowds [Reiter and Rubin 1999] is vulnerable to statistical traffic analysis when an attacker
can monitor many points across the network. Herbivore [Goel et al. 2003] provides unconditional
anonymity, but only within a small subgroup of all participants. k-anonymous transmission proto-
cols [von Ahn et al. 2003] provide anonymity only when most members of a group are honest.

We thus observe tradeoffs among security, efficiency, and possible applications. Further, many
cryptographic attacks have been discovered against specific anonymity protocols. These protocols
are often complex and contain subtle flaws in design, security proofs, or security definitions. For
example, many mix network designs have claimed to provide anonymity [Park et al. 1994; Jakob-
sson 1998; Jakobsson and Juels 2001; Golle et al. 2002; 2002; Allepuz and Castello 2010], only
to be broken in later work [Pfitzmann and Pfizmann 1990; Pfitzmann 1994; Mitomo and Kurosawa
2000; Abe and Imai 2003; Wikström 2003; Khazaei et al. 2012b] or to have weaknesses identified
in their security definitions [Abe and Imai 2006]. DISSENT has been designed to avoid these and
other common flaws [Desmedt and Kurosawa 2000]. However, they show that obtaining a provably
secure anonymous communication protocol is a surprisingly complex task. It requires a consider-
able amount of effort and careful attention to every design detail of a protocol. Indeed, only recently
has a framework for rigorous security proofs been available for mix networks [Wikström 2004].

Finally, there are several ways in which anonymity protocols have provided some notion of
accountability. In general, they may offer accountability either for protocol violations or for un-
desirable content or behavior [Feigenbaum et al. 2011]. DISSENT and other protocols based on
DC-nets [Waidner and Pfitzmann 1989; Golle and Juels 2004], and verifiable shuffles [Neff 2003;
Khazaei et al. 2012a; Bayer and Groth 2012] aim to hold users accountable for protocol violations.
Each client remains anonymous unless he misbehaves by breaking the rules of the protocol. In con-
trast, some other anonymity protocols [von Ahn et al. 2006; Diaz and Preneel 2007; Backes et al.
2014] attempt to unmask a client’s identity if the client’s actions or the contents of his messages are
unacceptable or unpopular, when a set of explicitly or implicitly defined parties agrees to.

3. INFORMAL PROTOCOL OVERVIEW
DISSENT is designed to be used in a group setting. Each member i of a group is associated with a
long-term public signature key pair (ui, vi), where ui is the private signing key and vi is the public
verification key. We assume the signature key pair represents each member’s public identity, and
that members cannot easily obtain such identities. This assumption makes DISSENT’s accountabil-
ity property enforceable, so that an exposed misbehaving member cannot trivially leave and rejoin
the group under a new (public) identity. Members can obtain such identities from trusted certifi-
cation authorities, or agree among themselves on a static set of group members and corresponding
signature keys. Specific approaches to group formulation, however, are out of scope of this paper.

DISSENT provides a shuffled send communication primitive that ensures sender anonymity among
the group. During each protocol run, every group member i secretly creates a message mi and
submits it to the protocol. The protocol effectively collects all secret messages, shuffles their order
according to some random permutation π that no one knows, and broadcasts the resulting sequence
of messages to all members. Each input message mi can have a different length Li.

We present a messaging interface, called the General Messaging Protocol, that DISSENT imple-
ments. DISSENT in fact defines two protocols implementing this interface: the GMP-SHUFFLE pro-

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: January 2013.

0:4 Syta et al.

tocol provides anonymous communication for fixed-length messages, and the GMP-BULK protocol
builds on this to provide efficient anonymous communication of arbitrary-length messages.

3.1. The General Messaging Protocol
A Group Messaging Protocol GMP is a 3-tuple of the following algorithms: SETUP(vi),
ANONYMIZE(mi,K, nR, τ, kh, fi) and VERIFY-PROOF(pj , `i). All group members collectively run
the SETUP and ANONYMIZE algorithms on their own inputs, while anyone, including users other
than group members, can independently run the VERIFY-PROOF algorithm.

SETUP takes a member’s public verification key vi as input and outputs one or more session
nonces nR, a set K of all members’ verification keys, a well-known ordering of members τ , a hash
key kh and optionally a message length L. All group members run the SETUP algorithm before
each protocol run to agree on common parameters. Such agreement might be achieved via Paxos
[Lamport 1998] or BFT [Castro and Liskov 1999]. We emphasize that SETUP does not generate
members’ signature key pairs or create a binding between a user’s identity and his signature key pair;
rather, it uses long-term verification keys submitted by each member and allows group members to
agree on the set K of verification keys for a particular protocol run.

ANONYMIZE takes a message mi, a set K of members’ verification keys, one or more round
nonces nR, an ordering of members τ , a hash key kh, and optionally a flag fi as input, and outputs
either (SUCCESS,M ′i), where M ′i is a set of messages, or (FAILURE, BLAMEi, `i), where BLAMEi
is a set of observed misbehaviors, and `i is a log of a protocol run. The goal of ANONYMIZE is to
broadcast anonymously the set of messages submitted by group members. If a protocol run succeeds
from a given member’s perspective, then she outputs the anonymized messages. Otherwise, the
protocol run fails and the group member produces a set of blame proofs that verifiably reveal at
least one misbehaving member responsible for causing the failure. In the security properties to be
defined below we will demand that ANONYMIZE always either succeeds completely or produces a
valid blame proof on failure; this guarantee of accountability is both one of DISSENT’s key points
of novelty and the source of some of the most difficult technical challenges this paper addresses.

VERIFY-PROOF takes a proof pj of a member j’s misbehavior and a log `i as input, and outputs
either TRUE if pj indeed proves that j misbehaved given the protocol history represented by log `i,
or FALSE otherwise. Any third party can use VERIFY-PROOF to check a proof of j’s misbehavior.

3.2. The GMP-Shuffle Protocol
The GMP-SHUFFLE protocol enables the anonymous exchange of equally sized messages.
GMP-SHUFFLE builds on the protocol of Brickell and Shmatikov [2006], which provides crypto-
graphically strong anonymity, and improves it by adding go/no-go and blame phases to trace and
hold accountable any group member disrupting the protocol.

GMP-SHUFFLE consists of three algorithms: SETUP-S, ANONYMIZE-S, and VERIFY-PROOF-S.
All group members run SETUP-S to agree on common parameters for ANONYMIZE-S. During
ANONYMIZE-S, members first establish ephemeral inner and outer encryption keys, then each mem-
ber doubly onion-encrypts his secret message using the inner and outer public keys of all members.
After collectively shuffling all encrypted messages and removing the outer layers of encryption,
members verify that the resulting set includes each member’s inner encryption of their message and
no member observed any failures thus far. If all steps are performed correctly, members reveal their
inner private keys, allowing each member to recover the full set of secret messages and successfully
complete the protocol. However, if any member observes misbehavior at any step of the protocol,
the protocol fails for that member. Following a failure, members perform a blame procedure whose
goal is to identify at least one culprit member and to produce a verifiable proof of his misbehavior.
To facilitate the blame process, all members always exchange their protocol logs, and those who
did not reveal their inner private keys share their outer private keys, allowing each member to trace
the protocol’s execution. Although members reveal full logs, each member’s anonymity is protected
since honest members never reveal both private keys. Therefore, a member can always perform the
blame procedure and produce proofs of misbehavior regardless of how the protocol completed for

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: January 2013.

Security Analysis of Accountable Anonymous Group Communication in Dissent 0:5

other members. Afterwards, anyone can run VERIFY-PROOF-S to validate purported proof(s) of any
member’s misbehavior in ANONYMIZE-S.

Section 6 details the GMP-SHUFFLE protocol and Section 8 proves its security.

3.3. The GMP-Bulk Protocol
The GMP-BULK protocol uses ideas from DC-nets to transmit variable-length messages anony-
mously, but leverages the GMP-SHUFFLE protocol to prearrange the DC-nets transmission sched-
ule, guaranteeing each member exactly one message slot per round. GMP-BULK also reuses
GMP-SHUFFLE to broadcast anonymous accusations, to blame a culprit who may have caused a
protocol failure.

Like GMP-SHUFFLE, GMP-BULK consists of three algorithms, SETUP-B, ANONYMIZE-B, and
VERIFY-PROOF-B. All members use SETUP-B to agree on common parameters for any given pro-
tocol round and VERIFY-PROOF-B to verify proofs of misbehavior produced in ANONYMIZE-B.
During ANONYMIZE-B, each member creates and anonymously broadcasts via ANONYMIZE-S a
message descriptor, which defines pseudorandom sequences all other members must send in a sub-
sequent DC-nets exchange, such that XORing all sequences together yields a permuted set of secret
messages. Cryptographic hashes in the message descriptors enable members to verify the correct-
ness of each others’ bulk transmissions, ensuring message integrity and accountability throughout.
A successful protocol run allows a member to recover all secret messages of honest members. If
any member observes a failure at any step, however, he prepares and shares with other members an
accusation naming the culprit member. All members, including those who did not observe any fail-
ures, participate in the blame phase to give each member an opportunity to broadcast an anonymous
accusation via ANONYMIZE-S (anonymity is needed because some accusations can only be formed
by the owner of a corrupted message) and distribute evidence to support the accusation. After vali-
dating accusations, members who experienced failures perform the blame procedure to find at least
one faulty member and produce a proof of his misbehavior, exposing the culprit member.

The GMP-BULK protocol is detailed in Section 7 and Section 8 proves its security.

3.4. Comparison to the Original DISSENT Protocol
In analyzing the original DISSENT protocol we identified several attacks, which this paper fixes.
Anonymity could be broken by replaying protocol inputs in subsequent rounds, by providing in-
correct ciphertexts to some members at certain points and correct ones to the rest, or by copying
ciphertexts at other points. Accountability for disruption could be avoided by copying protocol in-
puts from honest members, and dishonest members could falsely accuse honest ones by rearranging
valid signed messages to create phony logs. Finally, through equivocation a dishonest member could
cause some honest members to terminate successfully and skip the blame process, while other hon-
est members observe failure but are unable to terminate the protocol with a valid blame proof.

To fix these flaws, we made several non-trivial modifications to the original protocol. To prevent
replay attacks we added key generation steps (GMP-SHUFFLE Phase 1 and GMP-BULK Phases 1a
and 1b). To prevent equivocation attacks, where a member sends different versions of a message
instead of broadcasting it to all members, we added rebroadcast steps (GMP-BULK Phase 5), and
have members intentionally cause intermediate protocol failures (GMP-BULK Phases 3 and 7) when
equivocation is observed. We add non-malleable commitments (GMP-SHUFFLE Phases 2a and 2b)
to prevent submission duplication, and we add phase numbers to prevent log forgery. Finally, to
prevent non-termination of the protocol, we make all steps non-optional, in particular including an
opportunity for blame at the end of every execution to ensure accountability.

The protocol changes result add a communication overhead of four broadcasts to GMP-SHUFFLE.
For GMP-BULK, the overhead is four broadcasts plus the messages exchanged as a part of
ANONYMIZE-A in Phase 7, which is now non-optional. The most significant cost in practice comes
from always running ANONYMIZE-S in GMP-BULK Phase 7, due to its serialized structure, which
we found to be dominant in related experiments [Corrigan-Gibbs et al. 2013].

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: January 2013.

0:6 Syta et al.

4. SECURITY MODEL AND DEFINITIONS
We model the adversary with a probabilistic polynomial-time Turing machine A. We allow him to
control a fixed subset of k group members. We call the members that he controls dishonest and
the members that he does not control honest. We suppose that the members communicate using
non-private but authenticated channels. That is, a message that appears to i to be from member j is
guaranteed to be from j, but the adversary can observe all such messages when they are sent. We
also give the adversary access to member outputs.

The security properties we wish the protocol to satisfy are integrity, accountability, and
anonymity. The definitions we give of these are precise versions of the notions used by Corrigan-
Gibbs and Ford [2010]. We express these properties as games between the adversary A and a chal-
lenger C or C(b), where b ∈ {0, 1} will be a hidden bit input to algorithm C. We denote the adver-
sary’s output from this game withAC . For all games, C executes the protocol withA by running the
protocol algorithm for each honest member and allowing A to act as the dishonest members. When
any message is sent from an honest member, C also sends a copy of the message with its source and
destination to A. C also sends protocol outputs of honest members to the adversary. Our definitions
are round-based and allow the adversary to execute arbitrary sequential executions of the protocol.
There is an implicit initial step of all games in which the challenger generates long-term signature
key pairs (ui, vi) for each honest member i. In general, our definitions require that the adversary
“win” the security games with negligible probability, that is, with probability that goes to zero with
the security parameter asymptotically faster than any inverse polynomial. Output probabilities are
taken over the randomness of both the adversary and challenger.

The integrity game for protocol GMP is as follows:
(1) As many times as A requests, C takes message inputs for the honest members from A and uses

them to execute GMP with A.
(2) A and C execute a challenge run of GMP for which C takes message inputs for the honest

members from A.
(3) C outputs 1 if, at any time after the start of the challenge round, (i) an honest member i outputs

(SUCCESS,M ′i) such that M ′i does not contain exactly N messages or does not include the
multiset of input messages from the honest members, or (ii) two honest members i and j produce
outputs (SUCCESS,M ′i) and (SUCCESS,M ′j) such that M ′i and M ′j contain different messages
or contain a different ordering of the messages. Otherwise, once all honest members complete,
C outputs 0.
Definition 4.1. A protocol offers integrity if the challenger output in the integrity game is 1 with

negligible probability.
The accountability game for protocol GMP is as follows:
(1) As many times as A requests, C takes message inputs for the honest members from A and uses

them to execute GMP with A.
(2) A and C execute a challenge run of GMP for which C takes message inputs for the honest

members from A.
(3) As many times as A requests, C takes message inputs for the honest members from A and uses

them to execute GMP with A.
(4) C outputs 1 if (i) at the end of the challenge run an honest member i produces an out-

put of (FAILURE, BLAMEi, `i), where BLAMEi is empty or contains pj ∈ BLAMEi such that
VERIFY-PROOF(pj , `i) 6= TRUE, or (ii) at any time after the challenge run starts A sends C
(FAILURE, BLAMEi, `i) such that pj ∈ BLAMEi for honest j, VERIFY-PROOF(pj , `i) = TRUE,
and the output of SETUP in `i includes the nonce of the challenge round and assigns the long-term
verification key vj to j. Otherwise C outputs 0 once all protocol runs are completed.
Definition 4.2. A protocol offers accountability if the challenger output in the accountability

game is 1 with negligible probability.
We use the anonymity game described by Brickell and Shmatikov [2006]. Note that this definition
will only make sense for an adversary of size 0 ≤ k ≤ N − 2.

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: January 2013.

Security Analysis of Accountable Anonymous Group Communication in Dissent 0:7

(1) As many times as A requests, C(b) takes message inputs for the honest members from A and
uses them to execute the protocol with A.

(2) A chooses two honest participants α and β and two message inputsmc
0 andmc

1. He also chooses
message inputs mh for each honest member h /∈ {α, β} and sends them to C(b).

(3) C(b) assigns mα = mc
b and mβ = mc

1−b.
(4) A and C(b) execute the protocol.
(5) As many times as A requests, C(b) takes message inputs for the honest members from A and

uses them to execute the protocol with A.
(6) The adversary outputs a guess b̂ ∈ {0, 1} for the value of b.

The adversary’s advantage in the anonymity game is equal to∣∣Pr [AC(0) = 1
]
− Pr

[
AC(1) = 1

]∣∣.
Definition 4.3. A protocol maintains anonymity if the advantage in the anonymity game is neg-

ligible.
We note that this definition implies anonymity among all honest users and not just pairs, because
for any pair of assignments of honest messages to honest users, we can turn one assignment into the
other via a sequence of pairwise swaps, each of which are guaranteed by the definition to change
the adversary’s output distribution by a negligible amount. We observe that these properties do not
imply that the protocol completes for all members, and, in fact, we cannot guarantee that DISSENT
terminates if a member stops participating at some point. However, the protocol execution is very
simple: a fixed sequence of phases during which all members send no message or all send one
message. If a properly signed message indicating the desired protocol run and phase is received
from every member, the protocol proceeds to the next round. Therefore every member knows when
another should send a message, and thus gossip techniques such as those used in PeerReview [Hae-
berlen et al. 2007] should be applicable via a wrapper protocol to ensure liveness. Moreover, we
note that when every member follows the protocol, not only does it complete but it succeeds.
5. TECHNICAL PRELIMINARIES
5.1. Definitions
Member i broadcasts a message by sending it to all other members. A dishonest member might
equivocate during a broadcast by sending different messages to different members. A run of GMP
succeeds for member i if the ANONYMIZE algorithm terminates with output (SUCCESS,M ′i), and it
fails if the ANONYMIZE algorithm terminates with output (FAILURE, BLAMEi, `i).
5.2. Cryptographic Primitives and Security Assumptions
DISSENT makes use of several cryptographic tools, and its security depends on certain assumptions
about their security.

Hash functions: We use a standard definition [Stinson 2005] of a keyed hash function and will
denote the hash of message m using key kh as HASHkh{m}. We assume that the hash function used
is collision resistant [Rogaway and Shrimpton 2004].

Encryption: We use a cryptosystem that consists of: (i) a key generation algorithm taking a
security parameter ρ and producing a private/public key pair (x, y); (ii) an encryption algorithm
taking public key y, plaintext m, and some random bits R, and producing a ciphertext c = {m}Ry ;
(iii) a deterministic decryption algorithm taking private key x and ciphertext c, and returning the
plaintext m. A member can save the random bits R used during encryption. The notation c =
{m}R1:RN

y1:yN indicates iterated encryption via multiple keys: c = {. . . {m}R1
y1 . . . }

RN
yN . We omit R

when an encryption’s random inputs need not be saved.We assume that the underlying public-key
cryptosystem provides indistinguishable ciphertexts against a chosen-ciphertext attack, that is, that
the cryptosystem is IND-CCA2 secure [Bellare et al. 1998]. We also assume that members can
check an arbitrary (x, y) purported to be a key pair to verify that it could have been generated by the
specified key generation algorithm. We describe a ciphertext as invalid when it can be recognized
with no private information that decryption would result in an error. This includes as an important
special case the value ⊥, which is the output upon a decryption error.

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: January 2013.

0:8 Syta et al.

Digital Signatures: We use a signature scheme that consists of: (i) a key generation algorithm
taking a security parameter ρ and producing a private/public key pair (u, v); (ii) a signing algorithm
taking private key u and message m to produce signature σ = SIGu{m}; and (iii) a deterministic
verification algorithm taking public key v, messagem, and candidate signature σ, and returning true
if σ is a correct signature of m using v’s associated private key u. The notation {m}SIGu indicates
the concatenation of message m with the signature SIGu{m}.We assume that the underlying digital
signature scheme provides existential unforgeability under an adaptive chosen message attack, that
is, that it is EUF-CMA secure [Goldwasser et al. 1995].

Pseudorandom Number Generator: We use a standard definition [Stinson 2005] of a pseudo-
random number generator (PRNG). Let g(s) be a pseudo-random number generator, where s is a
seed. We will denote the first L bits generated from g(s) as PRNG{L, s}.

Non-interactive Commitments: We use a non-interactive commitment that is concurrent non-
malleable [Pandey et al. 2008]. The notation x = COMMIT{c} indicates that x is a commitment to
c, and the notation c = OPEN{x} indicates that c is the opening of the commitment x. We note that
minor protocol modifications would allow interactive commitments instead.

SETUP Consensus: We assume that the protocol used by SETUP produces a consensus output in
the presence of the adversary. The adversary signals honest members to begin a SETUP round and
can repeat with additional rounds. Each honest member i uses verification key vi as the input. Our
assumption is that, with probability 1 for every round, honest members that terminate produce the
same output and that the output includes i) nonces never used in a previous round, ii) the key vi for
honest member i and some key for each dishonest member, and iii) a uniformly random hash key.

6. GMP-SHUFFLE
The Group Messaging Protocol-Shuffle GMP-SHUFFLE is an instantiation of the Group Messaging
Protocol and consists of three algorithms: SETUP-S, ANONYMIZE-S, and VERIFY-PROOF-S.

Before each protocol run, all members run the SETUP-S algorithm to agree on the common pa-
rameters needed for each run. One parameter thus determined is the fixed message length L. Each
member i pads or trims input message mi to length L. All members use the remaining parame-
ters K, nR, τ , and kh as inputs to ANONYMIZE-S. This algorithm also takes a fail flag fi which
is always set to FALSE when the algorithm is run as a part of GMP-SHUFFLE. The fail flag will
sometimes be set to TRUE when ANONYMIZE-S is run as a part of GMP-BULK. Figure 1 shows the
normal execution (solid lines) and failure-handling execution (dashed lines) of ANONYMIZE-S.

Anonymize	
 by	
 shuffling	
 all	

ciphertexts	
 and	
 decryp8ng	

outer	
 encryp8on	
 layers.	

	

3	

Generate	
 inner	
 and	
 outer	
 key	

pairs.	

1	

Verify	
 commitments	
 and	

reveal	
 ciphertext.	

2b	

Doubly	
 encrypt	
 secret	

messages	
 and	
 commit	
 to	

ciphertext.	
 2a	

Verify	
 if	
 all	
 inner	
 ciphertexts	

are	
 intact,	
 logs	
 match,	
 	

and	
 no	
 failures	
 occurred.	
 4	

Case	
 2:	
 Failures	
 occurred	

Send	
 empty	
 inner	
 private	
 key.	

5	

Case	
 2:	
 Some	
 bad	
 key(s)	

Keep	
 outer	
 private	
 key	
 secret.	

Send	
 logs.	
 	
 6	

Case	
 3:	
 Failures	
 in	
 Phase	
 5	

Send	
 outer	
 private	
 key	
 and	

logs.	
 	
 6	

Run	
 the	
 blame	
 procedure	
 to	

find	
 culprit	
 member(s).	

6	

Case	
 1:	
 All	
 keys	
 valid	

Send	
 all	
 protocol	
 logs.	
 	

6	

Case	
 1:	
 No	
 failures	

Reveal	
 inner	
 private	
 key	
 and	

decrypt	
 ciphertexts.	
 5	

END:	
 SUCCESS	

END:	
 FAILURE	

Fig. 1. Flow of the ANONYMIZE-S algorithm

6.1. The Setup-S Algorithm
SETUP-S(vi) takes each member’s verification key vi as input and outputs a session nonce nR, a list
K of all members’ verification keys, an ordering of members τ , a fixed message length L, and a
hash key kh. As described in Section 3.1, this algorithm can be implemented using tools such as a
standard consensus protocol.

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: January 2013.

Security Analysis of Accountable Anonymous Group Communication in Dissent 0:9

6.2. The Anonymize-S Algorithm
The purpose of ANONYMIZE-S(mi,K, nR, τ, kh, fi) when run by each member in a group on the
collective input messages M is to produce anonymized messages M ′.

A protocol run of ANONYMIZE-S succeeds for member i if an internal flag SUCCESSi is set to
TRUE after completion of ANONYMIZE-S and fails otherwise. After a successful completion of a
protocol run, member i outputs (SUCCESS,M ′i), where, as we show in Section 8, M ′i consists of
N messages including every message submitted by an honest member. After a protocol failure,
member i produces (FAILURE, BLAMEi, `i). BLAMEi includes proofs pj = (j, c) for each member
j for whom a check c of her behavior failed in Phase 6 from i’s point of view. A complete log `i
includes all messages member i sent and received within SETUP-S and ANONYMIZE-S as defined
in the protocol description.

Table I contains the checks applied by a member during the protocol. Each check is associated
with a check number that ANONYMIZE-S uses to form a proof of a particular form of misbehavior,
and VERIFY-PROOF-S uses to confirm a record of that misbehavior.

Table I. A list of checks a member applies within the GMP-SHUFFLE protocol.

Check 1 (c1): Incomplete or inconsistent log. Check 7 (c7): Incorrect commitment or invalid
ciphertext or identity in Phase 2b.

Check 2 (c2): Mismatched inner key pair in Phase 5. Check 8 (c8): Incorrect set of permuted ciphertexts
after decryption in Phase 3.

Check 3 (c3): Empty inner key in Phase 5 without Check 9 (c9): Invalid ciphertext(s) after decryption
a GOk = FALSE or a bad
HASHkh{ ~B}.

in Phase 3.

Check 4 (c4): Mismatched or empty outer private Check 10 (c10): Duplicate ciphertext(s) after
key in Phase 6 without justification. decryption in Phase 3.

Check 5 (c5): Invalid public key in Phase 1. Check 11 (c11): Incorrect GOj in Phase 4.
Check 6 (c6): Invalid commitment in Phase 2a. Check 12 (c12): Bad HASHkh{ ~B} in Phase 4.

Algorithm description. ANONYMIZE-S(mi,K, nR, τ, kh, fi)
Phase 1: Generation of Inner and Outer Key Pairs. Each member i chooses two ephemeral en-

cryption key pairs (Iseci , Ipubi) and (Oseci , Opubi), and broadcasts µi1 = {Ipubi , Opubi , nR,1, i}SIGui .
Member i verifies that the messages she receives contain valid public keys. If not, member i sets an
internal flag GOi to FALSE to indicate that a step of the protocol failed.

Phase 2a: Data Commitment. Each member i encrypts her datum mi with all members’ inner
public keys, in reverse order from IpubN to Ipub1 creating C ′i = {mi}IpubN :Ipub1

. Member i stores the
inner ciphertext C ′i for later use, then further encrypts C ′i with all members’ outer public keys to
obtain the outer ciphertext Ci = {C ′i}OpubN :Opub1

. If a public key released by some member j was
invalid, i generates and uses a new key for j to allow the protocol to go forward. Now member i
calculatesXi = COMMIT{Ci, i} and broadcasts µi2a = {Xi, nR,2a, i}SIGui . After receiving such
a message from every other member, member i verifies that they include valid commitments, and if
not GOi is set to FALSE.

Phase 2b: Data Submission. Member i sends to member 1 an opening of her commitment:
µi2b = {OPEN{Xi}, nR,2b, i}SIGui . Member 1 verifies that each µi2b successfully opens Xi and
results in a valid ciphertext and position i. If not, member 1 sets GO1 to FALSE.

Phase 3: Anonymization. Member 1 collects the results of opening the commitments into a vec-
tor ~C0 = (C1, . . . , CN), randomly permutes its elements, then strips one layer of encryption from
each ciphertext using private key Osec1 to form ~C1. Member 1 sends µ13 = {~C1, nR,3, 1}SIGu1

to
member 2. Each member 1 < i < N in turn accepts ~Ci−1, permutes it randomly, strips one layer
of encryption using key Oseci to form ~Ci, then sends µi3 = {~Ci, nR,3, i}SIGui to member i + 1.
Member N similarly forms µN3 and broadcasts it to all members. Member i skips decryption for

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: January 2013.

0:10 Syta et al.

any invalid ciphertext in ~Ci−1. Any member i who detects a duplicate or invalid ciphertext in ~Ci
sets GOi to FALSE.

Phase 4: Verification. All members now hold ~CN , which should be a permutation ofC ′1, . . . , C
′
N .

Each member i verifies that her own inner ciphertext C ′i is included in ~CN and sets GOi to FALSE
if not. If fi = TRUE then member i always sets GOi = FALSE. If fi = FALSE and the GOi flag has
not yet been set to FALSE, it is now set to TRUE. Each member i creates a vector ~B of all broadcast
messages – that is, messages for which identical copies should have been delivered to all members
– from prior phases: all members’ public key messages from phase 1, all members’ commitment
messages from phase 2a, and member N ’s phase 3 message containing ~CN . Member i broadcasts
µi4 = {GOi, HASHkh{ ~B}, nR,4, i}SIGui .

Phase 5: Key Release and Decryption.
Case 1. If GOj = TRUE and HASHkh{ ~Bj} = HASHkh{ ~Bi} for every member j, then member

i broadcasts her inner private key in µi5 = {Iseci , nR,5, i}SIGui . Upon receiving messages from
every other member, member i verifies that each non-empty inner private key Isecj is valid and
corresponds to the public key Ipubj . If there is at least one empty key or if any key pair fails the
verification, then i sets SUCCESSi = FALSE. Otherwise, SUCCESSi is set to TRUE and member i
removes the N levels of encryption from ~CN , resulting in M ′i = {m′1, . . . ,m′N}, the anonymized
set of messages submitted to the protocol.

Case 2. If GOj = FALSE or HASHkh{ ~Bj} 6= HASHkh{ ~Bi} for any member j, then member i
sends to all members an empty string instead of Iseci . Member i broadcasts µi5 = {0, nR,5, i}SIGui
and sets SUCCESSi to FALSE.

Phase 6: Blame.
Case 1. SUCCESSi = TRUE. Member i acknowledges a successful completion of the protocol.

Member i creates a vector ~T of all signed messages she sent and received in Phases 1–5, broadcasts
µi6 = {~T , nR,6, i}SIGui , and outputs (SUCCESS,M ′i), which completes the protocol.

Case 2. SUCCESSi = FALSE and for every member j, GOj = TRUE and HASHkh{ ~Bj} =

HASHkh{ ~Bi}. Member i keeps her outer private key Oseci secret and broadcasts µi6 =

{0, ~T , nR,6, i}SIGui , which contains an empty string instead of her key and a vector ~T of all signed
messages she sent and received in Phases 1–5.

Case 3. SUCCESSi = FALSE and for any member j, GOj = FALSE or HASHkh{ ~Bj} 6=
HASHkh{ ~Bi}. Member i broadcasts µi6 = {Oseci , πi, ~T , nR,6, i}SIGui , her outer private key Oseci ,
permutation πi and a vector ~T of all signed messages she sent and received in Phases 1–5.

Now, member i continues with the following steps if she executed Case 2 or Case 3. If member i
executed Case 1, then the protocol has completed.

Upon receiving µj6 from every other member j, member i discards any message in ~T that is not
properly signed or does not have the correct round or phase number. Member i then checks that
each member j’s ~T contains all messages sent and received by j in Phases 1–5 as well as that the
contents of all messages included in ~T match the corresponding messages in the ~T logs of other
members.

If there is an incomplete ~T or an equivocation is observed, member i creates a log `i of the
protocol run that consists of all messages sent and received by i during SETUP-S and ANONYMIZE-S.
For every member j whose ~T is incomplete or for whom different versions of any message µjφ are
revealed, member i sets pj = (j, c1), where c1 indicates the failed check number, and adds pj to
BLAMEi. Then, member i outputs (FAILURE, BLAMEi, `i), which concludes the protocol.

Otherwise, member i uses the messages in the ~T logs to complete her view of Phases 1–5 of the
execution and thus can proceed to examine the rest of the protocol. Member i begins by examining
the release of inner and outer private keys. She adds (j, c2) to BLAMEi for every member j whose

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: January 2013.

Security Analysis of Accountable Anonymous Group Communication in Dissent 0:11

revealed Isecj does not match Ipubj . Then, for every member j who sent an empty inner private key
without any GOk = FALSE or incorrect broadcast hash, member i adds (j, c3) to BLAMEi. For every
member j who revealed her outer private key in Phase 6, member i checks if Osecj is valid and
corresponds to Opubj . In addition, for every member j who sent an empty outer private key, member
i verifies that it is justified in that every GOk = TRUE and all broadcast hashes matched in Phase 4.
For every member j whose outer private key is invalid or non-matching, or who was not justified in
withholding the outer private key, member i adds (j, c4) to BLAMEi.

Member i next replays the protocol from the perspective of every member j. She creates a proof
pj and adds it to blame BLAMEi for every member j who
— sends an invalid public key in Phase 1 (pj = (j, c5));
— sends an invalid commitment in Phase 2a (pj = (j, c6));
— sends an opening that does not successfully open her commitment or does not result in a valid

ciphertext and identity j in Phase 2b (pj = (j, c7));
— in the case that matching outer key pairs are received from all members, does not send a valid

permutation of the decrypted valid ciphertexts in Phase 3 (pj = (j, c8)), sends a ciphertext that
produces duplicate or invalid ciphertexts after decryption (pj = (j, c9)), or sends an outer ci-
phertext which at any point decrypts to the same ciphertext as another member’s outer ciphertext
(pj = (j, c10); or

— improperly reports in Phase 4 GOj = FALSE based on the messages sent to j in Phases 1–5 in
the case that matching outer key pairs are received from all members (pj = (j, c11)), or sends
an incorrect HASHkh{ ~Bj} (pj = (j, c12)).

To conclude the protocol, member i creates a log `i consisting of all messages sent and received
in SETUP-S and ANONYMIZE-S and outputs (FAILURE, BLAMEi, `i).

6.3. Verify-Proof-S Algorithm
VERIFY-PROOF-S(pj , `i) verifies a member j’s misbehavior. VERIFY-PROOF-S takes as input a
proof pj and a log `i of a protocol run. VERIFY-PROOF-S outputs TRUE if pj is a verifiable proof
based on `i and FALSE otherwise.

Algorithm description. VERIFY-PROOF-S(pj , `i)
Step 1: Proof verification. Verify that pj = (j, c), where c is a valid check number and j is a

valid member identifier. If pj is invalid, output FALSE.
Step 2: Log verification. Examine `i to ensure that all included messages are properly signed,

contain a correct round nonce given the execution of SETUP-S, and contain a correct phase number.
All messages with invalid signatures, round nonces or phase numbers are discarded. If the resulting
log does not include all messages that were supposed to have been sent and received by i during
SETUP-S and ANONYMIZE-S, which is clear from the descriptions of those algorithms, then output
FALSE and stop. Otherwise, verify that the logs of all sent and received messages revealed by each
member j in Phase 6 are complete and consistent. That is, verify that the ~T in every µj6 contains
all messages sent and received in Phases 1–5 such that the messages are properly signed, include
correct phase and round numbers, and the contents of the corresponding messages match for every
member j. If any ~T is incomplete or inconsistent and c 6= c1, then output FALSE and stop. If c 6= c1,
augment `i with those messages in the ~T logs not seen by i.

Step 3: Proof verification decision. Examine log `i to verify that it contains a record of a check
c failed by member j. If yes, output TRUE indicating that pj is indeed a proof of j’s misbehavior
given the observed protocol history represented by log `i, or FALSE otherwise.

7. GMP-BULK
The Group Messaging Protocol-Bulk GMP-BULK is an instantiation of the Group Messaging Proto-
col and consists of three algorithms: SETUP-B, ANONYMIZE-B, and VERIFY-PROOF-B. Each mem-
ber i submits a message mi of variable length Li to the ANONYMIZE-B protocol after all members

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: January 2013.

0:12 Syta et al.

run SETUP-B to agree on common protocol run parameters. The fail flag fi is always set to FALSE
for any execution of ANONYMIZE-B. Figure 2 shows the normal execution (solid lines) and failure-
handling execution (dashed lines) of ANONYMIZE-B.

7.1. The Setup-B Algorithm
SETUP-B(vi) takes each member’s verification key vi as input, and outputs a session nonce nR
identifying a run of ANONYMIZE-B, session nonces nR1

and nR2
identifying runs of ANONYMIZE-S

in Phase 3 and Phase 7 of ANONYMIZE-B respectively, a list K of members’ verification keys , an
ordering of members τ , and a hash key kh. As described in Section 3.1, this algorithm can be
implemented using tools such as a standard consensus protocol.

7.2. The Anonymize-B Algorithm
ANONYMIZE-B(mi,K, nR, nR1

, nR2
, τ, kh) takes a messagemi of variable lengthL and the output

of SETUP-B as input. The algorithm operates in phases. Member i sends at most one unique message
µiφ in phase φ. If a protocol run succeeds, then member i outputs (SUCCESS,M ′i), where, as we
show in Section 8, M ′i consists of N messages including every message submitted by an honest
member. If a protocol run fails, then member i produces (FAILURE, BLAMEi, `i). BLAMEi includes
proofs pj = (j, c) for each member j for whom a check c fails in Phase 7 from member i’s point of
view. Table II contains the checks applied by a member during the protocol, listed in the order they
are applied. Each check is associated with a check number that ANONYMIZE-B uses to form a proof
of a particular misbehavior and VERIFY-PROOF-B uses to confirm a record of that misbehavior.

Table II. The list of checks a member applies within the GMP-BULK protocol.

Check 1 (c1): Equivocation in Phase 4 or Phase 5. Check 4 (c4): Unverifiable proof included
in Phase 4.

Check 2 (c2): Failure of ANONYMIZE-S in Phase 3 Check 5 (c5): Invalid public key sent in Phase 1a.
or Phase 7 without justification.

Check 3 (c3): Empty or incorrect ciphertext(s) Check 6 (c6): Equivocation in Phase 1a.
in Phase 4.

The log `i includes all messages sent and received by i during SETUP-B and ANONYMIZE-B as
well as the output of ANONYMIZE-S in Phase 3 and Phase 7.

Algorithm description. ANONYMIZE-B(mi,K, nR, nR1
, nR2

, τ, kh)
Phase 1a: Session Key Pair Generation. Each member i chooses an ephemeral encryption key

pair (xi, yi) and broadcasts µi1a = {yi, nR,1a, i}SIGui .
Phase 1b: Key Verification. After receiving a public key yj from every member j, member

i notifies other members about the set of keys she receives. Member i creates a vector ~Ke
i =

{µ11a, . . . , µN1a} and broadcasts µi1b = { ~Ke
i , nR,1b, i}SIGui .

Phase 2: Message Descriptor Generation. Member i creates a message descriptor di of a fixed
length Λd, and sets Li to the length of message mi, or Li = 0 if i has no message to send.

Case 1. Successful key verification. Member i verifies each set of public keys received in Phase
1b to ensure she has the same set of valid public keys. If every ~Ke

j contains the same set of valid
public keys, then for each member j, i chooses a random seed sij and for each j 6= i generates
Li pseudorandom bits from sij to obtain ciphertext Cij = PRNG{Li, sij}, where Li and sij are of
fixed lengths for all members. Member i now XORs her message mi with each Cij for j 6= i to
obtain ciphertext Cii = Ci1 ⊕ . . . ⊕ Ci(i−1) ⊕ mi ⊕ Ci(i+1) ⊕ . . . ⊕ CiN . Member i computes
hashes Hij = HASHkh{Cij}, encrypts each seed sij with j’s public key to form Sij = {sij}

Rij
yj ,

and collects the Hij and Sij into vectors ~Hi = (Hi1, . . . ,HiN) and ~Si = (Si1, . . . , SiN). Member
i forms a message descriptor di = {Li, ~Hi, ~Si}, which has a fixed length Λd.

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: January 2013.

Security Analysis of Accountable Anonymous Group Communication in Dissent 0:13

Case 2. Failed key verification. If any ~Ke
j contains a non-matching set of keys or any ~Ke

j contains
an invalid key, then member i creates an empty message descriptor di = 0Λd of length Λd.

Case 3. No message to send. If member i chooses not to send a message in this protocol run,
she sets Li = 0 and assigns random values to ~Hi and ~Si. Member i forms her message descriptor
di = {Li, ~Hi, ~Si} of length Λd.

Phase 3: Message Descriptor Shuffle. Each member i runs the ANONYMIZE-S protocol described
in Section 6 using (di,K, nR1

, τ, fi) as input, where the fixed-length descriptor di is the secret mes-
sage to be shuffled. Member i sets fi = TRUE if i created an empty message descriptor and member
i sets fi = FALSE otherwise. If ANONYMIZE-S succeeds, member i has a list M ′i of message de-
scriptors in some random permutation π. If the protocol fails, outputting (FAILURE, BLAMEs1i , `

s1
i),

member i saves BLAMEs1i and `s1i .
If member i set fi = TRUE, then i prepares a proof p′ of the dishonest member j’s misbehavior

and distributes it to other members. If member j sent an invalid key, then member i sets p′ =
(j, c5, µj1a), where c5 indicates the failed check number and µj1a is the message received by i
in Phase 1a. If member j equivocated, then member i sets p′ = (j, c6, µj1a, µ

′
j1a), where µj1a is

the message received by i in Phase 1a and µ′j1a is a message included in some ~Ke
k that contains

a different key for j than in µj1a. If there is more than one culprit member j, member i chooses
one j to blame in some way that does not depend on her message (e.g. randomly). If member
i received all valid and matching keys, then member i sets p′ = 0. Then member i broadcasts
µi3 = {p′, nR,3, i}SIGui .

Phase 4: Data Transmission.
Case 1. If ANONYMIZE-S fails, then member j shares her blame set BLAMEs1j and log `s1j , sets

GOj = FALSE, and broadcasts µj4 = {GOj , BLAMEs1j , `
s1
j , nR,4, j}SIGuj .

Case 2. If ANONYMIZE-S succeeds, member j sets GOj = TRUE and decrypts each encrypted
seed Sij with private key xj to reveal sij . If sij matches the seed sjj that j chose for herself in
her own descriptor, then j sets Cij = Cjj . Otherwise, j sets Cij = PRNG{Li, sij}. Member j
then checks HASHkh{Cij} against Hij . If the hashes match, j sets C ′ij = Cij . If Sij is not a valid
ciphertext, sij is not a valid seed, Hij is not a valid hash value, or HASHkh{Cij} 6= Hij , then j
sets C ′ij to an empty ciphertext, C ′ij = 0. Member j now broadcasts each C ′ij in π-shuffled order
µj4 = {GOj , C

′
π(1)j , . . . , C

′
π(N)j , nR,4, j}SIGuj .

Phase 5: Acknowledgment Submission. Each member k notifies other members about the out-
come of the previous phase.

Case 1. If GOj = FALSE for any member j, then member k adds each message µj4 that includes
GOj = FALSE into a vector ~Vk.

Case 2. If GOj = TRUE for every member j, then member k checks each C ′ij she receives
from every member j against the corresponding Hij from descriptor di. If C ′ij is empty or
HASHkh{C ′ij} 6= Hij , then message slot π(i) was corrupted and member k reports this fact to
other group members. Member k adds each message µj4 that contains an empty or incorrect C ′ij to
a vector ~Vk.

Case 3. If GOj = TRUE for every member j and all ciphertexts are correct, then member i sets
~Vk = {}. In every case member k broadcasts µk5 = {~Vk, nR,5, k}SIGuk .

Phase 6: Message Recovery. If GOi = TRUE for every member i, then for each uncorrupted slot
π(i), member k recovers member i’s message by computing m′i = C ′i1 ⊕ ...⊕ C ′iN .

If ~Vk = {}, then from member k’s point of view none of the slots were corrupted and all mes-
sages M ′k = (m′1, . . . ,m

′
N) were successfully recovered. If ~Vk 6= {}, then some message slot was

corrupted, or a step of the protocol has failed.
Phase 7: Blame. For each member i, if i observed a corrupted slot with a descriptor matching di

(there may be more than one) and received all GOj = TRUE, then i generates an accusation naming

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: January 2013.

0:14 Syta et al.

the member j who sent that incorrect ciphertext. If there is more than one culprit member, member
i chooses one to blame in any way that only depends on the output of ANONYMIZE-S and on ~Vi.
Each accusation has a fixed length Λa, indicates the corrupted slot π(i), contains the seed sij that
i assigned j, and contains the random bits that i used to encrypt the seed: Ai = {j, π(i), sij , Rij}.
Each member i who does not have an accusation to send submits the empty accusation Ai = 0Λa .

These accusations will be sent anonymously using ANONYMIZE-S. However, before running it,
members look for evidence of equivocation in the previous two phases. Every member i compares
each message µ′j4 that she received in some ~Vk in Phase 5 with the message µj4 that she received
directly from j in Phase 4. If the contents of these do not match, ignoring any µ′j4 with an invalid
signature or incorrect member identifier, round or phase number, then member i sets fi = TRUE to
cause ANONYMIZE-S to fail in order to inform other members about the equivocation. If all such
messages match, member i sets fi = FALSE.

Member i then runs ANONYMIZE-S(Ai,K, nR2
, τ, fi). After ANONYMIZE-S completes, there is

an opportunity for members who deliberately failed the shuffle protocol to distribute the evidence
of equivocation. For a member i who set fi = TRUE because of conflicting messages µ′j4 and µj4, i
creates a proof of j’s equivocation by setting p′i = (j, c1, µj4, µ

′
j4). If there is more than one culprit

member j, member i chooses one j to blame in any way that depends at most on the broadcast
messages µk4 and µk5 sent and received by i. If member i had fi = FALSE, then i sets p′i = 0.
Member i then broadcasts µi7 = {p′i, nR,7, i}SIGui .

LetOk be the output of the ANONYMIZE-S protocol for member k. After receiving a message µi7
from every other member i, member k executes one of the following cases.

Case 1: Ok = (FAILURE, BLAMEs2k , `
s2
k). Member k sets SUCCESSk = FALSE. Then k considers

every pi = (i, c) ∈ BLAMEs2k . If c 6= c11, then i could not have justifiably caused the blame shuffle
to fail, and so k adds (i, c2) to BLAMEk. Otherwise c = c11, and member k looks in µi7 for possible
justification of the failure. If µi7 does include two versions of the same ciphertext C ′`j (included in
properly signed messages with correct phase and round numbers) for some member j, then k adds
(j, c1) to BLAMEk. Otherwise, k adds (i, c2) to BLAMEk.

Case 2: Ok = (SUCCESS,Ms2
k) and ~Vk = {}. Member k sets SUCCESSk = TRUE.

Case 3: Ok = (SUCCESS,Ms2
k) and ~Vk includes ciphertexts. Member k checks the validity of

every accusationAi = (j, π(i), sij , Rij) inMs2
k . To do so, k replays the encryption S′ij = {sij}

Rij
yj ,

checks that the encrypted seed Sij included in di matches S′ij , and checks that the hash Hij in di
matches HASHkh{PRNG{Li, sij}}, where Li is also obtained from di. If the accusation is valid,
then member k adds (j, c3) to BLAMEk. If Ms2

k includes no valid accusation targeting an incorrect
ciphertext received by k, then k sets SUCCESSk = TRUE, otherwise, k sets SUCCESSk = FALSE.

Case 4: Ok = (SUCCESS,Ms2
k) and ~Vk contains GOi = FALSE for some i. Member k sets

SUCCESSk = FALSE. Then k considers every GOi = FALSE in Vk.
Member k checks µi4 to see if the contained blame set and log constitute a valid proof of some

member j’s misbehavior. To do so, member k checks that `s1i contains nR1
as the round number

that is the result of SETUP-B and that VERIFY-PROOF-S(pj , `
s1
i) = TRUE for some pj ∈ BLAMEs1i .

If not, then member k blames i by adding (i, c4) to BLAMEk. If so, then k considers every pj ∈
BLAMEs1i such that VERIFY-PROOF-S(pj , `

s1
i) = TRUE. If pj 6= (j, c11), then member k adds (j, c2)

to BLAMEk. If pj = (j, c11), then member k examines µj3 to see if member j justifiably caused
a failure of ANONYMIZE-S to expose bad key distribution by some member `. If µj3 includes an
invalid key y` or two different versions of y` (in properly signed messages with correct phase and
round numbers), then member k adds (`, c5) or (`, c6) to BLAMEk, respectively. Otherwise, k adds
(j, c2) to BLAMEk.

In every case, k concludes as follows. If SUCCESSk = TRUE, k outputs (SUCCESS,M ′k). Other-
wise, member k creates a log `k that includes all messages sent and received by k during SETUP-B
and ANONYMIZE-B as well as the output of the ANONYMIZE-S protocol in Phases 3 and 7. Member
k outputs (FAILURE, BLAMEk, `k).

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: January 2013.

Security Analysis of Accountable Anonymous Group Communication in Dissent 0:15

Run	
 ANONYMIZE-­‐S	

on	
 accusa3ons.	

7	

	

Case	
 1:	
 All	
 keys	
 valid	

Generate	
 message	

descriptors.	
 2	

Case	
 2:	
 Some	
 bad	
 key(s)	

Generate	
 empty	
 message	

descriptor.	
 2	

Case	
 3:	
 No	
 message	
 to	
 send	

Generate	
 random	
 message	

descriptor.	
 2	

Case	
 1:	
 ANONYMIZE-­‐S	
 failed	

Send	
 ANONYMIZE-­‐S	
 blame	
 set	

and	
 log.	
 4	

Case	
 2:	
 ANONYMIZE-­‐S	
 succeeded	

Send	
 pseudorandom	

sequences.	
 4	

Case	
 1:	
 Failures	
 observed	

Add	
 Phase	
 4	
 failure	
 messages	

to	
 a	
 vector	
 V.	
 Send	
 V.	
 5	

Case	
 2:	
 Some	
 bad	
 sequence(s)	

Add	
 Phase	
 4	
 sequence	

messages	
 to	
 V	
 and	
 send	
 it.	
 5	

Case	
 3:	
 All	
 sequences	
 good.	

Set	
 V	
 =	
 {}	
 and	
 send	
 it.	
 	

5	

Case	
 1:	
 Any	
 V	
 ≠	
 {}	

Failures	
 occurred.	
 	

6	

Case	
 2:	
 All	
 V	
 =	
 {}	

Recover	
 messages.	
 All	

messages	
 intact.	
 	
 	
 	
 6	

Prepare	
 accusa3ons	
 based	
 on	

observed	
 failures.	

7	

Prepare	
 empty	
 accusa3ons.	

7	

Case	
 1:	
 ANONYMIZE-­‐S	
 failed	

Perform	
 the	
 blame	

procedure.	
 7	

Case	
 2:	
 ANONYMIZE-­‐S	
 succeeded	

and	
 V	
 =	
 {}	

No	
 accusa3ons.	
 7	

Case	
 3	
 &	
 4:	
 ANONYMIZE-­‐S	

succeeded	
 and	
 V	
 ≠	
 {}	

Verify	
 accusa3ons.	
 7	

Run	
 ANONYMIZE-­‐S	

on	
 message	

descriptors.	
 3	

	

No	
 valid	

accusa3ons.	

7	

	

Valid	

accusa3ons.	

Blame.	
 7	

	

Generate	

session	
 key	
 pair.	

1a	

	

Verify	
 all	
 public	

session	
 keys.	

1a	

	

END:	
 FAILURE	

END:	
 SUCCESS	

Fig. 2. Flow of the ANONYMIZE-B algorithm

7.3. Verify-Proof-B Algorithm
VERIFY-PROOF-B(pj , `i) is used to verify member misbehavior. It takes as input a proof pj
and a log `i. The proof pj should be a tuple (j, c), where j is a member’s identifier and c
indicates the failed check. The log `i should include all messages sent and received during
SETUP-B and ANONYMIZE-B by member i as well as the output of ANONYMIZE-S in Phases 3
and 7. VERIFY-PROOF-B outputs TRUE if `i shows that j indeed failed check c and FALSE otherwise.

Algorithm description. VERIFY-PROOF-B(pj , `i)
Step 1: Proof verification. Verify that pj includes a valid check number c and member identifier

j. If pj is invalid, then output FALSE and stop.
Step 2: Log verification. Examine `i, and discard all messages that are not properly signed, do

not contain a correct round nonce given the execution of SETUP-B, or do not contain a correct phase
number. If the resulting log does not include all messages that were supposed to have been sent and
received by i during SETUP-B and ANONYMIZE-B, which is clear from the descriptions of those
algorithms, as well as the output of ANONYMIZE-S in Phases 3 and 7, then output FALSE.

Step 3: Proof verification decision. Examine log `i to verify that it contains a record of a check
c failed by member j. If yes, output TRUE, and FALSE otherwise.

8. PROOFS
In this section we prove that DISSENT satisfies the definitions of integrity, accountability, and
anonymity given in Section 4. We generally organize proofs as a sequence of games [Shoup 2004].

8.1. Notation and Definitions
Let G be the set of all members participating in the protocol and H be the set of honest
members. A group member i blames member j if pj ∈ BLAMEi upon a protocol failure re-
sulting in (FAILURE, BLAMEi, `i). This pj is a verifiable proof of j’s misbehavior given `i if
VERIFY-PROOF(pj , `i) = TRUE. We say that i exposes j if member i produces a verifiable proof for
j given a log `i in which SETUP outputs the long-term signature verification key vj for j.

8.2. Integrity
THEOREM 8.1. The GMP-SHUFFLE protocol offers integrity.

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: January 2013.

0:16 Syta et al.

PROOF. We consider the modified integrity game in which C outputs 0 upon observing a hash
collision. Such an observation occurs when C receives in Phase 6 different inputs to the Phase 4
hash of broadcast messages that have the same hash value. Modifying the game in this way can only
change the probability that C outputs 1 by a negligible amount by reduction to the game defining
hash collision resistance.

For C to output 1 an honest member i must succeed during the challenge run. According
to the protocol specification, i terminated with (SUCCESS,M ′i) because (i) in Phase 4 her own
GOi = TRUE, (ii) in Phase 4 she receives messages such that GOj = TRUE and HASHkh{ ~Bj} =

HASHkh{ ~Bi} for every member j ∈ G, and (iii) in Phase 5 she received non-empty inner private
keys such that Isecj matched Ipubj for every j ∈ G.
~Bi contains all broadcast messages member i sent and received in Phases 1–3, and thus, by (i)

and (ii) and the assumption that hash collisions are not observed, member i is in possession of the
same ~CN and inner public keys as every other honest member j. Furthermore, (iii) applies to every
honest j for which the protocol is successful, and so every such j has inner private keys that match
the common inner public keys.

Thus, member i can decrypt each ciphertext included in ~CN using her set of inner private keys
to obtain N messages, and the resulting list contains the same messages in the same order as each
honest user j that successfully terminates. Moreover, because member j sends i GOj = TRUE, the
inner ciphertext C ′j must be in their common ~CN . Therefore, after decryption, i obtains the message
mj of each honest member j. The probability that C outputs 1 is thus zero, which implies that the
probability that C outputs 1 in the original game is negligible.

THEOREM 8.2. The GMP-BULK protocol offers integrity.

PROOF. We consider the modified integrity game in which C outputs 0 when the shuffle in
Phase 3 or 7 fails to provide integrity or when a hash collision is observed for a hash in a message
descriptor. By reduction to the integrity game with GMP-SHUFFLE and Theorem 8.1, the shuffles
fail to provide integrity with negligible probability. Then by reduction to the game defining collision
resistance, different ciphertexts with the same hash are seen by C with negligible probability. Thus
this game modification changes the output distribution only negligibly.

Suppose that C outputs 1. There must exist an honest member i for whom GMP-BULK terminates
successfully. Then, according to the protocol specification, it must be that (i) each member k ∈ G
sends i GOk = TRUE in Phase 4, (ii) the run of the ANONYMIZE-S protocol completes successfully
for i in Phase 7, and (iii) either HASHkh{C ′jk} = Hjk for all ciphertexts received by i in Phase 4 or
no valid accusation is received in Phase 7 for any ciphertext such that HASHkh{C ′jk} 6= Hjk.

Every honest member for whom the descriptor shuffle is successful obtains the same N mes-
sage descriptors in the same order, including a message descriptor for each honest member. By (i),
the descriptor shuffle is successful for every honest member, and thus they all obtain these same
descriptors. Similarly, every honest member for whom the blame shuffle is successful obtains the
same N accusations in the same order, including each accusation from an honest member. By (ii),
the blame shuffle is successful for every honest member for whom the bulk protocol is successful,
and thus they all obtain these same accusations.

Therefore, if honest members receive different ciphertexts in Phase 4, at least one of the ci-
phertexts must not match the corresponding hash. The recipient of that ciphertext would report the
corruption in Phase 5, and the equivocation would prevent the accusation shuffle from succeeding
for any honest member, contradicting (ii).

Thus all honest members that successfully terminate must have the same sequence of N descrip-
tors and the same ciphertexts. This implies that these members obtain the same N messages in the
same order from the bulk protocol.

In addition, as shown, the descriptors obtained by every honest member include the descriptors
of all of the honest members in the same slots. Because each honest member receives the same

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: January 2013.

Security Analysis of Accountable Anonymous Group Communication in Dissent 0:17

ciphertexts, any corruption of an honest member’s slot would be seen by that member. That mem-
ber would then produce an accusation which, as we have described, would be obtained from the
blame shuffle by all honest members who terminate successfully. This would contradict condition
(iii) of successful termination. Therefore, no slot containing an honest member’s descriptor can be
corrupted at an honest user. This implies that the messages obtained by an honest member from
successful termination of the bulk protocol must contain the messages of all honest members.

Therefore C cannot output 1 in the modified game, and the probability that C outputs 1 in the
original game is negligible.

8.3. Accountability
We use the following sequence of games to prove that the GMP-SHUFFLE and GMP-BULK protocols
offer accountability:

Game 0: Adversary A and challenger C0 play the accountability game.
Game 1: A interacts with a challenger C1 that is the same as C0 except that it outputs 0 when a

signature forgery or hash collision is observed.
Game 2: A interacts with a challenger C2 that is the same as C1 except that it outputs 0 when,

at the end of the challenge run, an honest member i produces an output of (FAILURE, BLAMEi, `i)
with empty BLAMEi or containing pj ∈ BLAMEi such that VERIFY-PROOF(pj , `i) 6= TRUE.

Game 3: A interacts with a challenger C3 that always outputs 0.
It will be shown for both protocols that the output distribution of challenger C changes negligibly

between each sequential pair of games. This holds for Game 0 and Game 1 quite directly from the
security properties of the signature scheme and hash function. The main argument that it holds for
Game 1 and Game 2 is that the protocol fails when one of the checks fails, each such failure for
i results in an addition to BLAMEi, and because VERIFY-PROOF uses the same checks each such
addition produces a verifiable proof. The argument for Game 2 and Game 3 relies on the fact that
the round nonces, phase numbers, and member identities included in each signed message prevent
an adversary from creating a log that contains anything but the actual messages sent by an honest
member in a given round and phase. The protocols ensure that these sent messages include the
messages received by the honest member where necessary. Thus an honest member is always seen
in the log as behaving correctly and cannot be exposed.

8.3.1. The GMP-Shuffle Protocol. Here we denote by Ci the output of the challenger in Game i
when running GMP-SHUFFLE.

LEMMA 8.3.
∣∣Pr[C2 = 1]− Pr[C0 = 1]

∣∣ is negligible.

PROOF. Any forged signature observed by C0 could be used to win the signature game that
defines the EUF-CMA property. Therefore, by the assumption that the signature scheme is EUF-
CMA secure, forged signatures must occur with negligible probability. Similarly, any observed hash
collision could be used to win the game that defines the collision resistance of the hash function,
and so one must occur with negligible probability. Thus the output distributions of C0 and C1 are
negligibly close.

Challengers C1 and C2 differ only when an honest member fails but produces either no proof
of misbehavior or a proof that doesn’t verify. We will show that this never happens, that is, that
whenever SUCCESSi = FALSE for honest member i, i adds a proof pj to BLAMEi, and every proof
it adds is verifiable. In fact, it suffices to show that, whenever SUCCESSi = FALSE, i adds a proof pj
to BLAMEi, because it is straightforward to see that any such pj is verifiable. In VERIFY-PROOF-S,
proof verification of pj (Step 1) always succeeds, because pj always includes valid check number
and member identifier; log verification of `i (Step 2) always succeeds because the protocol com-
pletes by assumption, and i adds all her messages to log `i; and the proof verification decision (Step
3) always succeeds because it outputs TRUE given pj for logs of exactly those executions in which
i adds pj to BLAMEi.

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: January 2013.

0:18 Syta et al.

Therefore, we can simply show that, whenever the protocol fails for i, a proof is added to BLAMEi.
In ANONYMIZE-S, SUCCESSi = FALSE upon protocol completion only in the following three cases:
(1) in Phase 4, GOi = FALSE or a non-matching broadcast hash is received, (2) in Phase 4, GOk =
FALSE for some k 6= i, (3) in Phase 5, an empty, invalid, or non-matching inner private key is
received. In any of these cases, if an inconsistent or incomplete ~T log is received in some µj6, then
(j, c1) is added to BLAMEi. Therefore we assume from this point on that all ~T logs are complete
and consistent and proceed to examine these cases separately.

Suppose case (1) occurs. We consider the conditions in each of the phases up to Phase 4 that can
cause GOi = FALSE, and we identify in each case a proof pj that must be added to BLAMEi. In
Phase 1, an invalid public key must be received from some j. Then pj = (j, c5). In Phase 2a, an
invalid commitment must be received from some j. Then pj = (j, c6). In Phase 2b, a commitment
opening must fail or result in an invalid ciphertext or identity. Then pj = (j, c7). In Phase 3, ~Ci
must have an invalid or duplicate ciphertext. If some member j releases an empty, invalid, or non-
matching outer private key in Phase 6, then pj = (j, c4). Otherwise, i replays the permutations and
decryptions of Phase 3. During the replay, if some member j did not correctly permute and decrypt
her inputs, then pj = (j, c8). Otherwise, i must observe a member j whose commitment value
decrypted either to an invalid ciphertext, in which case pj = (j, c9), or to a duplicate ciphertext, in
which case pj = (j, c10). In Phase 4, it could be that the inner ciphertext C ′j is not in ~CN . In this
case, as in the previous one, if some member j releases an empty, invalid, or non-matching outer
private key in Phase 6, then pj = (j, c4). Otherwise, i replays Phase 3 and during the replay must
observe some member j who did not correctly permute and decrypt her inputs. Then pj = (j, c8).
It could also be that a non-matching broadcast hash is received from j, in which case j must have
sent an incorrect hash, and pj = (j, c12).

Next suppose case (2) occurs. If some member j releases an empty, invalid, or non-matching outer
private key in Phase 6, then pj = (j, c4). Otherwise, i replays the protocol. If any member j sent an
invalid public key or an invalid commitment, then pj = (j, c5) or pj = (j, c6), respectively. If k = 1
and commitment opening failed or resulted in an invalid ciphertext for some j, then pj = (j, c7).
If there were invalid or duplicate ciphertexts in ~Ck, then i must observe a member j who either did
not correctly permute and decrypt her inputs, in which case pj = (j, c8), or committed to a value
that decrypted to an invalid or duplicate ciphertext, in which case pj = (j, c9) or pj = (j, c10),
respectively. If the inner ciphertext of member k is not included in ~CN , then there must be some
member j who did not correctly permute and decrypt her inputs, and pj = (j, c8). Otherwise, k
incorrectly set GOk, and pj = (j, c11) with j = k.

Finally, suppose case (3) occurs. An empty inner private key can only be justified by a GOk =
FALSE for some k or a non-matching broadcast hash from some j. In either case we have already
identified the pj added by i. If an empty key from some j is not justified, then pj = (j, c3). If an
invalid or non-matching inner private key is received from some j, then pj = (j, c2).

Thus we have shown that honest member i adds some proof pj to BLAMEi whenever SUCCESSi =
FALSE, and furthermore that any such pj is a verifiable proof given log `i. Therefore the output
distributions of C1 and C2 are identical.

LEMMA 8.4.
∣∣Pr[C3 = 1]− Pr[C2 = 1]

∣∣ is negligible.

PROOF. The output of C2 and C3 is different only when an honest member is exposed but
signature forgeries and hash collisions are not observed. Suppose that this is true, where A pro-
duces a proof pj and log `i such that VERIFY-PROOF-S(pj , `i) = TRUE and SETUP-S outputs the
challenge-run nonce and assigns j her long-term signature verification key. To pass the initial proof
verification, it must be the case that pj = (c, j). To pass the log verification, it must be the case
either that c = c1 or that all the ~T logs in the µj6 of `i are complete and consistent.

Each message in ANONYMIZE-S identifies the sender and is signed by that sender. Furthermore,
each message identifies the round and phase for which that message was sent. Therefore we can

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: January 2013.

Security Analysis of Accountable Anonymous Group Communication in Dissent 0:19

assume that each message µkφ sent by j in any phase of the challenge run appears with the same
contents in `i.

Given these facts, we can show that for each of the 12 checks the needed log evidence cannot exist.
An honest member j sends the same message to every member in any given phase. Thus, c 6= c1.
An honest j always sends a correct message according to the protocol specification. Thus, c 6∈
{c2, c5, c6, c7, c12}. In certain cases the messages sent by j depend on his perception of the protocol
execution based on the behavior of other members. An honest j always sends a correct message that
reflects his perception of the protocol execution, as indicated in j’s ~T , which is consistent with `i as
established before. Thus, c 6∈ {c3, c4, c8, c9, c11}. Lastly, if c = c10 then it must be the case that the
adversary was able to produce a different commitment to a value that at some point in the shuffle
is equal to that of j. This happens with at most negligible probability because the concurrent non-
malleability of commitment guarantees that a simulator not given any honest commitments must be
able to produce such a commitment, which would imply the ability to guess the encryption of one
of the honest member’s inputs, violating the IND-CCA2 security of encryption.

Therefore, there is no value of c for which VERIFY-PROOF-S could output TRUE given `i, except
with negligible probability, and so the output distributions of C2 and C3 differ by a negligible
amount.

THEOREM 8.5. The GMP-SHUFFLE protocol offers accountability.

PROOF. Lemmas 8.3 and 8.4 show that the challenger output distribution in the accountability
game is negligibly close to the challenger output in Game 3. C3 always outputs 0, and thus the
probability that C outputs 1 in the accountability game is negligible.

8.3.2. The GMP-Bulk Protocol. Here we denote by Ci the output of the challenger in Game i
when running GMP-BULK.

LEMMA 8.6.
∣∣Pr[C2 = 1]− Pr[C0 = 1]

∣∣ is negligible.

PROOF. Any forged signature or hash collision observed byC0 could be used to win the security
game that defines EUF-CMA or collision resistance, respectively. Thus, those security assumptions
imply that such events must occur with negligible probability, and so the output distributions of C0

and C1 are negligibly close.
Challengers C1 and C2 differ only when an honest member fails but produces either no verifiable

proof of misbehavior or a proof that doesn’t verify. We will show that this happens with negligible
probability by first showing that any proof produced by an honest member is verifiable and second
by showing that some proof is always produced by an honest member upon failure except with
negligible probability.

In VERIFY-PROOF-B, proof verification of pj (Step 1) always succeeds for honest member i
because i always includes a valid check number and member identifier in pj . Log verification of `i
(Step 2) always succeeds because the protocol completes by assumption, and i adds all her messages
to log `i. Finally, given complete log `i, the properties of that log that must hold for the proof
verification decision (Step 3) to output TRUE on proof pj are almost exactly the same properties that
must hold for honest i to add pj to BLAMEi. In fact, VERIFY-PROOF-B only verifies as true more
proofs for a given log than would be created by i. By examining each check, we can see that for each
one VERIFY-PROOF-B requires either exactly the same conditions on `i or strictly fewer to output
true for pj as are needed for ANONYMIZE-B to create pj . Thus, VERIFY-PROOF-B(pj , `i) = TRUE
for every pj ∈ BLAMEi.

Therefore, we can simply show that, whenever the protocol fails for i, a proof is added to BLAMEi.
In ANONYMIZE-B, SUCCESSi = FALSE upon protocol completion only these cases: (1) the blame
shuffle fails, (2) the blame shuffle succeeds and outputs a valid accusation, (3) some µj4 contains
GOj = FALSE. We consider each case and identify a proof p that is added to BLAMEi in each one.

In case (1), by reduction to the accountability game with GMP-SHUFFLE and Theorem 8.5, there
must exist a verifiable proof (j, c) ∈ BLAMEs2i given `s2i except with negligible probability. If

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: January 2013.

0:20 Syta et al.

c = c11 and evidence of ciphertext equivocation by k exists in µj7, then p = (k, c1). Otherwise,
p = (j, c2). In case (2), p = (j, c3). In case (3), p = (j, c4) if µj4 contains no verifiable proofs,
p = (k, c2) if µj4 has a verifiable proof of k’s misbehavior and k provides no justification in µk3,
and p = (`, c5) or p = (`, c6) if µj4 has a verifiable proof of k’s misbehavior but k provides
evidence against ` in µk3.

Thus, if GMP-BULK fails for honest member i, BLAMEi is non-empty and only contains verifiable
proofs given `i, except with negligible probability. This implies that the different between the output
distributions of C1 and C2 is negligible.

LEMMA 8.7.
∣∣Pr[C3 = 1]− Pr[C2 = 1]

∣∣ is negligible.

PROOF. The output of C2 and C3 is different only when an honest member is exposed but
signature forgeries and hash collisions are not observed. Suppose this is true for honest member j,
and the adversary produces a proof pj and log `i such that VERIFY-PROOF-B(pj , `i) = TRUE and
SETUP-S outputs the challenge-run nonce and assigns j her long-term signature verification key.

To pass the initial proof verification of VERIFY-PROOF-B (Step 1), it must be the case that pj =
(c, j). To pass the log verification (Step 2), the log `i must be complete. Each message in that log
identifies the sender and is signed by that sender. Because signature forgeries are not observed and
each message includes round and phase numbers, `i must include the message j sent in each phase
of the challenge run.

Given these facts, we can show that for each of the 6 proof-verification checks (Step 3) the
needed log evidence cannot exist with non-negligible probability. Honest member j sends the same
message to every member in any given phase. Thus, c 6∈ {c1, c6}. c 6= c2, because if j causes a
shuffle failure she provides a justification, and if she does not cause a failure, shuffle accountability
(Theorem 8.5) implies that she cannot be exposed except with negligible probability, by reduction
to the accountability game with GMP-SHUFFLE. c 6= c3, because j never sends incorrect ciphertexts,
each empty ciphertext is justified by an incorrect message descriptor, and in both cases the message
descriptors in `i are verified to be the ones received by j using the ~T log sent by j at the end of the
descriptor shuffle. c 6= c4, because in case of GOj = FALSE, j either sends the justifying evidence of
equivocation or the verifiable proof of shuffle misbehavior that Theorem 8.5 and a reduction to the
accountability game with GMP-SHUFFLE guarantees must exist, except with negligible probability.
Lastly, an honest j always sends a valid key, and thus c 6= c5.

Therefore, there is no value of c for which VERIFY-PROOF-B could output TRUE on proof pj
given `i, except with negligible probability. This implies that C2 and C3 have negligible difference
between their output distributions.

THEOREM 8.8. The GMP-BULK protocol offers accountability.

PROOF. Lemmas 8.6 and 8.7 show that the challenger output distribution in the accountability
game is negligibly close to the challenger output in Game 3. C3 always outputs 0, and thus the
probability that C outputs 1 in the accountability game is negligible.

8.4. Anonymity
We prove that GMP-SHUFFLE and GMP-BULK maintain anonymity by sequentially modifying the
original anonymity-game challenger C so that in Game i adversary A plays the anonymity game
with challenger Ci. For Game i we define a “game output” Gi that is closely related to the adver-
sary’s output. Let ∆(Gi) denote

∣∣Pr [Gi(0) = 1
]
− Pr

[
Gi(1) = 1

]∣∣, which is the advantage of
game Gi. We generally omit the challenge bit b that is technically an input to the game outputs,
the challengers, and random variables that we define as a function of the challengers. Let b be the
complement of bit b: b = 1 − b. Let h1, h2, . . . , hN−k be the honest users in the order they appear
in the member permutation τ produced by SETUP.

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: January 2013.

Security Analysis of Accountable Anonymous Group Communication in Dissent 0:21

8.4.1. The GMP-Shuffle Protocol. We show that the adversary’s advantage in winning the
anonymity game with GMP-SHUFFLE is negligible by proving that the game’s advantage changes
negligibly between neighboring games and is zero in the final game.

Let Zi indicate that the challenger Ci guesses that h1 should release her outer private key at some
point as part of ANONYMIZE-S, and let F i indicate whether or not the challenger failed in Game i.

Game 0: In this game,A interacts with a challengerC0 that sometimes fails.C0 sets Z0 ∈ {0, 1}
uniformly at random. C0 differs from C in the following cases of the challenge shuffle, when his
guess about which keys will be released proves to be incorrect:
(1) In Phase 3 (Anonymization), Z0 = 0 and the partial decryptions of the outer ciphertexts Cα

and Cβ with keys Isec1 . . . , Isech1−1 do not appear exactly once each in the ciphertext vector ~Ch1−1

sent to h1. C0 can check this by comparing to the partial ciphertexts created during Phase 2a.
(2) In Phase 4 (Verification), Z0 = 0 and either of the inner ciphertextsC ′α andC ′β is missing either

from the copy of vector ~CN sent to α or from the copy sent to β. Again, C0 can notice this by
comparing to inner ciphertexts created during Phase 2a.

(3) In Phase 5 (Key Release and Decryption), Z0 = 1 and member h1 receives GOj = TRUE and
HASHkh{ ~Bj} = HASHkh{ ~Bh1

} for every member j 6= h1, and GOh1
= TRUE.

(4) In Phase 6 (Blame), Z0 = 0 and i) GOh1 = FALSE, ii) h1 received GOj = FALSE from any
member j, or iii) h1 received HASHkh{ ~Bj} 6= HASHkh{ ~Bh1

} from any member j.
In each of these cases, F 0 = 1, C0 terminates, and the game outputG0 is set to a uniformly random
bit. This is also the result if C0 observes a hash collision. In every other case, F 0 = 0, C0 correctly
executes ANONYMIZE-S on behalf of the honest users, and G0 is set to the output bit of A.

Game 1: In this game, we further modify the challenger to define C1, which replaces with un-
related ciphertexts the intermediate stages of the construction of the inner or outer ciphertext of α,
depending on Z1. That is, C1 behaves the same as C0, except
(1) In Phase 2a,

Case 1: Z1 = 0. A partially encrypted outer ciphertext for α is created and stored as C ′′α =
{{α}IpubN :Ipub1

}OpubN :Opubh1

, and the outer ciphertext is then created as Cα = {C ′′α}Opubh1−1:Opub1
.

Also create C ′α = {mb}IpubN :Ipub1
for later use. The public keys used for each ciphertext of α are

those received by α in Phase 1.
Case 2: Z1 = 1. The inner ciphertext for α is created and stored as C ′α = {α}IpubN :Ipub1

, and the
outer ciphertext Cα is created from C ′α in the same way as C0. Again, the public keys used for
each ciphertext of α are those received by α in Phase 1.
The rest of the phase is executed in the same way as C0.

(2) In Phase 3, if Z1 = 0 and both the stored ciphertext C ′′α and the partial decryption of Cβ by
IsecN . . . , Isech1−1 (which C1 knows because it created Cβ) appear exactly once each in the vector
of ciphertexts ~Ch1−1 sent to h1, then replaceC ′′α with {C ′α}OpubN :Opubh1+1

for inclusion in the vector

~Ch1
sent to h1 + 1, where the encryption uses the outer keys sent to α.

In every other way, C1 executes in the same way as C0.
Game 2: This game is created from Game 1 using the same changes given in its definition, except

replacing α with β and mb with mb̄ everywhere.
The following lemma shows that Game 0 is a relevant starting point because its output’s advantage

is negligibly close to 1/2 the advantage of A in the anonymity game:

LEMMA 8.9. ∆(G0) is negligibly close to (1/2)
∣∣Pr [AC(0) = 1

]
− Pr

[
AC(1) = 1

]∣∣.
PROOF. By reduction to the game defining collision resistance, a hash collision is observed with

negligible probability. With no hash collisions, C0 acts like C except that for any execution either
Z0 = 0 or Z0 = 1 causes failure. Z0 is chosen independently of the rest of the game. Thus, the

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: January 2013.

0:22 Syta et al.

probability of failure is negligibly close to 1/2, and the game executions have the same distribution
given no failure. When C0 fails, G0 is random, and otherwise G0 is set to the output of A.

The next lemma shows that changing the ciphertexts between Game 0 and Game 1 can only
change the advantage of the game output by a negligible amount.

LEMMA 8.10.
∣∣∆(G1)−∆(G0)

∣∣ is negligible.

PROOF. We prove the lemma by reduction to the IND-CCA2 game, that is, by constructing a
distinguisher D(b) that has a non-negligible advantage in the IND-CCA2 game if |Pr[G1(b) =
1] − Pr[G0(b) = 1]| is non-negligible. Let bD be the challenge bit in the IND-CCA2 game. D
interacts with the IND-CCA2-game challenger CD(bD) and A. D executes the anonymity game
just as C0 does, except replacing certain key generation, encryption, and decryption operations by
interaction with CD.

In the case that Z = 0,D gets a public encryption key fromCD and uses it as the outer public key
Opubh1

. Then, for userα during data submission (Phase 2)D setsm′c0 = ({{mc
b}IpubN :Ipub1

}OpubN :Opubh1+1
,

m′c1 = {{α}IpubN :Ipub1
}OpubN :Opubh1+1

), sends them to CD, and receives in return the encryption cbD of

m′cbD . D uses {cbD}Opubh1−1:Opub1
as ciphertext Cα. During the shuffle decryption (Phase 3), D can

decrypt all ciphertexts at h1 except cbD by sending them to CD. D can recognize cbD and replace it
with m′c0 . In the case that Z = 1, D gets a public key from CD and uses it as the inner public key
Ipubh1

. D has the outer private key of h1 in this case to do decryptions during Phase 3.
For the rest of the protocol, eitherD guessed right when setting Z and has the private keys needed

by the protocol, or D fails. Either way D can finish the protocol as C0 would. D then uses game
output G as guess b̂D.

If bD = 0, the message mc
b is contained in the ciphertext submitted by α in Phase 3, and D

simulates Game 0 in the rest of the protocol as well. If bD = 1, a dummy ciphertext is submitted by
α in Phase 3, and D simulates Game 1. D uses the game output as b̂D, and thus differences in G0

and G1 are reflected in b̂D. That is, for any b,∣∣∣Pr [b̂D = 1|bD = 1
]
− Pr

[
b̂D = 1|bD = 0

]∣∣∣ =
∣∣Pr [G1(b) = 1

]
− Pr

[
G0(b) = 1

]∣∣ .
Because we assume that the cryptosystem is IND-CCA2, Pr[G1 = 1] − Pr[G0 = 1] must be
negligible. This implies the lemma.

Game 1 is modified to create Game 2 by replacing some ciphertexts of β just as Game 0 was
modified to create Game 1 by replacing ciphertexts of α. Thus for similar reasons as before, it holds
that that the advantage of the game output changes by a negligible amount from Game 1 to Game 2.

LEMMA 8.11.
∣∣∆(G2)−∆(G1)

∣∣ is negligible.

PROOF. We can reduce distinguishing Games 1 and 2 to winning the IND-CCA2 game in the
same way as in Lemma 8.10 by using the same essential distinguisher but replacing α with β and
mc
b with mc

b̄
.

We now show that when Game 2 does not fail, the adversary has the same view whether mc
0

belongs to α or β and therefore has no advantage in the output of Game 2. In doing so we view the
challenger C2 as invoking a subroutine C ′2 that just executes the challenge shuffle of the anonymity
game. This view allows our results to be reused when proving the anonymity of the bulk protocol,
which calls the shuffle as a subprotocol.

Specifically, we consider the simulation by C2 of ANONYMIZE-S during the challenge run of
the shuffle protocol as an invocation of C ′2. The inputs from C2 to C ′2 are the challenge bit b,
the challenge members α and β, the challenge messages mc

0 and mc
1, the honest non-challenge

messages {mh}h∈H\{α,β}, the round number nR, the signing keys K, the member ordering τ , and

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: January 2013.

Security Analysis of Accountable Anonymous Group Communication in Dissent 0:23

fail flags {fh = FALSE}h∈H . Let I be a vector all of these inputs except b. Let the output of honest
members from the challenge shuffle be O = (Oh1

, . . . , OhN−k), where Ohi is the output of hi. C2

fails if and only if C ′2 fails. Let F ′2 indicate that C ′2 fails. Let M be the transcript of messages
between C ′2 and A during the challenge shuffle. When F ′2 = 1, O and M are defined to take a
constant failure value.

The following lemma shows that changing the challenge bit b does not change the joint probability
of challenger failure, shuffle messages, and honest members’ shuffle outputs:

LEMMA 8.12.

Pr[M = m∧O = o∧F ′2 = f |I = i∧ b = 0] = Pr[M = m∧O = o∧F ′2 = f |I = i∧ b = 1].

PROOF. We can track the internal states and sent messages to observe that nearly all internal
variables are independent of b, and, more importantly, that whenever the challenger fails, sends a
message, or creates an output the action depends on internal variables in a way that is independent
of b. This is easy to see in the case that Z2 = 1 because b is simply never used.

The case when Z2 = 0 is less obvious. We note that the failure cases either don’t depend on
the input messages of α and β or are symmetric between α and β and thus apply regardless of b.
Now assume that C ′2 does not fail. α and β actually commit to dummy messages, and the challenge
messages don’t appear until after anonymization by h1 (Phase 3). Then they appear together, in a
random position, and must be encrypted using the same set of keys or the challenger would fail,
given that any observed hash collision automatically causes failure. Therefore, they appear in the
same way regardless of b. After this, the only time α and β act differently depending on b is when
detecting their inner ciphertexts during verification (Phase 4). However, because C ′2 does not fail,
both inner ciphertexts must appear in the final shuffles received by both α and β, and the lack of
hash collisions guarantees that the inner ciphertexts encrypt the challenge messages using the same
keys. Thus, either both α and β detect their inner ciphertext or neither does, regardless of b.

We use this independence from b of the challenge shuffle’s messages, outputs, and failure to prove
that the adversary has no advantage in Game 2.

LEMMA 8.13. ∆(G2) = 0.

PROOF. The steps of the anonymity game before the challenge run (i.e. Steps 1–3) do not use the
challenge bit b. Therefore the input I from C2 to C ′2 that the challenger uses during the challenge
run is independent of b, and so by Lemma 8.12 the failure, message transcript, and outputs of C ′2
are independent of b. This implies that the subsequent steps of the anonymity game (i.e. Steps 5–6)
are independent of b, because they only depend on the previous messages among members. The
game output G2 depends on the failure of C2 and the output b̂ of A in Step 6. We have shown that
these both are independent of b, and thus G2 is independent of b.

THEOREM 8.14. The GMP-SHUFFLE protocol maintains anonymity with k colluding members
for any 0 ≤ k ≤ N − 2.

PROOF. Let A be a probabilistic polynomial-time adversary. Let the change in advantage be-
tween Games i and j be εij =

∣∣∆(Gj)−∆(Gi)
∣∣. By Lemma 8.9, the advantage of A in the

anonymity game with GMP-SHUFFLE is negligibly close to 2∆(G0) ≤ 2(ε01 + ε12 + ∆(G2)). ε01 is
negligible by Lemma 8.10, ε12 is negligible by Lemma 8.11, and ∆(G2)=0 by Lemma 8.13. Thus
the advantage of A in the anonymity game with GMP-SHUFFLE is negligible.

8.4.2. The GMP-Bulk Protocol. We show that the adversary’s advantage in winning the anonymity
game with GMP-BULK is negligible by proving that the game’s advantage changes negligibly be-
tween neighboring games and is zero in the final game. We incorporate the anonymity proof for the
shuffle by using that sequence of games (extended to GMP-BULK) as game subsequences modifying
the challenger during the bulk protocol’s shuffle phases.

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: January 2013.

0:24 Syta et al.

Let Zi1 and Zi2 indicate that challenger Ci guesses that h1 should release her outer private key
at some point as part of the message descriptor shuffle (Phase 3) and the blame shuffle (Phase 7),
respectively. Let F i indicate whether or not the challenger failed in Game i.

Game 0: We create a challenger C0 that sets Z0
1 ∈ {0, 1} uniformly at random as a guess about

if h1 should reveal an outer private key during the message-descriptor shuffle (Phase 3) of the
challenge run in the bulk anonymity game. C0 fails if his guess proves to be wrong or if a hash
collision is observed during the shuffle. Otherwise he behaves the same as the anonymity-game
challenger. These failure points are exactly the same (using Z0

1 in place of Z0) as those defining C0

for Game 0 of the shuffle anonymity analysis (Section 8.4.1), and so we do not repeat them here.
Again, when failure occurs, F 0 = 1, C0 terminates, and the game output G0 is set to a uniformly
random bit. In every other case, F 0 = 0, C0 behaves exactly as C would.

Game 1: We again reuse the changes described in the shuffle anonymity analysis. We create
challenger C1 by applying the changes that define C1 for Game 1 of the shuffle analysis to the
challenger C0 defined above. These changes are made to the Phase 3 shuffle of the challenge run
in the bulk anonymity game. Everywhere Z1 appears in these changes, we instead use Z1

1 , and
everywhere mc

b appears, we instead use the shuffle input of α (which is a message descriptor).
These changes effectively replace a ciphertext containing the message descriptor of α with one that
contains a dummy message until it has been shuffled by the first honest member.

Game 2: As in the shuffle anonymity analysis, this game is created from Game 1 above in the
same way that Game 1 itself was created from Game 0, except replacing Z1

1 with Z2
1 , α with β, and

the shuffle input of α with the shuffle input of β. This effectively replaces a ciphertext containing
the message descriptor of β with one that contains a dummy message until it has been shuffled by
the first honest member.

Games 3–5: These games further modify the challenger by adapting and applying the sequence
of changes given in the shuffle anonymity analysis as was done to define Games 0–2 above. This
time, however, we apply the changes to the blame shuffle (Phase 7) of the challenge protocol run.
In addition, the guess bit is denoted Zi2, and the shuffle inputs to α and β are accusations rather than
message descriptors.

Game 6: We define challenger C6 from C5 by changing the inputs to the message-descriptor
shuffle of the challenge run. During the generation of message descriptors (Phase 2), we replace the
encrypted seeds Sαβ and Sβα with the encryption of new random seeds. Specifically,
(1) For α, we replace the encrypted seed it creates for β in Case 1 of Phase 2 with an encryption of

the new random seed s′αβ . That is, we set Sαβ = {s′αβ}yβ , where the encryption key is among
those α received in Phase 1a. Note that the original seed sαβ is still created and used to generate
the ciphertext Cαβ .

(2) For β, we replace the encrypted seed it creates for α in Case 1 of Phase 2 with an encryption of
the new random seed s′βα. That is, we set Sβα = {s′βα}yα , where the encryption key is among
those β received in Phase 1a. Again, note that the original seed sβα is still created and otherwise
used as before.

Then during data transmission (Phase 4), C6 recognizes the seeds that match s′αβ and s′βα among
those received by β and α, respectively, and simply uses the original seeds to generate the necessary
ciphertexts. More precisely, for α, in Case 2 of Phase 4, whenever a value Siα received by α decrypts
to a seed that the challenger recognizes is identical to s′βα, α sets Ciα to the ciphertext Cβα that was
generated earlier from sβα. A similar action is taken for β, where this time the challenger looks for
decrypted seeds matching s′αβ and uses Cαβ for the ciphertext.

Game 7: We construct challenger C7 from C6 by replacing some pseudorandomness with true
randomness during the challenge protocol run. For α and β, in Case 1 of Phase 2 (descriptor gener-
ation), the ciphertexts Cαβ and Cβα, respectively, are chosen uniformly at random rather than being
generated pseudorandomly. Note that these random ciphertexts are then used in the computation
of Cαα and Cββ , respectively. Then in Case 2 of Phase 4 (data transmission), α and β use these
random sequences as ciphertexts. That is, α sends the random Cβα generated in Phase 2 for every

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: January 2013.

Security Analysis of Accountable Anonymous Group Communication in Dissent 0:25

decrypted seed siα that matches s′βα. Similarly, β sends the random Cαβ generated in Phase 2 for
every decrypted seed siβ that matches s′αβ .

The following lemma shows that, as in the shuffle proof, the output’s advantage in Game 0 is
negligibly close to 1/2 the advantage of A in the anonymity game:

LEMMA 8.15. ∆(G0) is negligibly close to (1/2)
∣∣Pr [AC(0) = 1

]
− Pr

[
AC(1) = 1

]∣∣.
PROOF. This lemma holds for almost exactly the same reason as Lemma 8.9. The game between

A and C0 executes the same as that between A and C except for failure upon an observed hash
collision and that, for every other execution of the latter, the corresponding execution of the former
fails for one of Z0

1 = 0 and Z0
1 = 1. Collisions occur with negligible probability due to hash

collision resistance. Z0
1 is chosen independently of the protocol, and thus C0 fails otherwise with

probability 1/2. G0 is set uniformly at random when C0 fails. This implies the lemma.

The next lemma shows that, as in the shuffle proof, the ciphertext changes from Game 0 to Game
2 can only change the advantage of the game output by a negligible amount.

LEMMA 8.16.
∣∣∆(G2)−∆(G0)

∣∣ is negligible.

PROOF. To prove that the output advantage changes negligibly between Game 0 and Game 1,
we can adapt the proof of Lemma 8.10. That proof constructs a distinguisher D that turns a non-
negligible change in the output of the anonymity game to a non-negligible advantage in the IND-
CCA2 game, contradicting the IND-CCA2 assumption. The change needed to that proof is for the
distinguisher to play the anonymity game with GMP-BULK instead of GMP-SHUFFLE and for the
challenge shuffle steps to instead be executed during the descriptor shuffle (Phase 3) of the bulk
challenge run. Note that the input of member h ∈ H used by D thus becomes the descriptor dh.

We adapt the distinguisher construction and subsequent arguments of Lemma 8.11 in the same
way to show that the game output’s advantage changes negligibly from Game 1 to Game 2.

Game 3 is created by applying the first game transformation of the shuffle proof to the blame
shuffle in Game 2. Thus, as in the shuffle proof, the game advantage decreases by a factor negligibly
close to 1/2:

LEMMA 8.17. ∆(G3) is negligibly close to 1
2∆(G2).

PROOF. The proof of this lemma is the same as the proof of Lemma 8.15 except for some small
changes. First, the guess Z3

2 about key release as well as failure upon an observed hash collision are
done with respect to the blame shuffle (Phase 7). Second, in this case, we begin with the existing
possibility that the challenger fails, specifically during the descriptor shuffle (Phase 3) upon observ-
ing a hash collision or making a wrong guess about key release.C3 fails for this reason exactly when
C2 does, and the probability is negligibly close to 1/2 in both. The game output is uniformly ran-
dom in this failure case, and therefore we must observe that the new failure does not affect the game
advantage in that case. Thus, with these changes, the earlier proof applies to the current lemma.

Changing ciphertexts from the challenger from Game 3 to Game 5 has only a negligible effect on
the output advantage, as in the analogous game transitions of the shuffle proof:

LEMMA 8.18.
∣∣∆(G5)−∆(G3)

∣∣ is negligible.

PROOF. This lemma can be proven using the arguments of Lemma 8.16 applied to the blame
shuffle rather than the descriptor shuffle. Those construct distinguishers and show that they convert
a non-negligible change in the game output between Games 3 and 4 or between Games 4 and 5 into
a non-negligible advantage in the IND-CCA2 game. This would contradict the IND-CCA2 property
of the cryptosystem.

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: January 2013.

0:26 Syta et al.

Game 6 is created from Game 5 by changing some PRNG seeds that are then encrypted and
sent by the challenger. By the IND-CCA2 property of the encryption scheme, this can only have a
negligible effect on the output advantage:

LEMMA 8.19.
∣∣∆(G6)−∆(G5)

∣∣ is negligible.

PROOF. To prove this lemma, we consider the two ciphertext changes in sequence: i) {sαβ}yβ
gets replaced by {s′αβ}yβ and ii) {sβα}yα gets replaced by {s′βα}yα . For each change, we can
construct a distinguisher that converts a non-negligible change in the game-output distribution into
a non-negligible advantage in the IND-CCA2 game.

Let Game 5a be the game resulting from just the ciphertext replacement in (i). We construct a
distinguisher D that converts a change in output between Games 5 and 5a into an advantage in the
IND-CCA2 game. Let CD be the challenger in the IND-CCA2 game and bD be the challenge bit.
D executes all steps of the anonymity game as C5 would except during the challenge run. During

that run,D obtains a public encryption key from CD and uses it as the key yβ during key generation
(Phase 1a). Then, during descriptor generation (Phase 2), if key verification is successful (Case 1),
D creates Sαβ by randomly choosing a new seed s′αβ , submitting (sαβ , s

′
αβ) to CD, receiving cbD

as a response, and setting Sαβ = cbD . During data transmission (Phase 4), if the descriptors were
successfully received (Case 2), then for each encrypted seed Siβ received by β in a descriptor, if
Siβ matches the encrypted seed Sαβ = cbD created by α for β, then D sets siβ to the seed sαβ
chosen by α in Phase 2, rather than obtaining it by decrypting Siβ . Otherwise, D sends Siβ to CD
for decryption, receiving s in response. If s = s′αβ , then D sets siβ = sαβ , and otherwise it sets
siβ = s. D otherwise executes the challenge run as C5 would. Note that D will never be required
to produce the random bits used to produce Sαβ , which it would be unable to do, because β only
sends ciphertexts with correct hashes for slots with the descriptors of honest members. Finally, D
uses the game output G as its guess b̂D.

We observe that, except with negligible probability, D simulates C5 if bD = 0 (i.e. if cbD =
{sαβ}yβ) and C5a if bD = 1. If bD = 0, the probability that β receives an encryption of s′αβ and
(incorrectly) uses sαβ as the decryption is negligible because s′αβ is never used in the simulation up
to that point and is chosen independently at random.

The output of D is the game output G(b), where b is the challenge bit of the simulated anonymity
game. G(b) is set exactly as it is by the simulated challenger except with negligible probability,
and thus the advantage of D is negligibly close to the change in the distribution of G(b) for any
b. Because the advantage in the IND-CCA2 game is negligible by the IND-CCA2 property of the
cryptosystem, the change in the output distribution between Game 5 and Game 5a for a given value
of b must be negligible. This implies that the change in the output advantage is also negligible.

Applying ciphertext replacement (ii) to Game 5a results in Game 6. Essentially the same argument
as above (simply swapping α and β everywhere) shows that the output advantage changes negligibly
as a result of this replacement.

Thus the output advantage changes negligibly between Game 5 and Game 6.

We create Game 7 from Game 6 by replacing some pseudorandom streams with random streams.
By the pseudorandomness of the PRNG doing so has a negligible effect on the output advantage:

LEMMA 8.20.
∣∣∆(G7)−∆(G6)

∣∣ is negligible.

PROOF. Consider the changes made to C6 in the following sequence: i) β chooses the ciphertext
Cβα in Phase 2 randomly instead of pseudorandomly, and α uses that ciphertext in Phase 4; and
ii) α chooses the ciphertext Cαβ in Phase 2 randomly instead of pseudorandomly, and β uses that
ciphertext in Phase 4. Let Game 6a be the game defined by applying (i) to Game 6. Game 7 is then
(ii) applied to Game 6a. We can show that the game output distribution changes negligibly for each
pair in this short sequence by constructing a distinguisher D that converts a change in the game
output probability to the same advantage in the pseudorandomness game.

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: January 2013.

Security Analysis of Accountable Anonymous Group Communication in Dissent 0:27

Let CR be the challenger in the pseudorandomness game, and let bR be its challenge bit. D
executes the anonymity game as C6 does except for a couple of changes during the challenge round.
During the descriptor generation of this round (Phase 2), if β received valid keys (Case 1) then D
takes r from CR and sets Cβα = r. Then during data transmission (Phase 4) of α, D sets Cjα = r
for all decrypted seeds siα that are identical to the seed s′βα generated by β. Finally, D uses the
game output of the simulated challenger as guess b̂R.

We observe that if bR = 0 (i.e. r is pseudorandomly generated by CR), then D simulates Game
6, and if bR = 1, then D simulates Game 6a. In particular, D can execute the blame phase without
knowing the seed that is used to generate r, if any, because the encrypted seed included in the
descriptor dβ is already an unrelated seed s′βα.

The guess bit b̂R of D is thus G6 when bR = 0 and G6a when bR = 1. Therefore if∣∣Pr[G6(b) = 1]− Pr[G6a(b) = 1]
∣∣ were non-negligible for some b, then D could achieve a non-

negligible advantage in the pseudorandomness game. This would contradict pseudorandomness, and
thus the change in the output advantage from Game 6 to Game 6a is negligible.

A nearly identical argument, simply swapping α and β everywhere, shows that there is a negligi-
ble change in the game advantage from Game 6a to Game 7 as well. Thus, the change in the game
advantage from Game 6 to Game 7 is negligible.

By Game 7, the adversary has the same view whether m0 belongs to α or β, and thus there is no
advantage in the game output. In order to show this, we follow the approach of Lemmas 8.12 and
8.13, and we view the challenger C7 as calling a subroutine C ′7 to execute ANONYMIZE-B during
the challenge run. This allows a natural decomposition of the proof, and it also us to express the fact
that in addition to the messages to the adversary, the outputs of the bulk protocol are independent
of b. Thus if, for example, the members decide later to come to a consensus about the results of
the bulk protocol, that information will not break anonymity. C ′7 takes as input the challenge bit
b and I = (nR, nR1

, nR2
,K, τ, α, β,mc

0,m
c
1, {mh}h∈H\{α,β}). C ′7 either fails or returns output

O = (Oh1
, . . . , ON−k), where Oh is the output of ANONYMIZE-B for member h. C7 fails if and

only if C ′7 fails.
In addition, we view C ′7 as executing the descriptor and blame shuffles by calling as a subroutine

the challenger C ′2 as defined in Section 8.4.1 for use in Lemma 8.12. C ′7 uses as inputs to C ′2 the
same K, α, β, and τ that itself received. It uses nR1

as the round nonce input for the descriptor
shuffle (i.e. Phase 3) and nR2

as the round nonce input for the blame shuffle (i.e. Phase 7). The
member messages and fail flags are determined from its own inputs as described in the bulk protocol
description. For the descriptor shuffle, we denote by mc1

0 and mc1
1 the challenge messages and by

f1
h the fail flags. For the blame shuffle, we denote by mc2

0 and mc2
1 the challenge messages and by

f2
h the fail flags. We denote by O1 = (O1

h1
, . . . , O1

hN−k
) the output of the descriptor shuffle and by

O2 = (O2
h1
, . . . , O2

hN−k
) the output of the blame shuffle. C ′7 fails if one of the two invocations of

C ′2 fails.
Let M be the transcript of all messages between members during the protocol. Let F ′7 be the

event that C ′7 fails. When F ′7 = 1, O and M are defined to take a constant failure value. The
following lemma shows that changing b does not change the joint distribution of M , O, and F ′7.

LEMMA 8.21.

Pr[M = m∧O = o∧F ′7 = f |I = i∧ b = 0] = Pr[M = m∧O = o∧F ′7 = f |I = i∧ b = 1].

PROOF. We can pair the executions of C ′7 andA with b = 0 and those with b = 1 such that each
member of a given pair occurs with the same probability and has the same failure event F ′7, message
transcript M , and output O. In fact, most protocol operations are completely independent of b,
but in GMP-BULK members do create message descriptors, ciphertexts, and accusations differently
depending on their input message. Thus we must show that these differences do not affect challenger
failure, messages, or outputs in Game 7.

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: January 2013.

0:28 Syta et al.

We observe that when key equivocation does not occur in Phase 1, the descriptor for message
m0 is created the same way regardless of the owner. In particular, whichever h ∈ {α, β} owns
m0, effectively the ciphertext Chα is chosen at random and Chβ is the XOR of m0 and all other
ciphertexts. When key equivocation does occur in Phase 1, an honest member h sets f1

h = 1,
and so C ′7 fails when Z7

1 = 0 and uses only dummy messages in the descriptor shuffle when
Z7

1 = 1. Either resulting execution is independent of b. The same holds for the m1 descriptor, and
so formation of descriptors dm0 and dm1 by the owners of m0 and m1, respectively, has the same
probability regardless of b. Thus we can apply Lemma 8.12 to the descriptor shuffle (Phase 3) with
challenge messages mc1

0 = dm0 and mc1
1 = dm1 to show that its execution is independent of b.

Furthermore, we can see that during data transmission (Phase 4) α sends the same ciphertext for
each seed matching her seed in dm0

, and β sends the same ciphertext for each seed matching hers
in dm0

. A similar observation applies for m1. Thus the generation of ciphertexts by α and β does
not depend on b.

Finally, we note that accusations a0 and a1 for corrupted slots containing dm0
and dm1

, respec-
tively, are formed the same regardless of b. To see this, observe that accusations are formed depend-
ing on the descriptor shuffle output O1, the received ciphertexts, and the acknowledgements Vk. A
successful output O1 must be the same for α and β by the same reasoning as in the proof of shuffle
integrity (cf. Theorem 8.1). Thus, assuming no ciphertext equivocation, whichever h ∈ {α, β} owns
m0 will create an accusation a0 for it in the same way, and the same is true for a1 and m1. Thus
we can apply Lemma 8.12 to the blame shuffle (Phase 7) with challenge messages mc2

0 = a0 and
mc2

1 = a1 to show its execution and output is independent of b. Ciphertext equivocation results in
honest member h setting f2

h = 1, and so either Z = 0 and C ′7 will fail during the blame shuffle or
Z = 1 and dummy messages instead of accusations are sent. Either outcome is independent of b.
Thus an execution of the blame shuffle when b = 0 has the same probability as the same execution
when b = 1 but with any accusations for dm0

and dm1
swapped between α and β.

The other parts of the executions do not depend on b. Thus the failures, messages, and outputs of
C ′7 are independent of b.

LEMMA 8.22. ∆(G7) = 0.

PROOF. The steps of the anonymity game before the challenge run do not use the challenge
bit b. Therefore the input I from C7 to C ′7 during the challenge run is independent of b, and so
Lemma 8.21 shows that the failures and message transcript ofC ′7 are independent of b. This implies
that the subsequent steps of the anonymity game, including the output b̂ of A, are independent of b.
The game output G7 depends only on F 7 and b̂, and thus it is independent of b as well.

Taken together, the preceding lemmas show that the adversary has a negligible advantage in the
anonymity game:

THEOREM 8.23. The GMP-BULK protocol maintains anonymity with k colluding members for
any 0 ≤ k ≤ N − 2.

PROOF. Let A be a probabilistic polynomial-time adversary. We denote the change in
advantage between games i and j as εij =

∣∣∆(Gj)−∆(Gi)
∣∣ . By Lemmas 8.15 and

8.17, the advantage of A in the anonymity game with GMP-BULK is negligibly close to
2
(
ε02 + 2

(
ε35 + ε56 + ε67 + ∆(G7)

))
. By Lemma 8.22 this is 2ε02 + 4ε35 + 4ε56 + 4ε67. This

quantity is negligible by Lemmas 8.16, 8.18, 8.19, and 8.20.

9. CONCLUSION AND FUTURE WORK
DISSENT is a practical protocol for anonymous and accountable group communication that allows a
well-defined group of participants to efficiently exchange variable-length messages, while resisting
traffic analysis and disruption attacks effective against mix-networks, DC-nets, and onion routing.

We have presented an improved version of this protocol that fixes several flaws in the original
design. In addition, we have expressed the protocol in a modular framework that allows its compo-

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: January 2013.

Security Analysis of Accountable Anonymous Group Communication in Dissent 0:29

nents to be easily reused and analyzed. We have precisely defined its security properties and have
given rigorous proofs that the improved protocol satisfies these properties.

Recent additional work on DISSENT has resulted in two new systems. Dissent in Numbers [Wolin-
sky et al. 2012] accommodates anonymity sets sizes of thousands of nodes by offloading the pro-
tocols computational burden to a small set of servers. Verdict [Corrigan-Gibbs et al. 2013] extends
this client/server architecture by requiring clients to prove (in zero-knowledge) the well-formedness
of messages they submit to the servers, thus preventing the certain disruption attacks which affected
prior DC-net-based systems. Both protocols, however, lack rigorous proof of security. Therefore,
future work includes a thorough security analysis of the scalable DISSENT and Verdict. Performing
a rigorous security analysis of a complex protocol is a time-consuming and error-prone task. Hence,
we would like to take advantage of formal verification methods for cryptographic protocols [Mead-
ows 2003], especially for an exhaustive case analysis. We also wish to express and verify DISSENT’s
security properties in the universally composable (UC) framework [Canetti 2001].

REFERENCES
Masayuki Abe and Hideki Imai. 2003. Flaws in some robust optimistic mix-nets. In ACISP.
Masayuki Abe and Hideki Imai. 2006. Flaws in Robust Optimistic Mix-Nets and Stronger Security Notions. IEICE Trans.

Fundam. Electron. Commun. Comput. Sci. (2006).
Ben Adida. 2006. Advances in cryptographic voting systems. Ph.D. Dissertation. Cambridge, MA, USA.
Jordi Puiggali Allepuz and Sandra Guasch Castello. 2010. Universally verifiable efficient re-encryption mixnet. In Electronic

Voting.
Michael Backes, Jeremy Clark, Aniket Kate, Milivoj Simeonovski, and Peter Druschel. 2014. BackRef: Accountability in

Anonymous Communication Networks. In ACNS.
Stephanie Bayer and Jens Groth. 2012. Efficient zero-knowledge argument for correctness of a shuffle. In EUROCRYPT.
Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. 1998. Relations among Notions of Security for Public-

Key Encryption Schemes. In CRYPTO.
Justin Brickell and Vitaly Shmatikov. 2006. Efficient anonymity-preserving data collection. In SIGKDD.
R. Canetti. 2001. Universally Composable Security: A New Paradigm for Cryptographic Protocols. In FOCS.
Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault Tolerance. In OSDI.
David Chaum. 1981. Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms. Commun. ACM (1981).
David Chaum. 1988. The dining cryptographers problem: Unconditional sender and recipient untraceability. Journal of

Cryptology (1988).
Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong. 2000. Freenet: A Distributed Anonymous Information

Storage and Retrieval System. In Workshop on Design Issues in Anonymity and Unobservability.
Henry Corrigan-Gibbs and Bryan Ford. 2010. Dissent: accountable anonymous group messaging. In CCS.
Henry Corrigan-Gibbs, David Isaac Wolinsky, and Bryan Ford. 2013. Proactively Accountable Anonymous Messaging in

Verdict. In USENIX Security Symposium.
Yvo Desmedt and Kaoru Kurosawa. 2000. How to break a practical MIX and design a new one. In EUROCRYPT.
Claudia Diaz and Bart Preneel. 2007. Accountable anonymous communication. In Security, Privacy, and Trust in Modern

Data Management. Springer, 239–253.
Roger Dingledine, Nick Mathewson, and Paul Syverson. 2004a. Tor: the second-generation onion router. In USENIX Security

Symposium.
Roger Dingledine, Vitaly Shmatikov, and Paul Syverson. 2004b. Synchronous Batching: From Cascades to Free Routes. In

WPET.
Roger Dingledine and Paul Syverson. 2002. Reliable MIX Cascade Networks through Reputation. In FC.
John R. Douceur. 2002. The Sybil Attack. In 1st International Workshop on Peer-to-Peer Systems.
Joan Feigenbaum, James A Hendler, Aaron D Jaggard, Daniel J Weitzner, and Rebecca N Wright. 2011. Accountability and

deterrence in online life. In ’11 ICWS.
Jun Furukawa and Kazue Sako. 2001. An Efficient Scheme for Proving a Shuffle. In CRYPTO.
Sharad Goel, Mark Robson, Milo Polte, and Emin Gun Sirer. 2003. Herbivore: A Scalable and Efficient Protocol for Anony-

mous Communication. Technical Report 2003-1890. Cornell University.
David Goldschlag, Michael Reed, and Paul Syverson. 1999. Onion Routing for Anonymous and Private Internet Connections.

Commun. ACM (1999).

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: January 2013.

0:30 Syta et al.

Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. 1995. A Digital Signature Scheme Secure Against Adaptive Chosen-
Message Attacks. (1995).

Philippe Golle and Ari Juels. 2004. Dining Cryptographers Revisited. In Eurocrypt.
Philippe Golle, Sheng Zhong, Dan Boneh, Markus Jakobsson, and Ari Juels. 2002. Optimistic Mixing for Exit-Polls. In

ASIACRYPT.
Andreas Haeberlen, Petr Kouznetsov, and Peter Druschel. 2007. PeerReview: Practical Accountability for Distributed Sys-

tems. In SOSP.
Jan Iwanik, Marek Klonowski, and Miroslaw Kutylowski. 2004. DUO-Onions and Hydra-Onions – failure and adversary

resistant onion protocols. In IFIP CMS.
Markus Jakobsson. 1998. Flash Mixing. In EUROCRYPT.
Markus Jakobsson and Ari Juels. 2001. An Optimally Robust Hybrid Mix Network. In PODC.
Shahram Khazaei, Tal Moran, and Douglas Wikström. 2012a. A mix-net from any CCA2 secure cryptosystem. In ASI-

ACRYPT.
Shahram Khazaei, Björn Terelius, and Douglas Wikström. 2012b. Cryptanalysis of a universally verifiable efficient re-

encryption mixnet. In International conference on Electronic Voting Technology/Workshop on Trustworthy Elections.
Leslie Lamport. 1998. The part-time parliament. TOCS (1998).
Catherine Meadows. 2003. Formal methods for cryptographic protocol analysis: Emerging issues and trends. Selected Areas

in Communications, IEEE Journal on 21, 1 (2003), 44–54.
Masashi Mitomo and Kaoru Kurosawa. 2000. Attack for Flash MIX. In ASIACRYPT.
C. Andrew Neff. 2001. A verifiable secret shuffle and its application to e-voting. In CCS.
C. Andrew Neff. 2003. Verifiable mixing (shuffling) of ElGamal pairs. VHTi Technical Document, VoteHere, Inc (2003).
Omkant Pandey, Rafael Pass, and Vinod Vaikuntanathan. 2008. Adaptive One-Way Functions and Applications. In CRYPTO.
Choonsik Park, Kazutomo Itoh, and Kaoru Kurosawa. 1994. Efficient anonymous channel and all/nothing election scheme.

In EUROCRYPT.
G. Perng, M.K. Reiter, and Chenxi Wang. 2006. M2: Multicasting Mixes for Efficient and Anonymous Communication. In

26th ICDCS.
Birgit Pfitzmann. 1994. Breaking an Efficient Anonymous Channel. In EUROCRYPT.
Birgit Pfitzmann and Andreas Pfizmann. 1990. How to break the direct RSA-implementation of mixes. In EUROCRYPT.
Michael K. Reiter and Aviel D. Rubin. 1999. Anonymous Web transactions with Crowds. Commun. ACM (1999).
Phillip Rogaway and Thomas Shrimpton. 2004. Cryptographic Hash-Function Basics: Definitions, Implications, and Sepa-

rations for Preimage Resistance, Second-Preimage Resistance, and Collision Resistance.. In FSE.
Andrei Serjantov, Roger Dingledine, and Paul Syverson. 2003. From a Trickle to a Flood: Active Attacks on Several Mix

Types. Information Hiding (2003).
Victor Shoup. 2004. Sequences of games: a tool for taming complexity in security proofs. In IACR Cryptology ePrint Archive.
Emin Gün Sirer, Sharad Goel, Mark Robson, and Dǒgan Engin. 2004. Eluding Carnivores: File Sharing with Strong

Anonymity. In 11th ACM SIGOPS European Workshop.
Douglas R. Stinson. 2005. Cryptography: Theory and Practice, Third Edition. Chapman & Hall/CRC.
Brad Stone and Matt Richtel. 2007. The Hand That Controls the Sock Puppet Could Get Slapped. New York Times (2007).
Ewa Syta, Aaron Johnson, Henry Corrigan-Gibbs, Shu-Chun Weng, David Wolinsky, and Bryan Ford. 2013. Security Anal-

ysis of Accountable Anonymous Group Communication in Dissent. Technical Report TR1472. Yale University.
Paul Syverson, Gene Tsudik, Michael Reed, and Carl Landwehr. 2000. Towards an Analysis of Onion Routing Security. In

Design Issues in Anonymity and Unobservability.
Luis von Ahn, Andrew Bortz, and Nicholas J. Hopper. 2003. k-anonymous message transmission. In CCS.
Luis von Ahn, Andrew Bortz, Nicholas J Hopper, and Kevin ONeill. 2006. Selectively traceable anonymity. In PETS.
Michael Waidner and Birgit Pfitzmann. 1989. The Dining Cryptographers in the Disco: Unconditional Sender and Recipient

Untraceability with Computationally Secure Serviceability. In Eurocrypt.
Douglas Wikström. 2003. Five Practical Attacks for ”Optimistic Mixing for Exit-Polls”. In Selected Areas in Cryptography.
Douglas Wikström. 2004. A Universally Composable Mix-Net. In TCC.
David Isaac Wolinsky, Henry Corrigan-Gibbs, Aaron Johnson, and Bryan Ford. 2012. Dissent in Numbers: Making Strong

Anonymity Scale. In OSDI.
Yale Law Journal. 1961. The Constitutional Right to Anonymity: Free Speech, Disclosure and the Devil. Yale Law Journal

(1961).

Received January 2013; revised January 2013; accepted January 2013

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: January 2013.

