
Crypto-Book: An Architecture for Privacy Preserving
Online Identities

John Maheswaran, David Isaac Wolinsky, Bryan Ford
Yale University,

{john.maheswaran,david.wolinsky,bryan.ford}@yale.edu

ABSTRACT
Through cross-site authentication schemes such as OAuth
and OpenID, users increasingly rely on popular social net-
working sites for their digital identities–but use of these iden-
tities brings privacy and tracking risks. We propose Crypto-
Book, an extension to existing digital identity infrastructures
that offers privacy-preserving, digital identities through the
use of public key cryptography and ring signatures. Crypto-
Book builds a privacy-preserving cryptographic layer atop
existing social network identities, via third-party key servers
that convert social network identities into public/private key-
pairs on demand. Using linkable ring signatures, these key-
pairs along with the public keys of other identities create
unique pseudonyms untraceable back to the owner yet can
resist anonymous abuse.

Our proof-of-concept implementation of Crypto-Book cre-
ates public/private key pairs for Facebook users, and includes
a private key pickup protocol based on E-mail. We present
Black Box, a case study application that uses Crypto-Book
for accountable anonymous whistle-blowing. Black Box al-
lows users to sign files deniably using ring signatures, using
a list of arbitrary Facebook users – who need not consent or
even be aware of this use – as an explicit anonymity set.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: Gen-
eral — Security and protection; H.3.5 [Information
Storage and Retrieval]: Online Information Services
— Web-based services

General Terms
Design, Security

Keywords
Anonymity, anonymous communication, authentication,
online social networks

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author. Copyright is held by the owner/author(s).
Hotnets ’13, November 21–22, 2013, College Park, MD, USA.
Copyright 2013 ACM 978-1-4503-2596-7/13/11 ...$10.00.

1. INTRODUCTION
Social networks have gained widespread popularity

among users as a means to managing their online iden-
tity; however, growing concern exists regarding online
privacy. The extensive deployment of cross site authen-
tication protocols such as OAuth [12] and OpenID [24]
have simplified the processing of managing online iden-
tity across multiple sites. The unfortunate side effect,
enables a user’s online activity to be tracked more easily
presenting a greater risk to online privacy.

We propose to leverage popular existing social net-
work identities such as Facebook, but augment them
with an additional cryptographic layer that enables more
privacy-preserving uses of these existing identities. We
distribute this privacy-preserving layer through one or
more key servers, which could in principle be run either
by the social networking sites themselves or by indepen-
dent third-party organizations. These key servers con-
vert social network identities into public/private key-
pairs. Users can then employ these keypairs in privacy-
preserving, anonymous cryptographic protocols, through
the use of ring signatures [26, 18] for example. We
demonstrate these capabilities via Black Box, a case
study for a deniable whistleblowing application.

We use an anytrust [33] (see Section 3.1) cloud of key
servers that collaboratively assign key pairs to each so-
cial network identity. Users need only assume that at
least one of these key servers is trustworthy, but need
not know or care which one. All the other servers may
be compromised without breaking the user’s privacy
protection. Users obtain their private key by authen-
ticating with each of the key servers via OAuth. Each
key server generates only one part of the user’s private
key; the user’s client machine then combines these parts
to obtain his full private key.

Any user can on demand request not only his own
but any set of other users’ public keys from these key
servers. The public keys can then be used in arbitrary
privacy-preserving cryptographic protocols that rely on
public/private keypairs. In Crypto-Book, for example,
a user can request several others’ public keys from the
keyservers, then use these public keys together with his

1

own private key to create an anonymous ring signa-
ture [26, 18]. A ring signature proves that one of the
“ring members,” or one identities associated with the
key set, signed the document but reveals no informa-
tion about which one. Crypto-Book employs these ring
signatures to authenticate anonymously or pseudony-
mously to third-party websites and services, without
revealing personally identifying information, protecting
users from being tracked across different web sites or
services.

2. THREAT MODEL
We make the following assumptions about a potential

adversary in the context of our system.
• We assume that the client has the ability to con-

nect to the key servers through an anonymity network
such as Tor [9].
• At least one of the key servers is honest, executing

the protocols correctly and not sharing its master key
or private keys with anyone else. This assumption
follows the anytrust model [33].
• All key servers provide consistent public and private

keys, and do not return two different results for two
different requests for the same key.
• Dishonest servers may collude with each other to share

their master secrets or private keys.
• Key servers can see the IP addresses of clients that

connect to them.
• If an adversary compromises a server, they have ac-

cess to the master key and all private keys from that
server from that epoch but not from previous epochs,
as detailed later in Section 3.4.

3. ARCHITECTURE
Figure 1 shows the overall system architecture. The

client user logs into an online social networking site such
as Facebook, and is provided with an OAuth token by
the Facebook (or other social networking site) API.

The client then connects to each of the key servers in
the anytrust cloud through an anonymity network such
as Tor [9]. The connection between the client and each
key server is secured using and end-to-end encrypted
connection such as SSL. The client sends their OAuth
token to each of the key servers. Each keyserver is
tasked with maintaining a public/private keypair asso-
ciated with each social network identity. These keypairs
must be of a form such that they may be combined to
make a composite public/private keypair, as is the case
with DSA [10] keypairs. On receipt of the client’s Face-
book OAuth token, each keyserver obtains one part of
the client’s private key, and returns it to the client over
the secure connection. See Section 3.3 for details on
how these keys are obtained. Once the client has re-
ceived responses from each of the key servers, the client

Figure 1: Overall System Architecture

combines the private keys to form a composite private
key, which is the that user’s overall private key.

Public keys are obtained similarly, except that it is
not necessary to supply an OAuth token to the key
servers when requesting a public key. The client simply
specifies the Facebook username, or other social net-
work identity information, and obtains public key parts
from each of the key servers. The client then combines
these parts to obtain the composite public key for the
requested social network identity.

Once a client has obtained his own private key and
a list of public keys corresponding to other Facebook
identities, the client constructs a ring signature [26,
18], with all the Facebook identities acting as an ex-
plicit anonymity set. A ring signature has the property
that a third party can verify, using only the public keys,
that the signature was created by some member of this
anonymity set. No one can determine which person in
this anonymity set created the signature, however. The
user can thus “conscript” arbitrary other social network
users into an arbitrary ad hoc anonymity set, and “hide
in” that set. If the user forms this ring from a mean-
ingful group of other users – the board members of a
company, for example – the user can sign documents
or authenticate as an anonymous member of that des-
ignated group, perhaps conveying some degree of rep-
utability or authority despite the user’s anonymity.

The user may now use such ring signatures as a privacy-
preserving form of online identity, in a multitude of
possible scenarios. For example, the user could anony-
mously sign a document to give a credible leak, join
an anonymous chat group open only to a specific set of
users, or anonymously comment on blog posts.

3.1 Anytrust Server Model
Crypto-Book relies on a decentralized client/server

model we dub anytrust [33]. In this model, each of
many clients trust only that at least one of a smaller

2

but administratively diverse set of servers behaves hon-
estly. All but that one server might in principle behave
arbitrarily maliciously and collude against the clients.
Clients need not know which server to trust, but only
trust that at least one is honest.

Under our threat model (Section 2) we assume at
least one key server is honest, and other key servers may
be colluding to compromise a client’s private key. For
each client, each key server i generates a private key
part ki. The client uses a combining function f that
takes the private key parts k0, k1, . . . , kn and combines
them into a composite private key kc = f(k0, k1, . . . , kn).
We choose the combining function f such that all n key
parts ki are required to calculate kc, and given any n−1
key parts, it is cryptographically infeasible to calculate
or learn any significant information about kc.

3.2 Distributed Key Pickup Mechanism
The key pickup mechanism enables clients to pick up

their private keys securely without an adversary being
able to compromise their private keys. Figure 1 shows
the key pickup protocol. To protect clients from being
tracked by malicious servers, we assume clients connect
to the key servers through an anonymity network such
as Tor [9]. Through this anonymity network, the client
opens an SSL connection to each of the keyservers. Be-
forehand the client obtains an OAuth token from its
social networking provider, which the client sends over
the SSL connection to each of the key servers.

On receipt of a private key request and OAuth to-
ken, the key server connects to the social networking
provider using the OAuth token, to verify the user’s
identity and obtain the user’s unique social network-
ing username. If the user is successfully verified, the
key server generates the private key for that user (as
described in Section 3.3), and returns the private key
part to the client over the SSL connection.

On receipt of all private key parts the client then com-
bines these parts together into a composite key using a
combining function as described in Section 3.1.

An alternative to having the client run software to
collect the keys would be to have an intermediary server
acting as a trusted web proxy whose job is is to authen-
ticate the user, then collect the private key parts on the
client’s behalf, assemble them into the private key, and
securely return this to the client. This approach elim-
inates the need for special client-side software, at the
cost of requiring the client to trust the web proxy.

3.3 Key Generation by the Key Servers
Each of the key servers is tasked with generating a

public/private keypair for each social networking iden-
tity. One way for the key servers to generate these keys
is to generate a fresh random public/private keypair on

each request for an unknown social network identity,
then store the keypair for future reference.

Another approach is for a key server to hold a mas-
ter secret or master key, from which the server creates
or re-creates each client’s private key deterministically
on demand to serve a given request. For example, us-
ing a keyed pseudo-random number generator (PRNG),
such as a hash message authentication code (HMAC),
keyed on the master secret, the key server hashes the
user’s Facebook username to obtain the user’s private
key. This approach requires less storage, as the server
need not store an ever-increasing number of client keys.

Another consideration is the type of keys generated
by the servers. DSA [10] keys support easy key splitting
and combining, enabling an anytrust group of servers,
whereas RSA [27] keys do not easily support key split-
ting. We therefore prefer key schemes such as DSA that
support key splitting.

3.4 Compromised Key Servers and Epochs
One risk is that a key server’s storage might be com-

promised, for example if the master key is leaked or if
a thief physically compromises the server. The adver-
sary would obtain all the private keys saved on disk, or
the master secret from which all private keys may be
generated, either way compromising all users’ private
keys. While one server’s compromise does not reveal
the user’s composite private key if the server is only of
an anytrust group, we wish to limit the damage even if
all servers in a group are eventually broken. We propose
an epoch based scheme to limit such damage.

We divide the key server’s work into epochs, where
the keyserver’s master secret is valid only during a given
epoch, and gets randomly reinitialized in each succes-
sive epoch. If we want previously generated ring signa-
tures to be verifiable after the epoch, the server must
maintain a list of public keys containing the public keys
generated in that epoch. In subsequent epochs the
server can serve requests for older public keys, but not
private keys, to allow verification of old ring signatures.

Since the master secret gets randomly reinitialized in
each successive epoch, each user can thus get a new
public/private keypair in each key server epoch. The
key server can create (or recreate) a client’s private key
only for the current epoch, limiting the damage of a
server compromise to the current epoch.

The epoch based key scheme used in conjunction with
the anytrust key splitting scheme significantly reduces
the risk of a client’s private key being compromised by
an adversary. As long as at least one honest server se-
curely erases its master secret at the end of each epoch,
private keys generated during that epoch are not com-
promised even if all servers are later compromised.

3

Figure 2: Anonymous private key request

3.5 Anonymous Key Pickup
One threat arises from intersection attacks [25, 15,

6] where a compromised key server allows an adversary
to see who requests their private keys. When subse-
quent ring signatures are created and used, the adver-
sary might deduce who created a ring signature, for
example if only a small subset of the anonymity set
had collected their private keys. We propose an anony-
mous key pickup protocol that helps to protect client
anonymity in the face of such intersection attacks.

Suppose Alice wishes to collect her private key part
from a key server, but we do not want the key server
to know that Alice has picked up her private key. Al-
ice connects through an anonymity network to the key
server using a secure SSL connection, but this time
does not immediately log in with Facebook, or other-
wise identify herself to the key server. Alice instead
merely supplies the key server a list of email addresses
representing a desired anonymity set, including her own
email address, as shown in Figure 2. The server gener-
ates a private key for each email address, and encrypts
each private key using the same single symmetric key.
The server sends over the secure connection to Alice
the symmetric encryption key along with instructions
on how to decrypt her private key.

Each encrypted private key is then attached to an
email inviting that user to sign up to the service, as
shown in Figure 3. The emails are then sent such that
each email address only receives its own encrypted pri-
vate key. Alice checks her email, finds the attachment
to the invitation, and decrypts it to obtain her private
key part. To prevent the system from sending out too
many messages rate limiting could be employed.

Since her private key was encrypted, her email provider
or anyone who compromises her email or intercepts does
not have access to it. Additionally, since the server re-
ceived an anonymous request and sent out multiple pri-
vate keys to multiple emails, the server does not know
who in the end was able to decrypt and use their private

Figure 3: Invitation emails with encrypted pri-
vate keys. Alice can decrypt her private key.

key, hence protecting Alice against intersection attacks
from a compromised server.

Alice needs to carry out this scheme only once per key
server: e.g., if with three key servers, Alice need only do
it three times. Alice can then construct her private key
and keep it saved for future use so as to avoid having
to participate in anonymous key distribution again.

In addition to email, this protocol could also be de-
ployed over other communication channels such as so-
cial network messaging or SMS text messaging.

3.6 Ring signatures
Ring signatures [26] build on group signatures [3], in

that a message signed with a ring signature is endorsed
by some member of a particular group, without reveal-
ing which member’s private key was used to produce the
signature. Ring signatures can be created on an ad hoc
basis using arbitrary sets of public keys. The owners of
those public keys need not “consent” or even be aware
that they are being “conscripted” into an anonymity set
for signing purposes.

Ring signatures are used in our architecture to pro-
vide an anonymity preserving identity to a user. The
ring signature may be used to authenticate with a third
party website or service so the third party knows that
the user is a member of a group of users, but the specific
user’s identity is not revealed to the third party.

Rivest et al.’s ring signatures assume all ring mem-
bers have an RSA public/private keypair. The signer
must obtain the public keys of all other parties to use
in the signer’s anonymity set, in addition to their own
private key, to generate a ring signature. These ring
signatures offer forward anonymity : even with access
to all the private keys, given an RSA ring signature,
an attacker cannot unmask the original signer. RSA
keys do not readily support key splitting, however, thus
requiring dependence on a single trusted key server.

Linkable ring signatures (LRS) [18] instead use DSA-
style [10] keys and the discrete logarithm problem. Link-
able ring signatures have the additional property of link-
ability : given any two signatures, a third party can de-
termine whether they were produced by the same or

4

different members of the ring. By using LRS to au-
thenticate anonymously to third-party web services, for
example, the web service can ensure that the owner of
a given underlying social network identity obtains one
and only one pseudonymous account on the service, re-
ducing vulnerability to anonymous abuse or trolling.

Because they use DSA-style keys, LRSs support key
splitting, and hence anytrust key server groups. LRSs
do not provide forward anonymity as basic ring signa-
tures do, however. If a private key is compromised,
then the attacker might use this key to unmask previ-
ously generated LRSs and discover whether they were
indeed produced by that private key. This weakness is
an important issue to be explored in future work.

4. PROTOTYPE IMPLEMENTATION
To demonstrate and evaluate our privacy-preserving

architecture we implemented Crypto-Book, a proof-of-
concept prototype that allows a user to log in with
Facebook, and collect a private key from a group of
key servers. We also implemented Black Box, a case
study application built on the Crypto-Book framework.
Black Box allows a user to sign a file anonymously, for
example if they wish to leak a document, while offer-
ing evidence of the document’s credibility in the form
of a proof that it comes from one of a relevant group
of Facebook users. Crypto-Book is available online for
experimentation1, along with full source code2.

We used Facebook as the social networking provider
and connected using OAuth and the Facebook Graph
API3. We implemented both DSA [10] and RSA [27]
based key pickup systems. DSA supports key splitting
whereas RSA does not. For the RSA version we im-
plemented a single key server and for the DSA version
we implemented a three server anytrust group with the
keys split over the three servers (details in Section 4.1).

For Black Box we implemented a downloadable sign-
ing application that allows users to collect their private
keys from the anytrust servers and use them to sign a
file anonymously. This application requires an OAuth
token, which the user can obtain by authenticating with
Facebook through the Crypto-Book site.

To simplify deployment, we also make this applica-
tion available on a server that acts as a trusted web
proxy, where a user can collect their private key parts,
assemble them into the composite key, and collect other
users’ public keys. The server also allows users to up-
load files, to be signed anonymously using a ring signa-
ture on the server. This functionality is also available in
the downloadable application, if the user does not wish
to trust the web proxy.

1http://www.crypto-book.com
2https://github.com/jyale/blackbox
3https://developers.facebook.com/

4.1 DSA Based Scheme
We implemented an LRS scheme based on DSA keys.

DSA keys operate in a group G of order p and are of the
form Y = gx mod p, where Y is the public key and x is
the private key. A composite key can be formed from a
set of keys by adding the private keys and multiplying
the public keys.

We implemented three-server distributed key pickup.
We implemented two alternative ways of collecting and
assembling the key parts into a composite key:
• A downloadable application allowing the user to pickup

and assemble the key parts on their machine
• A trusted web proxy

Key distribution works as follows: the user logs into
Facebook, either through the trusted web proxy, or
through our site that provides them with an OAuth
authentication token. If the user is using the desktop
app, they then supply this token to the app. Once the
user is authenticated, the OAuth authentication token
is sent to each of the three keyservers to request the
private key.

Once a keyserver receives a private key request along
with an OAuth token, it makes a request to the Face-
book API to verify the token and obtain the user’s cor-
responding Facebook username. If a valid username
is returned (the authentication succeeds) then the key-
server will look up the corresponding private key in its
database and return it to the requester (the proxy or
the desktop app). For public key requests the requester
sends to the keyserver the Facebook username that they
want to obtain the public key for, the keyserver will look
up the key and return it to the requester. If for any re-
quest the server does not already have a keypair saved
for that Facebook username, the server will generate a
keypair and store it in its database, returning the ap-
propriate key to the requester.

Once the requester receives responses from all the
servers, it will compute the composite private and pub-
lic keys. The requester now has the required list of pub-
lic keys and the private key needed and generates the
linkable ring signature for the specified file. The LRS
and the file can now be published through an anonymity
network such as Tor [9].

4.2 Anonymous email key pickup
We implemented the anonymous key pickup protocol

described in Section 3.5 over email. The key servers
maintain a list of public keypairs, one corresponding to
each email address. The first time an email address is
included in an anonymity set, a key pair is generated
for that email address and stored on the servers.

A client makes a request to a key server (or all anytrust
servers) by supplying a list of email addresses. The key
server obtains the private keys corresponding to each
email address. Each of these private keys are then them-

5

http://www.crypto-book.com
https://github.com/jyale/blackbox
https://developers.facebook.com/

selves encrypted using a fresh symmetric key. Each en-
crypted key is then emailed out to the corresponding
email address for that key, disguised as an invitation
email to use the Crypto-Book Black Box service, with
the encrypted key attached. The symmetric key re-
quired to open this encrypted private key is provided
onscreen to the original requesting user. They use this
symmetric key to decrypt the private key they received
via their email account.

4.3 Future Work
One of the most interesting areas for future work may

be in investigating the impact different group/anonymity
set choices have on user privacy protection. A possible
threat to user privacy comes from the fact that third
party sites may collude to attempt to deanonymize and
uniquely identify users using some form of cross-site
correlation attack. If a user authenticates himself as
a member of a group across many third party sites, this
vector of group membership may threaten the user’s
anonymity. If different sites use different groups there
may be some risks to user privacy, the extent of which
would depend on the way groups are chosen.

Having Crypto-Book batch users into groups, which
are used across all third party sites and services, might
enhance privacy. It may be possible to improve usabil-
ity by having different user groups defined for different
third party services. For example, a user could be a
member of a special interest group on one site and a
geographical group on another site. This may improve
the usability of the third party sites, but future work is
required to investigate how this custom group definition
can be carried out without threatening user privacy.

We plan to look at how our architecture can inte-
grate with popular software such as Wikimedia, to pro-
vide anonymous identities that allow anonymous edit-
ing, while mitigating abuses such as sock-puppetry and
vandalism. Another line of investigation would be to
integrate our key pickup protocol with an anonymous
group chat system, such as Dissent [4, 34]. We will
also explore how our privacy protecting identities can
be tied back into anonymous posting within Facebook,
as proposed in Faceless [29].

A further line of investigation would be looking at the
usability of our solution. A user study might be helpful
to compare how user friendly our solution is in compari-
son with traditional cross-site Facebook authentication,
or with other approaches to authentication. We also
plan to look at the the practicality of our approach. In
particular we could look at overheads such as signature
generation and verification time, and signature size.

Integrating identity based encryption [1] would allow
users to avoid having to request individual public keys,
after obtaining the IBE parameters and the key server’s
master public key.

5. RELATED WORK
The deployment of public key cryptography over so-

cial networks was considered by Narayanan et al. [23],
who explored using social networks as a public key in-
frastructure (PKI), but did not implement any applica-
tions that use such public keys.

Various schemes have been proposed to protect user
data within an online social network [20, 19, 11, 5, 14],
by encrypting the content stored within the social net-
work. However these schemes did not consider the pri-
vacy risks involved when a user uses their online social
networking identity to identify themselves with third
parties such as logging into other websites using their
Facebook credentials.

PseudoID [8] is a similar system based on blind sig-
natures [2] for privacy protected federated login. This
scheme does not handle key assignment or Sybil resis-
tance, as our work does. A similar blind signature based
system was proposed by Khattak et al. [16]. Watan-
abe and Miyake [32] made initial efforts towards ac-
count checking, but did not consider key assignment.
Opaak [21] attempts to provide some Sybil resistance by
relying on a cellphone as a scare resource. SudoWeb [17]
looked at limiting the amount of Facebook information
disclosed to third party sites, but did not consider fully
anonymous online IDs.

In identity based encryption (IBE), a public key can
be an arbitrary string, such as a user’s email address
or social security number. This idea was first proposed
by Shamir [28] and since then several IBE systems have
been proposed [1, 7, 13, 22, 31, 30]. Our key servers
collectively act similarly to an IBE PKG. Our approach
avoids the need for pairing based cryptography, at the
cost of requiring a separate key server request to obtain
a public key for each user.

6. CONCLUSIONS
Our architecture demonstrates a usable, anonymous

way to provide online social network users with privacy
preserving online identities. We believe there are a large
number of areas for future research based on our archi-
tecture, as well as a multitude of applications that could
be developed on top of our framework.

7. ACKNOWLEDGMENTS
The authors would like to thank the anonymous re-

viewers for their constructive feedback and comments.
This material is based upon work supported by the

Defense Advanced Research Projects Agency (DARPA)
SAFER contract N66001-11-C-4018. Any opinions, find-
ings and conclusions or recommendations expressed in
this material are those of the author(s) and do not nec-
essarily reflect the views of DARPA.

6

8. REFERENCES

[1] D. Boneh and M. Franklin. Identity-based
encryption from the Weil pairing. In 21st
CRYPTO. 2001.

[2] D. Chaum. Blind signatures for untraceable
payments. In CRYPTO, 1982.

[3] D. Chaum and E. V. Heyst. Group signatures. In
Eurocrypt, Apr. 1991.

[4] H. Corrigan-Gibbs and B. Ford. Dissent:
accountable anonymous group messaging. In 17th
CCS, Oct. 2010.

[5] L. A. Cutillo, R. Molva, and T. Strufe. Safebook:
A privacy-preserving online social network
leveraging on real-life trust. Communications
Magazine, IEEE, 2009.

[6] G. Danezis and A. Serjantov. Statistical disclosure
or intersection attacks on anonymity systems. In
Information Hiding Workshop, May 2004.

[7] Y. Desmedt and J.-J. Quisquater. Public-key
systems based on the difficulty of tampering (is
there a difference between DES and RSA?). In
CRYPTO, 1987.

[8] A. Dey and S. Weis. PseudoID: Enhancing
privacy in federated login. HotPETs, 2010.

[9] R. Dingledine, N. Mathewson, and P. Syverson.
Tor: the second-generation onion router. In 12th
USENIX Security, Aug. 2004.

[10] Federal Information Processing Standards
Publication. Digital signature standard (DSS),
July 2013. FIPS 186-4.

[11] S. Guha, K. Tang, and P. Francis. Noyb: Privacy
in online social networks. In WOSN, 2008.

[12] E. Hammer-Lahav. The OAuth 1.0 protocol, Apr.
2010. RFC 5849.

[13] D. Hühnlein, M. Jacobson, and D. Weber.
Towards practical non-interactive public key
cryptosystems using non-maximal imaginary
quadratic orders. In Journal Designs, Codes and
Cryptography, 2003.

[14] S. Jahid, P. Mittal, and N. Borisov. EASiER:
Encryption-based access control in social networks
with efficient revocation. In ASIACCS, 2011.

[15] D. Kedogan, D. Agrawal, and S. Penz. Limits of
anonymity in open environments. In 5th
International Workshop on Information Hiding,
Oct. 2002.

[16] Z. A. Khattak, J.-l. A. Manan, S. Sulaiman, et al.
Analysis of open environment sign-in
schemes-privacy enhanced & trustworthy
approach. Journal of Advances in Information
Technology, 2011.

[17] G. Kontaxis, M. Polychronakis, and E. P.
Markatos. SudoWeb: Minimizing information
disclosure to third parties in single sign-on
platforms. In ISC. 2011.

[18] J. K. Liu, V. K. Wei, and D. S. Wong. Linkable
spontaneous anonymous group signature for ad
hoc groups. In Australian Conference on
Information Security and Privacy, pages 614–623,
July 2004.

[19] M. M. Lucas and N. Borisov. flyByNight:
mitigating the privacy risks of social networking.
In SOUPS, 2009.

[20] W. Luo, Q. Xie, and U. Hengartner. FaceCloak:
An architecture for user privacy on social
networking sites. In CSE.

[21] G. Maganis, E. Shi, H. Chen, and D. Song.
Opaak: using mobile phones to limit anonymous
identities online. In MobiSys, 2012.

[22] U. Maurer and Y. Yacobi. Non-interactive
public-key cryptography. In EUROCRYPT, 1991.

[23] A. Narayanan. SocialKeys: Transparent
cryptography via key distribution over social
networks. In IAB Workshop on Internet Privacy,
2010.

[24] OpenID. http://openid.net/.
[25] J.-F. Raymond. Traffic Analysis: Protocols,

Attacks, Design Issues, and Open Problems. In
Design Issues in Anonymity and Unobservability,
July 2000.

[26] R. Rivest, A. Shamir, and Y. Tauman. How to
leak a secret. In ASIACRYPT, pages 552–565,
Dec. 2001.

[27] R. L. Rivest, A. Shamir, and L. Adleman. A
method for obtaining digital signatures and
public-key cryptosystems. Communications of the
ACM, 1978.

[28] A. Shamir. Identity-based cryptosystems and
signature schemes. In Advances in cryptology,
1985.

[29] X. Song, D. I. Wolinsky, and B. Ford. Faceless:
decentralized anonymous group messaging for
online social networks. In SNS, April 2012.

[30] H. Tanaka. A realization scheme for the
identity-based cryptosystem. In CRYPTO, 1987.

[31] S. Tsujii and T. Itoh. An ID-based cryptosystem
based on the discrete logarithm problem. IEEE
Journal on Selected Areas in Communications,
1989.

[32] R. Watanabe and Y. Miyake. Account
management method with blind signature scheme.
Engineering and Technology, World of Science,
2011.

[33] D. I. Wolinsky, H. Corrigan-Gibbs, B. Ford, and
A. Johnson. Scalable anonymous group
communication in the anytrust model. In
EuroSec, Apr. 2012.

[34] D. I. Wolinsky, H. Corrigan-Gibbs, A. Johnson,
and B. Ford. Dissent in numbers: Making strong
anonymity scale. In 10th OSDI, Oct. 2012.

7

http://openid.net/

	Introduction
	Threat Model
	Architecture
	Anytrust Server Model
	Distributed Key Pickup Mechanism
	Key Generation by the Key Servers
	Compromised Key Servers and Epochs
	Anonymous Key Pickup
	Ring signatures

	Prototype Implementation
	DSA Based Scheme
	Anonymous email key pickup
	Future Work

	Related Work
	Conclusions
	Acknowledgments
	References

