
PonD : Dynamic Creation of HTC Pool on Demand Using a
Decentralized Resource Discovery System

Kyungyong Lee
University of Florida

ACIS Lab. Dept of ECE.
klee@acis.ufl.edu

David Wolinsky
Yale University

Computer Science Dept.
david.wolinsky@yale.edu

Renato Figueiredo
University of Florida

ACIS Lab. Dept of ECE.
renato@acis.ufl.edu

ABSTRACT
High Throughput Computing (HTC) platforms aggregate
heterogeneous resources to provide vast amounts of comput-
ing power over a long period of time. Typical HTC systems,
such as Condor and BOINC, rely on central managers for
resource discovery and scheduling. While this approach sim-
plifies deployment, it requires careful system configuration
and management to ensure high availability and scalability.
In this paper, we present a novel approach that integrates a
self-organizing P2P overlay for scalable and timely discov-
ery of resources with unmodified client/server job scheduling
middleware in order to create HTC virtual resource Pools on
Demand (PonD). This approach decouples resource discov-
ery and scheduling from job execution/monitoring — a job
submission dynamically generates an HTC platform based
upon resources discovered through match-making from a
large “sea” of resources in the P2P overlay and forms a
“PonD” capable of leveraging unmodified HTC middleware
for job execution and monitoring. We show that job schedul-
ing time of our approach scales with O(logN), where N is
the number of resources in a pool, through first-order analyt-
ical models and large-scale simulation results. To verify the
practicality of PonD, we have implemented a prototype us-
ing Condor (called C-PonD), a structured P2P overlay, and
a PonD creation module. Experimental results with the pro-
totype in two WAN environments (PlanetLab and the Fu-
tureGrid cloud computing testbed) demonstrates the utility
of C-PonD as a HTC approach without relying on a central
repository for maintaining all resource information. Though
the prototype is based on Condor, the decoupled nature of
the system components - decentralized resource discovery,
PonD creation, job execution/monitoring - is generally ap-
plicable to other grid computing middleware systems.

Keywords
Resource discovery; self-configuration; P2P; virtual resources;
high-throughput computing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HPDC’12, June 18–22, 2012, Delft, The Netherlands.
Copyright 2012 ACM 978-1-4503-0805-2/12/06 ...$10.00.

Categories and Subject Descriptors
C.2.4 [COMPUTER-COMMUNICATION NETWORKS]:
Distributed Systems

1. INTRODUCTION
High Throughput Computing (HTC) refers to comput-

ing environments that deliver vast amounts of processing
capacities over a non-negligible period of time (e.g., days,
months, years). This continuous computing throughput is
a vital factor in solving advanced computational problems
for scientists and researchers. Widely-used HTC middle-
ware such as Condor [1] and BOINC [2] enable sharing of
commodity resources connected over a local or wide-area
network. Commonly, these systems use central managers to
aggregate resource information and to schedule tasks. While
this approach provides a straightforward means to discover
available resources and schedule jobs, it can impose admin-
istrative overheads and scalability constraints. Namely, the
central manager needs to be closely administered, and the
failure of the manager node can render its managed resources
unavailable for scheduling new tasks.

The growing adoption of on-demand computing-as-a-service
cloud provisioning models and a large number of resources
in data centers motivate the need for solutions that scale
gracefully and tolerate failures, while limiting management
overheads. These traits are commonly found in peer-to-
peer (P2P) systems; nevertheless, the current prevailing ap-
proaches for job scheduling rely on specialized configuration
of responsibilities for resources, e.g. for information col-
lection and job match-making. With proper configuration,
such approaches have been demonstrated to scale to several
thousands of resources.

Scalability limitations of HTC middleware beyond cur-
rent targets have been addressed in the literature. Raicu et.
al. [3] addressed the inherent scalability constraint in exist-
ing HTC schedulers by proposing a fast and lightweight task
execution framework which demonstrated improved scala-
bility in a pool of tens of thousands resources processing
millions of tasks. Sonmez et. al [4] measured the workflow
scheduling performance in multi-cluster grids in simulated
and real environments. The real-environment experiment
was executed on the DAS-3 (a multi-cluster grid system in
the Netherlands) revealing that limited capabilities of head-
nodes result in overall system performance degradation as
workflow size increases.

In this paper, we propose a novel HTC middleware ap-
proach, PonD, which leverages a scalable and flexible P2P
decentralized resource discovery system to form a job execu-

tion Pool-on-Demand (PonD) dynamically from a large-scale
resource pool. Within a PonD, unmodified client/server
HTC middleware modules are self-configured on-demand,
and take over the responsibility for job execution and mon-
itoring. A key contribution of this paper, which differen-
tiates PonD from related work, is the integration of decen-
tralized resource discovery with a traditional centralized job-
scheduling approach supporting existing job schedulers. By
leveraging decentralized resource discovery during schedul-
ing, we avoid the need for a central aggregator of informa-
tion, and by using a centralized scheduler we can reuse ex-
isting HTC middleware. In addition to the enhancement on
the scheduling scalability, this approach is able to provide
improvements on the fault-tolerance, and combined with vir-
tualization and infrastructure-as-a-service (IaaS) technolo-
gies, the PonD approach allows increased flexibility of scal-
ing up/down virtual resource pools.

Our approach supports a large scale P2P overlay consist-
ing of various candidate resources capable of joining a PonD.
As typical in P2P systems, each resource, by default, can
take the role of both job submitter and worker. Thus all
members in a PonD, or connected resources, have the abil-
ity to dynamically create, join, and leave a PonD based on
their queued-job demands. When creating a PonD, the re-
quirements for the job are passed to the decentralized re-
source discovery module. This module forms a query and
distributes it through a self-organizing, distributed query
tree, which in turn aggregates the results in order to find re-
sources which satisfy the job’s requirements. The resource
discovery module invites a portion of the usable resources
to join a PonD owned by the job’s submitter. Each resource
handles the request by automatically configuring the HTC
middleware to treat the job owner as the centralized man-
ager, after which jobs are immediately scheduled and run.

Figure 1 illustrates the overall operation of PonD. Node A
has a list of jobs in its job queue, and it sends a resource dis-
covery query with job requirements. Using the query result,
node A sends an invitation to nodes that satisfy ClassAd re-
quirements to join its PonD — node A becomes the central
manager node for its own PonD. Then, job scheduling and
execution are processed by underlying HTC middleware. Af-
ter job completion, Node A releases workers back into the
larger resource pool, and returns to its initial status. In
an abstract view, participating nodes exist in a large-scale,
loosely-coupled resource “sea” — for instance, a wide-area
opportunistic computing Desktop Grid, or a system that fed-
erates across multiple public/private clouds. When a node
needs to run a job, it discovers and invites worker nodes to
join a “pond” that is much smaller — for instance, a vir-
tual cluster with hundreds of nodes aggregated into a single
virtual resource pool. Upon job completion, nodes return
to the “sea” and await other invitations or initiate their own
PonDs. The discovery process is non-binding, and nodes are
able to decide to accept or decline membership on a PonD
according to local policies; once bound to a PonD, schedul-
ing policies of the HTC middleware deployed apply.

The practicality in our work derives largely from our ex-
periences with a Condor-based PonD implementation, C-
PonD. We present both the construction of C-PonD as well
as experimental results from analysis, simulation, and de-
ployment on PlanetLab [5] and the FutureGrid distributed
cloud computing infrastructure [6]. The simulation results
verify the scalability of PonDs — specifically, pool creation

!"
#"$"

%"

&"

'"

("

)"

*"

+","

-"

./01"!"21302"4"512/6571"0827/915:""

;615:"<=13"4">/?"82"26?@8A10"

!"

B12/6571"#//C"D81<"?:"./01"!"

B12/6571"%827/915:"E615:"

!"

#"

$"

%"

!"

F" G"H" ."

$1I/51"(/?""

J6?@8228/3"

!K15"(/?""

J6?@8228/3"

!K15"(/?""

F/@LC1M/3"
!"

N4O"
N?O"

Figure 1: On-Demand pool creation when a job is submitted:
(a)Node A sends a resource discovery query when it has a
idle job in its job queue. (b)Based on the query result, Node
A forms a condor pool with job requirement satisfying nodes
(Node C, F, K, and N). After a job completion, worker nodes
are released.

time grows as a function of O(logN), where N is the num-
ber of resources. The simulation results also evaluate the
scheduling result correctness in case dynamically changing
attributes are queried or participating nodes have unstable
uptime. Experiments using FutureGrid resources capture
a cluster/cloud scenario, and an experimental deployment
on PlanetLab highlights a Desktop Grid scenario to demon-
strate the feasibility of C-PonD on environments where re-
sources are shared and widely distributed.

In summary, the main contributions of this work are:

• We propose a novel HTC system which integrates resource
discovery with flexible query/resource representation in a
decentralized query processing fashion based on P2P multi-
cast trees, and dynamic middleware configuration to create
resource pools on demand.

• We demonstrate this system by reusing existing, unmod-
ified HTC middleware through a prototype implementa-
tion. It supports rich query processing and on-demand
creation/tear-down of Condor pools.

• We evaluate the system from the perspectives of asymp-
totic scalability and its ability to provide timely resource
discovery results through simulation-based analyses at large
scales, and of its practical feasibility through experiments
with smaller scale deployments of the prototype in WAN
testbeds (FutureGrid and PlanetLab).

2. BACKGROUND
Focusing on Condor PonDs, in this section we give a brief

description of its building blocks: Condor [1], a structured
P2P network overlay, and a self-organizing multicast-tree
build on a P2P network.

2.1 Condor
Condor [1] is a high-throughput computing framework

that harnesses both dedicated and non-dedicated computing
resources to create a resource pool. After gathering submit-
ted jobs and available resource information from participat-
ing nodes, Condor negotiates and schedules inactive jobs to
idle machines. Condor also provides Classified Advertise-

ments (ClassAds) [7] that support a flexible and expressive
way to describe job characteristics and requirements as well
as resource information in order to determine matches.

In Condor, nodes can play the role of central managers,
worker nodes, or job submitters. Roles are determined by
running the appropriate daemons (i.e., condor startd, con-
dor schedd, condor collector, and condor negotiator), and a
single node may assume multiple roles.

condor startd: This daemon is responsible for advertis-
ing resource capabilities and policies expressed using Clas-
sAds to the condor collector daemon of central manager as
well as receiving and executing tasks delegated by the cen-
tral manager. A node that runs this daemon is regarded as
a worker node.

condor schedd: A node which wants to submit a job
runs this daemon. condor schedd is in charge of storing
user-submitted jobs at a local queue and sending resource
requests to a condor collector at a central manager node.

condor collector: The role of this daemon is collecting
resource information expressed using ClassAds and a list
of condor schedd with inactive jobs in their queue. A con-
dor startd periodically updates resource information Clas-
sAds to their condor collector. condor collector also retrieves
a list of inactive jobs from condor schedd daemons at the
time of negotiation.

condor negotiator: This daemon is responsible for match-
making between inactive jobs and idle resources. At each ne-
gotiation cycle, this daemon retrieves a list of inactive jobs
and resource ClassAds from condor collector daemon.

Usually, a condor pool consists of a single central manager
that runs both an instance of the condor collector and con-
dor negotiator daemons along with many worker nodes and
submitters which run condor startd and condor schedd dae-
mons, respectively. In order to provide reliable services in
case of central manager node failure, fail-over central man-
agers can be deployed using the high availability daemon.

In order to enable cross-domain resource sharing, Con-
dor has two extensions, Condor-Flock [8] and Condor-G [9].
With these approaches, each node maintains a pre-configured
list of other pools’ central managers. Each central manager
node also has to keep a list of allowed remote submitters.
To overcome the pre-configuration requirements of condor
flocking, Butt et al. [10] presented a self-organizing Con-
dor flock that was built upon a structured P2P network. A
locality-aware P2P pool is formed with central managers of
each condor pool. When a central manager has available
resources, it announces to other managers via the P2P over-
lay. When a central manager requires additional resources,
it checks announcement messages from other central man-
agers to determine where available resources are located.
While our approach shares similar features to self-organizing
Condor-flock [10] (self-configuration, and dynamic resource
instantiation in response to jobs in the queue), the core
mechanism for discovering nodes and self-organizing pools
based on unstructured P2P queries with a logarithmically
increasing overhead is a key differentiating factor.

Condor Glide-in [11] also provides a way to share idle
resources across different administrative domains without a
pre-configured list of other pools’ central managers. When
jobs are waiting in a queue of the condor schedd daemon,
pilots are created to find available resources for execution. In
order to find available resources, a Glidein Factory manages
a list of available resources across multiple Condor pools.

T
d

T
i

0

!"#$%&'(%)%%%%%%%%%%

t
2

t
1

T
i

t
1

%%%%

t

!"#$%&'(%)%*%%%%%%%%%

Figure 2: Condor negotiation procedure. Td means the de-
fault scheduling period, and Ti means the minimum inter-
scheduling time. A job submitted at t1, where t1 < Ti, has
to wait Ti − t1 for matchmaking.

Though the approach of flocking provides opportunities
to share resources across different domains with bounded
management overheads at a central manager, the cost of
sequentially traversing pools in a flock list introduces non-
negligible additional scheduling latencies at scale. Condor
maintains a default negotiation period, Td, and a minimum
inter-negotiation time, Ti where Td ≥ Ti, as system config-
urations. Upon job submission, the negotiator checks if Ti
has elapsed since the last negotiation cycle. If so, it starts a
new negotiation cycle immediately. Otherwise, it waits until
Ti elapses. The procedure is explained in Figure 2. In order
to analyze the effect of the minimum inter-negotiation time
to the overall waiting time in a queue until a matchmaking,
the expected waiting time can be computed as follows.

E(Twait) =
1

Td

∫ Td

0

(Twait at time t) dt

=
1

Td
× (

∫ Ti

0

(Ti − t) dt+

∫ Td

Ti

0 dt) (1)

=
Ti

2

2× Td
(2)

Equation 1 describes the waiting time of a job upon arrival
at time t that can be explained with Figure 2. In the default
Condor setup, Td is 60 seconds and Ti is 20 seconds. Thus,
the expected waiting time at each central manager during a
flocking procedure is 3.3 seconds. Considering the sequential
traversal of central managers during flocking, the waiting
time increases linearly.

2.2 P2P system
P2P systems can provide a scalable, self-organizing, and

fault-tolerant service by eliminating the distinction between
service provider and consumer. C-PonD uses a structured
P2P network, Brunet [12], which implements the Kleinberg
small-world network [13]. Each Brunet node maintains two
types of connections: (1) a constant number of near connec-
tions to its nearest left and right neighbors on a ring using
the Euclidian distance in a 160-bit node ID space, and (2)
approximately log(N) (where N is the number of nodes) far
connections to random nodes on a ring, such that the rout-
ing cost is O(log(N)). The overlay uses recursive greedy
routing in order to deliver messages.

2.3 Tree-based Multicast on P2P
By leveraging existing connections in a structured P2P

system, Vishnevsky et. al [14] presented a means to create
an efficient distribution of messages in Chord and Pastry us-
ing a self-organizing tree. Each node recursively partitions
responsible multicast regions by using the routing informa-

tion at each node. DeeToo [15] presents a similar tree cre-
ation method on a small-world style P2P network, which is
leveraged in PonD for decentralized resource discovery.

In a recursive-partitioning tree, each node is allocated a
sub-region of the P2P ring over which to disseminate a mes-
sage. A node then redistributes the message to neighbor-
ing nodes inside this region allocating new sub-regions to
them. This process continues until the message is dissem-
inated over the entire sub-region. For example, if a node,
n0, is assigned [begin, end] region for message distribution,
the node checks its routing table to get a list of neighboring
nodes that exist in [begin, end]. Assuming that node n0 has
neighboring nodes n1, n2, ..., ni−1, ni within [begin, end],
n0 assigns sub-region [begin, n2), [n2, n3), ..., [ni−1, ni),
[ni, end] to nodes n1, n2, ..., ni−1, ni, respectively. These
steps continue recursively until reaching leaf nodes that have
no neighbors in the allocated sub-region.

In comparison to statically-built trees [16–18], the dy-
namic and self-organizing tree provides prompt responsive-
ness to node failures without the additional cost of maintain-
ing pointers for children and parent nodes. Furthermore, a
message does not have to be delivered to the static root node
in order to be propagated to the entire set of resources.

3. ARCHITECTURE AND DESIGN
This section details the system design and the techniques

used in resource discovery and self-organization of PonDs.

3.1 Decentralized resource discovery
Decentralized resource discovery in PonD shares similar

motivations from related works of resource discovery in P2P [10,
19–23] but follows a fundamentally different approach. In a
practical HTC system, the number of resource attributes
can be large; for instance, default Condor installations have
several dozens of attributes, and furthermore, users can pro-
vide their own attributes. Queries can be complex and in-
clude combinations of exact, ranges, and regular-expression
matching, thus making resource discovery based on DHT
key/value lookups or range-based queries insufficient.

Modifying the middleware or imposing limits to its util-
ity is not a viable approach either. The approach taken by
PonD ensures that unmodified HTC middleware can be used
seamlessly. We leverage Condor ClassAds [7] and its match-
making library for distributed query processing during dis-
covery. By doing so, our decentralized resource discovery
module inherits most of ClassAd characteristics, e.g. sup-
porting range queries and regular expressions. For query dis-
semination and result aggregation, we use a self-organizing
multicast tree. This approach can be applied to other struc-
tured P2P methods (e.g., Chord and Pastry) that support
scalable multicasting with different resource representations
and match-making engines (e.g., RDF and semantic queries).

3.1.1 Matchmaking module
The matchmaking module is responsible for matching re-

quirements of jobs and resources by ranking nodes based
upon their ability to satisfy a query. In order to obtain
and distribute resource information, each resource uses con-
dor startd daemon which produces ClassAds. For match-
making, requirements for desired resources and rank criteria
are delivered as arguments. The following example illus-

Match

making

Aggreg

ation

Match

making

Aggreg

ation

Match

making

Aggreg

ation

Match

making

Aggreg

ation

Match

making

Aggreg

ation

Match

making

Aggreg

ation

Match

making

Aggreg

ation

Match

making

Aggreg

ation

!"#$%&"'"()*+,+-."'/&012345+

!6(7+,+."'/&08+!")$&(+)/9+:+&6(7+;6<$"+(/="*

Node4:

2GB

Node5:

1GB

Node6:

3GB

Node7:

512MB

Node8:

2GB

Node2:

2GB

Node1: 5GB

Node3:

4GB

Node4,

2GB Node6, 3GB

Node8,

2GB

Node3, 4GB

Node6, 3GB
Node2, 2GB

Node4, 2GB

Node1, 5GB

Node3, 4GB

"#$%&'(%)*+,+-.)/

0$1#2-'(%)*+,+-.)/

3

4

5

3

6

! 4 4
4

4

5

Figure 3: Resource discovery example. Node1 wants to find
the top two available Memory machines whose memory is
greater than 1GB. NodeID:Memory Size value means match-
making result, and NodeID:Memory Size value means avail-
able resource status.

trates arguments based on ClassAd syntax.1

Requirement=Memory>1GB && SWInstalled.Has
(“Matlab”) && regexp(“*.edu”,Hostname)

Rank = (Memory) + (KeyboardIdle*10)

The Requirement says the target resource’s memory has
to be greater than 1GB. The target machine also has to have
Matlab installed, and the hostname of target machine has
to end with “.edu”. If a node satisfies the Requirement, it
calculates a rank value. Rank is used to determine optimal
candidates. This approach allows users to have the flexibility
to specify their own job requirements and rank values.

3.1.2 Aggregation module
Upon completing the processing of a match-making task,

a node returns the result to its aggregation module. The
local aggregator waits for results from child nodes to aggre-
gate its own and children nodes’ matchmaking results. The
aggregation is executed by sorting the rank value of query
satisfying nodes and extracting the top ranked value nodes.
After completing aggregation, the node returns the result to
the parent node’s aggregation function.

As with matchmaking, aggregation is processed indepen-
dently at each node in a self-organizing multicast tree, and
results are propagated back through the tree. This hierar-
chical information aggregation method provides scalability
in a distributed information management system. The par-
allel processing of match-making and aggregation module is
comparable to MapReduce [24] distributed computing: the
match-making process is akin to a Map task, and result ag-
gregation is akin to a Reduce task [25].

Figure 3 shows an example of the decentralized resource

1In the example, we modified ClassAd syntax for readability.

discovery. NodeID:Memory Size (underline) is the current
resource status of each node, and NodeID:Memory Size (italic)
is an aggregation result. Node1 (the root node) initiates a
resource discovery query by specifying a requirement: e.g.
a node’s memory should be larger than 1GB. Nodes satis-
fying the requirement are ordered based on Memory size,
and the two with the largest sizes are returned. The narrow
line shows query propagation using a self-organizing multi-
cast tree. The Aggregation module orders child nodes’ result
and returns a list of required number of nodes (thick line).

3.1.3 First-Fit Mode
In order to maximize the efficiency of aggregation and to

discover the list of nodes that maximize rank, a parent node
in a recursive-partitioning tree waits until all child nodes’ ag-
gregated results are returned. However, if it is acceptable to
execute tasks on resources that satisfy the requirement but
might not be the best-ranked ones, the query response time
can be improved by executing a resource discovery query in
First-Fit mode. With First-Fit, an intermediate node in a
tree can return an aggregated result to its parent node as
soon as the number of discovered nodes are larger than the
number of requested nodes.

3.1.4 Redundant Topology to Improve Fault-Tolerance
While a tree architecture provides a dynamic and scalable

basis for a parallel query distribution and result aggregation,
it might suffer from result incompleteness due to internal
node failures during an aggregation task. For instance, in
Figure 3, the failure of Node 3 in the middle of query pro-
cessing would result in the loss of the query results for nodes
6, 7, and 8. In order to reduce the effect of internal node
failure to completeness of the query result, we propagate a
query concurrently through a redundant tree topology.

One such method is to execute parallel requests in oppo-
site directions in the overlay. In a recursive-partitioning tree
discussed in Section 2.3, a node is responsible for a region in
its clockwise-direction; node n2 is assigned a region [n2, n3),
note that n2 < n3. In a counter-clockwise direction tree, a
node n2 is allocated a region (n1, n2]. This approach can
compensate missing results in one tree from another if the
missing region is not assigned to failed nodes in both trees.

3.2 PonD self-configuration
After acquiring a list of available resources from a re-

source discovery module, invitations are sent to those nodes
to join a PonD of a job submitter. As invited nodes join a
PonD, deployed HTC middleware takes roles of task execu-
tion and monitoring. In C-PonD, which is an implementa-
tion of PonD with Condor, we leverage system configuration
“CONDOR HOST” to create/join a PonD dynamically.

Condor job scheduling is performed at condor negotiator
daemon with available resource information and inactive
job lists that are fetched at the time of negotiation from
the condor collector daemon. Generally, the two daemons
run at the central manager node, while worker nodes (con-
dor startd daemon) and job submit nodes (condor schedd
daemon) identify the central manager using a condor con-
figuration value “CONDOR HOST”, which can be set inde-
pendently for daemons on the same resource. The “CON-
DOR HOST” configuration can be changed at run-time by
using Condor commands (e.g., condor config val and con-
dor reconfig).

Nodes that will Join a PonD

Resource Discovery Query to All Nodes

Send Invitation to join PonD

ACK for Joining the PonD

Job Scheduling and Execution

Send PonD Destroy Message

ACK for leaving the PonD

. . .

Job Submission

event

Job Complete

event

Change

CONDOR_HOST

IJ

L

H

B D
EA

G

M

Loosely Coupled Structured P2P Connection

negotiator

startd

collector

schedd

C

F

K

Figure 4: Steps to create a C-PonD through dynamic condor
re-configuration.

Figure 4 shows an overall procedure of creating a PonD
with Condor for job execution. In the figure, all resources
are connected through a structured P2P network, and every
node runs condor negotiator, condor collector, condor startd,
and condor schedd daemon locally. We will show how Node
A creates a PonD for a job execution.

◦ Upon detecting a job submission, Node A sends a re-
source discovery query with a job requirement, rank cri-
teria, and the number of required nodes, which are derived
from the ClassAds of the local submission queue in the
condor schedd.

◦ Upon the query completion, Node A sends a PonD join in-
vitation to nodes that are discovered from the query. When
receiving the invitation, nodes that accept it set “CON-
DOR HOST”value of condor startd daemon to the address
of Node A.

◦ Nodes send ACK message to confirm joining the PonD.

◦ When a PonD is created, Node A becomes the central
manager of the PonD, and condor negotiator daemon of
Node A schedules inactive jobs to available resources. The
scheduled jobs are executed using condor starter of worker
nodes and condor shadow daemon of Node A.

◦ Upon job completion, Node A sends a PonD destroy mes-
sage to nodes in the PonD. When receiving the message,
nodes set “CONDOR HOST” value to the address of itself.

◦ Each node sends an ACK message to Node A when leaving
the PonD.

Note that every node in the resource pool can create a
PonD. It is also possible for a node to discover available
resources for other PonDs in case a central manager of a
PonD is not capable of executing resource discovery query.

3.2.1 Leveraging virtual networking
C-PonD is designed to provide an infrastructure that sup-

ports scaling to a large number of geographically distributed
resources in a wide area network — a common environ-
ment in Desktop Grids. Due to the constraints of Net-
work Address Translation (NAT)/firewalls, however, sup-
porting direct communication between peers for PonD in-
vitation/join, job execution/monitoring using Condor dae-

mons is one of essential features for a successful deployment
in the real-world. In order to address this requirement, we
adopt IP-over-P2P (IPOP) [26, 27] to build a virtual net-
working overlay that enables routing IP messages atop a
structured P2P network. This approach has benefits with
respect to self-management, resilience to failures, and ease-
of-use from the user’s perspective. The practicality of this
approach is well presented by GridAppliance [28] as the au-
thors demonstrated over several years of operation in a WAN
environment.

These network challenges present a problem for systems
deriving from Condor GlideIn or Flocking, which need pub-
licly available IP addresses on a pilot node, worker/submitter,
or central manager node. C-PonD’s use of virtual network-
ing allows direct messaging between peers after an IP-layer
virtual overlay network has been established.

3.2.2 Multiple Distinct Jobs Submission
In the case that multiple jobs with distinct requirements

are submitted concurrently by a condor schedd, discovered
resources need to be distinguishable by the initiating query.
Let us assume that two distinct jobs, Ji and Jk, are submit-
ted with requirements Ri and Rk, and a list of discovered
resources is Ni and Nk, respectively. If Ri ⊂ Rk satisfies,
jobs in Ji might suffer from the dearth of resources when
jobs in Jk are scheduled to resources in Ni; Ri ⊂ Rk means
that jobs in Jk can be executed in resources of Ni, but there
is no guarantee that jobs in Ji can be executed in nodes of
Nk. In order to deal with this issue, we add a ClassAds at-
tribute dynamically to the condor startd about the ID of a
job that matched during resource discovery. Jobs matching
the ID will be prioritized to run on that resource.

3.2.3 Minimum Inter-Scheduling Time
Equation 2 describes the effect of the minimum inter-

scheduling to the expected queueing time of a job before
scheduling. Unlike in a typical Condor environment, where
one negotiator may deal with multiple job submitters, a ne-
gotiator in a C-PonD will handle a single job submitter so
that we can decrease the minimum inter-scheduling time sig-
nificantly without posing large processing overheads to a
condor negotiator daemon.

3.3 Discussion
Overheads : While Condor provides a scalable service

by deploying multiple managers and fault-tolerant capabil-
ity with duplicated fail-over servers, the administrative over-
head to configure and manage these servers is non-negligible
and can incur significant communication costs at scale. In
contrast, C-PonD self-configures manager nodes on demand,
and because of its ability to reuse unmodified middleware,
it can be extended to discover and self-configure nodes for
high-availability fail-over services. Though a PonD is still
a centralized architecture with a central manager node (a
PonD creator) and multiple worker nodes, failures are iso-
lated. A crash of a central manager node does not keep
other nodes from creating other PonDs. Worker nodes that
are registered at a PonD periodically check the status of the
central manager of the PonD. If the central manager is de-
tected to be offline or inactive, it withdraws from the PonD.

Middleware reuse : C-PonD uses unmodified Condor
binary files. This is made possible by the use of a decentral-
ized resource discovery module and run-time configuration

t
1

!"#$%&'#()&*'%

+,-(&."/(,%)01"$'%

t
2

2(.'%'3',$#%

t
3

2*4'1)5+,6%

*(.05'$'%

Figure 5: Based on the event at t2 (e.g., attribute value
change, node crash), scheduling result at t3 might be stale.

scripts. By using Condor intact, we reduce the possibility
of bugs in scheduling and job execution/monitoring due in
large part to the over 20 years use and development of Con-
dor. This feature differentiates C-PonD from many other
decentralized HTC middleware which try to build a sys-
tem from scratch. Reusing the ClassAds module for match-
making allows us to inherit most of characteristics of Clas-
sAds, such as regular expression matching and dynamic re-
source ranking mechanisms. No source code modification
also implies that our approach can be applied to other HTC
schedulers (e.g., XtremWeb [29], Globus toolkit, and PBS).

Resource fair sharing : In order to guarantee fair re-
source sharing amongst nodes, a manager node in Condor
records job priority and user priority. Based on the priority,
different users can get different levels of services when there
is a resource contention. While there is no central point
that keeps global information across all nodes in C-PonD,
we can leverage DHT, a distributed shared storage in a P2P,
by mapping a job submitter ID to a DHT key.

4. EVALUATION
In this section, we evaluate PonD from different perspec-

tives. We use first-order analytical models to determine re-
source discovery latency and bandwidth costs. From there,
we perform a simulation-based quantitative analysis of C-
PonD in terms of scalability of scheduling throughput with
respect to the number of resources and the matchmaking
result staleness under various attribute dynamics and node
uptime. By staleness, we check if scheduled resources still
satisfy query requirements after matchmaking. Due to dis-
crepancy between the timestamp of resource information
and matchmaking, scheduled nodes might no longer satisfy
requirements after matchmaking. For instance, in Figure 5,
a scheduling is completed at t3 with resource information
that was updated at t1, where t1 < t3. If an event happens
at t2 that changes status of the scheduled nodes, such as at-
tribute value change or crash, the scheduling result that was
conducted with resource information at t1 might not satisfy
job requirements at t3, and we define this result discrepancy
as stale. We complete the evaluation by examining the per-
formance of C-PonD prototype deployed on actual wide-area
network testbeds.

4.1 System analysis
Scheduling Latency : The scheduling time of C-PonD

with respect to the number of resources (N) is primarily de-
termined by the latency of a resource discovery query. A
recursive partitioning tree is known to have O(logN) tree
depth [15], which determines the query latency, as the num-
ber of nodes increases. Note that the query latency can
be decreased using the First-Fit mode described in Sec-
tion 3.1.3. After discovering available resources, pool in-
vitations are sent in parallel (with O(logN) routing cost)

and a PonD is created as worker nodes join with a cost of
O(1). Thus, the asymptotic complexity of the time to create
a C-PonD is O(logN).

Condor performs matchmaking sequentially node by node,
which results in linearly increasing pattern with respect to
the number of resources. Though the scheduling latency
might not be a dominant factor in a pool with modest num-
ber of resources considering the overall job execution time
(such as within a C-PonD), the linearly increasing pattern
can become a non-negligible overhead as the pool size in-
creases.

If we consider Condor-flocking in a large scale environ-
ment, the matchmaking time at each central manager might
not be a prevailing factor for a scheduling latency, because
we can assume that the number of resources will be evenly
distributed amongst flocking servers. However, as Equa-
tion 2 implies, the scheduling time can be affected by the
minimum inter-scheduling time while traversing different cen-
tral managers sequentially. Thus, we can expect that the
scheduling time increases with O(Sf), where Sf means the
number of flocking servers to traverse.

Other than the number of resources, the scheduling la-
tency is dependent on the number of jobs for matchmaking.
Condor has auto-clustering feature to improve job schedul-
ing throughput. At the time of scheduling, condor schedd
daemon checks SIGNIFICANT ATTRIBUTES (SA), which
is a subset of attributes of condor startd and condor schedd.
Job ClassAds whose values of SA are same are grouped in
a cluster, and they are scheduled at once, which improves
the scheduling throughput [30]. The auto-clustering can be
also applied to C-PonD to decrease the number of resource
discovery queries.

Network Bandwidth Overheads : C-PonD incurs band-
width consumption during resource discovery query process-
ing, PonD join invitation messages, and condor startd Clas-
sAds updates while a PonD is active. In order to understand
query overheads, we assume that the number of resources is
N , the size of default arguments (e.g., task name, query
range) is SD, a size of query requirement is SQ, a P2P ad-
dress size is SA, and the number of required resources is
k. The bandwidth consumption between a child and parent
node is (SD + SQ + SA × k) for a query distribution and
a result aggregation. Using a recursive-partitioning tree, a
message is routed only to 1-hop neighbors, so the total query
bandwidth usage is (N − 1) × (SD + SQ + SA × k). In or-
der to analyze per edge bandwidth consumption, dividing
total bandwidth consumption by the number of edges gives
constant factors (SD + SQ + SA ∗ k). In other words, (N-1)
edges are traversed in a query, and each edge corresponds
to two messages (send/receive), thus the average per-edge
bandwidth consumption follows O(SD + SQ + SA × k). In
the typical case where k is a constant, the average per-edge
bandwidth consumption is O(1). In a tree, nodes located
closer to the root node are likely to have more child nodes.
Based on the underlying P2P-topology of C-PonD, the num-
ber of neighboring connections of a node is bounded by the
log of total number of nodes. Accordingly, in the worst case,
a node is responsible for O(logN) edges.

Unlike C-PonD, Condor incurs inactive job fetching over-
heads during the negotiation phase and periodic condor startd
ClassAds update regardless of job submission status. As-
suming that a pool size is N , Sc is the size of condor startd
ClassAds (usually several KBytes in a typical Condor set-

!"!#$

!"#$

#$

#!$

#!!$

#!!!$

#!!!!$

#!!!!!$

%!!$ #&!!$ &%!!$ '(&!!$ #!'%!!$ %!)&!!$ #&*+%!!$

,-
./
0
12
$3
4/
14
5$
6$
78
9
$4
1-
7/
$

:;<=/>$8?$>/48;>1/4$6$789$41-7/$

@8A08>6B81C34D<5$ @80A8>6B81C3.E>5$ @6F80G34D<5$ @80A8>3.E>5$

Figure 6: Scheduling latency increasing pattern of Condor-
flock, C-PonD, and Condor in various pool sizes. sim shows
a simulation result, and thr shows a theoretical analysis.
A bottom-right inner-graph shows a logarithmic pattern of
C-PonD resource discovery time.

ting), and Tu is the update period (300 seconds in default
setting), the update bandwidth is N×Sc× 1

Tu
per second at

the central manager node. As Tu gets longer, the overhead
of the central manager decreases, but the longer update pe-
riod can result in a stale scheduling result in case dynamic
attributes are specified as requirements.

Matchmaking Result Staleness : Condor relies on pe-
riodically updated resource information for matchmaking,
therefore the scheduling result correctness depends on the
dynamics of attributes and the information update period.
In addition, the varying uptime of worker nodes can also
influence the result correctness. Condor adopts soft-state to
keep condor startd ClassAds of available resources, and a re-
source that has not updated its ClassAds during the past 15
minutes (default configuration) are removed from the worker
node list, which can also result in stale matchmaking results
during the soft-state time span.

In C-PonD, the matchmaking is performed using local
ClassAds, so the only component that influences result stal-
eness is the query result transmission time. We compare
the matchmaking result staleness of Condor and C-PonD
through simulations under a controlled environment with
synthetic attribute dynamics and resource uptime.

4.2 Simulations
In order to evaluate C-PonD on a large scale simulated

environment, we implemented an event-driven simulation
framework using C++ language and Standard Template Li-
brary (STL) aimed at minimizing the memory footprint in
order to perform a simulation of millions of nodes2. We used
Archer [31] in order to run simulations on distributed com-
puting resources efficiently. After a resource pool is formed
with a given number of resources, nodes remain in the pool
until a simulation finishes.

4.2.1 Evaluation on Scheduling Scalability
Figure 6 presents the scheduling latency of Condor and

Condor with flocking, and resource discovery time of C-
PonD in the Y axis and the number of resources in a pool
in the X axis (both represented in log-scale). The dotted
lines show expected latency based on the analysis, and the
solid lines show the response time from simulations. Because

2https://github.com/kyungyonglee/PondSim

there currently is no enviromnent capable of precise simula-
tion of Condor at the scale of millions of nodes, and because
the latency of each method is dependent on constants as-
sociated with system environments (e.g., network latency,
computing capacity of scheduler, number of resources in
each pool for flocking, available bandwidth), the focus of
this analysis is to highlight trends of increasing scheduling
latency as the number of resources increases and gauge the
expected magnitude of a system where the latency of decen-
tralized discovery becomes apparent.

In the simulation, the expected scheduling time of Condor
is derived from experiment results from Bradley et. al [32] —
the latency of one round of matchmaking, which schedules a
single job (or multiple jobs clustered by auto-clustering) to
top-ranked resources, being one second in a pool of 10,000
worker nodes. Based on the fact that Condor performs se-
quential traversing of all worker nodes, we apply a linear
model to predict the scheduling time for different numbers of
worker nodes. For C-PonD, we assume a widely distributed
WAN resource pool and set the transmission delay of an
edge between 50 ms and 300 ms following a uniform distri-
bution [33]. In Condor-flocking, we set an average number
of resources in a pool as 100 with default negotiation cycle
of 60 seconds and the minimum inter-negotiation cycle of
20 seconds, which is the default Condor configuration value.
In addition to the simulation, we also present a analytical
result based on Equation 2.

As shown in the figure, Condor and Condor-flock have a
linearly increasing pattern, and C-PonD shows a logarith-
mic pattern as the number of resources increases; this can
be clearly observed in the bottom-right inner graph, where
the horizontal and vertical axis values are represented in the
absolute value scale. The figure also shows that results from
Equation 2 the almost identical values of Condor-flock sim-
ulation and theory. Though the magnitude of latency can
vary according to system configurations, we can observe that
the latency of C-PonD outperforms Condor when the num-
ber of resources is larger than 100,000, which asserts the
necessity of careful system design with respect to the tar-
get number of resources. From this simulation, in summary,
we would like to address that the possibility of scheduling
throughput limitations of centralized HTC middleware in a
large scale can be relieved by leveraging a decentralized re-
source discovery mechanism, while supporting existing HTC
middleware for job scheduling.

4.2.2 Matchmaking Result Staleness
In this section, we discuss the staleness of a scheduling

result of C-PonD and compare it to Condor to illustrate the
ability of C-PonD to cope with the dynamics of resource
uptime and attributes. Condor relies on soft-state to deter-
mine if a worker node is alive or not; at a default system
configuration, a worker node that does not update Clas-
sAds for the last 15 minutes is deemed to be non-accessible.
Thus, scheduling to a non-accessible worker node can be
made within the time-span of soft-state period. In contrast,
in C-PonD, heart-beat messages are exchanged between re-
sources every few seconds, allowing the underlying P2P net-
work to deal with node failures in a decentralized fashion. In
order to address the staleness of a scheduling result quantita-
tively in a controlled environment, we perform a simulation
by making worker nodes join and leave a pool dynamically
with different mean session times following exponential dis-

!"!#

!"$#

!"%#

!"&#

!"'#

("!#

)!!# &!!# *!!#+,-./0123# ($!!# (4!!#

5
6/
78
9
:
#9
.#
:
9
:
;<
2/
1-
#<
7=
-
,
0
1>
:
?
#

@A-6/?-#0B8C-#+<-79:,<3#

D;E9:F#+<>C3# D9:,96#+<>C3# D9:,96#+2=63#

(a) Scheduling based on non-stale information
for simulated Condor and C-PonD, and based
on Equation 4 (Condor-thr)

!"

!#$"

!#%"

!#&"

!#'"

("

(!!" $!!")!!"*+,-./012" %!!" 3!!"

4
5.
67
8
9
"8
-"
9
8
9
:;
1.
0,
";
6<
,
+
/
0=
9
>
"

?@5=A/1,"+B9.C=6;"D,5=8+"*;,689+;2"

E:F89G" E89+85"

(b) The scheduling result of Condor varies ac-
cording to the dynamics of attributes

Figure 7: Scheduling result staleness of C-PonD and Condor

tribution. Upon joining a pool, a node updates its ClassAds
to the central manager every 300 seconds until it leaves the
pool. The central manager keeps the ClassAds until the
soft-state period expires.

Let us assume that the default ClassAds update period of
Condor as Td, a soft-state expiration time as Ts. Given an
exponentially distributed join/leave event of worker nodes
with a mean event rate of λ and assuming that a worker node
is alive at time t0, the probability of the node being inactive
- the next event happens - after t elapses is defined as λe−λt.
If 0 < t ≤ Ts − Td, given that Ts > Td, the inactive node is
deemed as alive to the central manager. If Ts−Td < t < Ts,
the node is deemed to be down or up according to the last
ClassAds update time. Given the memoryless property of
exponential distribution, we can calculate the probability of
a ClassAds of inactive node still exist at a central manager
as Ts−t

Td
. Finally, given that a node is alive at t0, we can

calculate the probability of a scheduling result being stale
after t elapses, P (Stlt), as

P (Stlt) =

∫ Ts−Td

0

λe−λt dt+

∫ Ts

Ts−Td

λe−λt × Ts − t
Td

dt

(3)

Due to the alternating event of join/leave, the probability
of a node being active at arbitrary time t0 is 1

2
. Thus we can

calculate the probability of scheduling result being non-stale
after t elapses from t0 as

P (non− stlt) = 1− 1

2
× P (Stlt) (4)

In order to validate Equation 4 and to present a quan-
titative comparison between C-PonD and Condor, we per-

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

+!"

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

#&" #(" $!" $)" &!"

,
-
./
0
1
"2
3
45
67
3
8
9
":
;
<"

=8
>
"?

7
53
9
@
"A
51

0
":
.0
B8
9
C
.<
"

=8>",D>15..589"E7/0":.D>15..589.F159D/0<"

234567389" GHI89J"?7539@"A510"

(a) Job waiting time and utilization

!""#$

%&!!$ %""'$
!#()$

#**&$

(+"$ ("!$
*'%$

)%*$
*"&$

!"&$!%($ %+&$!(&$
%"+$

"!$ "#$ &+$ &)$!+$

,
-
.
/0
$1
2
3.
4
50
$6
7
81
18
9:
.
5;
4
<
:=
$

>;?$@-?78::8;4$A23.$6:-?78::8;4:B784-3.=$

72C87-7$ 2D./2E.$ 78487-7$

!+++$

!++$

*++$

#+++$

*+++$

(b) Resource discovery latency

!"#

$"#

%"#

!""#

!&"#

!'"#

!("#

))"#

!#)# &# $# *# '# %# +# (#

,-
.
#/

0
12
3
4
#5
16

7
89
7
:-
3
;
<=
#

50>47?#@ABC#D0EF7#-G#9F.61H7;#,-.#

$"#I-.<J613F?7#)%#IJ6#)"#IJ6# !'#IJ6# !$#IJ6#

(c) Job wait time based on ZIPF values

Figure 8: The performance metrics measured from a deployment of C-PonD on FutureGrid

formed a simulation in a pool of 106 worker nodes setting
edge latencies between 50 and 300 msec uniformly with the
different value of worker node’s join/leave event rate λ −
1

300
, 1
600

, 1
900

, 1
1200

, 1
1500

per second. For a Condor pool, we
adopted the default system configuration value. For C-
PonD, we assume the node join and departure are handled
via the underlying P2P network topology. Figure 7a shows
the fraction of non-stale scheduling results according to the
different average uptime. The left-most solid-bar shows the
simulated value of C-PonD, the dotted grid bar shows the
simulation result of Condor, and the diagonal bar shows an
expected value calculated based on Equation 4 for Condor.
We can observe that C-PonD has almost no impact for the
given worker nodes uptime, because the only factor that can
influence the result staleness is the aggregated result prop-
agation time that is of the order of tens of seconds in a 106

pool. In case of Condor, the staleness of the scheduling re-
sult has a non-negligible impact based on the dynamics of
worker nodes. For instance, 20% of scheduling results are
stale when the average uptime of a node is 25 minutes. The
results also claim the correctness of the analytical model of
the scheduling result non-staleness in Equation 4 - the sim-
ilar value of Condor(sim) and Condor(thr).

Next, we present the effect of attribute value dynamics
to the scheduling result. In C-PonD, the matchmaking is
performed with resource information that is available from
the local condor startd daemon. Otherwise, in Condor, the
matchmaking result might be as stale as the information
update period (300 seconds in the default Condor configu-
ration). In order to model scheduling with a requirement of
non-uniform likelihoods of resource matching, we add a syn-
thetic ClassAd attribute, ZipfAttribute whose value follows
Zipf-distribution. A worker node selects an integer value
from one to ten with skew value of 1.0 and heavy portion
of the distribution at one (35% of nodes). At the simula-
tion, a node changes the ZipfAttribute value at a rate of λ
following the exponential distribution. The scheduling stal-
eness is measured as the fraction of nodes that still satisfies
the requirement after the matchmaking. We do not show
detailed analysis for this model due to the similarity with
Equation 3.

The vertical axis of Figure 7b shows the fraction of non-
stale scheduling result, and the horizontal axis shows the
mean time of attribute change event. As shown in the fig-
ure, Condor has a higher impact than C-PonD as an at-
tribute value changes more dynamically. In case of Condor,
about 20% of scheduling results are stale when the average

attribute value change rate is the same as Condor ClassAds
update period (300 seconds).

4.3 Deployment on FutureGrid
In order to demonstrate the correctness of the implemen-

tation and the feasibility of C-PonD approach as a real-world
HTC middleware in a wide area network environment, we
conducted experiments on a cloud computing infrastructure,
FutureGrid [6]. A total of 240 Virtual Machine (VM) in-
stances were deployed across USA using a VM image that
has C-PonD modules installed. Specifically, we setup 80
VMs at the University of Chicago, 80 VMs at Texas Ad-
vanced Computing Center (TACC), 70 VMs at San Diego
Supercomputer Center (SDSC), and 10 VMs at the Univer-
sity of Florida. Each VM instance was assigned a single-core
CPU and 1 GB of RAM.

In order to evaluate the system in a realistic setup created
a synthetic job submission scenario by referencing DAS-2
trace from the grid workload archive [34]. From the trace, we
extracted memory usage information, the number of inde-
pendent concurrent execution for each job, and the running
time of each job. An extra resource attribute named ZipfAt-
tribute was added to resource ClassAds to allow the experi-
ments to vary the likelihood of resource discovery queries to
find available resources. During the experiment, each sub-
mitted job selects an integer target value from one to ten
following a Zipf-distribution as a requirement. Each worker
node also selects ZipfAttribute value at the C-PonD initial-
ization time.

During the match-making process, nodes that satisfy re-
quirements extracted from the DAS-2 trace file and whose
ZipfAttribute is same as the selected Zipf value are returned.
In a real grid computing scenario, finding nodes with high
ZipfAttribute value can be thought of as searching for best
machines with higher capabilities than other machines in
a resource pool. We differentiated average job inter-arrival
time that follows the exponential distribution to observe the
system performance under different system utilizations. The
experiment is conducted for two hours per each job submis-
sion rate. A job that is composed of multiple independent
concurrent tasks is submitted at an arbitrary node while
keeping the overall job submission rate of the system.

Figure 8a shows the average job waiting time of C-PonD
at the primary vertical axis under different job submission
rates shown in the horizontal axis. The job waiting time
is the elapsed time since the job submission until the job
execution begin time. The secondary vertical axis shows

system utilization that is calculated as∑
JobRunningT ime

ExperimentT ime ∗NumberofResources

As the job submission rate increases, the system utiliza-
tion and job waiting time also increase due to resource con-
tention. In order to clarify the reason for longer waiting
time as the job submission rate increases, we present the
average, minimum, and maximum query latency for differ-
ent job submission rates in Figure 8b. In Figure 8b, we
can observe that the resource discovery query latency does
not have a strong correlation with the job submission rate;
regardless of the contention, it took less than a second to
traverse 240 resources distributed in a WAN network. We
can also observe the occasional longer query latency that
might be caused by internal lagging nodes in a tree during
the aggregation task, which can be improved by heuristics
dealing with abnormalities in a tree, such as First-Fit and
redundant topology in Section 3.1.3 and 3.1.4 (which were
not applied in this experiment).

Figure 8c shows an average job waiting time of C-PonD
based on the different target ZipfAttribute value under dif-
ferent job submission rates. The horizontal axis shows the
target Zipf value at a submission, and the vertical axis shows
the corresponding wait time. As we can see, the waiting time
gets longer when the number of requirement satisfying re-
sources is reduced (e.g., higher ZipfAttribute value). It can
be explained as follow: a job is composed of a large number
of independent concurrent tasks that can run on different
machines. Thus, when a job with requirements of high Zip-
fAttribute is submitted, a resource contention is likely to
happen among multiple independent tasks in a job.

These experiments validates the functionality of C-PonD
in a real-world WAN environment while showing a good
query response time regardless of the job submission rate
and resource utilization.

4.4 C-PonD running on PlanetLab
In this experiment, we observe the dynamic behavior of

C-PonD creation through resource status snapshots over a
65 hour period while running C-PonD on 440 PlanetLab
nodes. After installing C-PonD module on each PlanetLab
node, we add the geographic coordinate information that is
extracted from the IP address of each node as condor startd
ClassAds attributes. We leverage this attribute to build a
query requirement. In a HTC pool that is deployed on a
widely distributed environment, we can explicitly specify a
region of job execution using a geospatial-aware query based
on latitude/longitude range. This is a useful scenario in case
a communication cost is a substantial factor determining
job performance. The flexibility of adding new attributes
addresses an advantage of C-PonD over other decentralized
resource discovery systems.

In Figure 9, Req.1 region in the horizontal axis, jobs are
submitted with a requirement that says ZipfAttribute is one
of the values from one to ten. In the Req.2 region, jobs
are submitted with a requirement of worker nodes being in
America. In Req.3 region, jobs are submitted with a require-
ment of worker nodes being in Europe, and Req.4 requires
worker nodes being in Asia. The vertical axis shows the
number of available resources in America (top horizontal
line), Europe (middle line), and Asia (bottom line) conti-
nent. The number of running jobs at the time is shown at

0

100

200

300

400

500

600

0

50

100

150

200

250

300

1 6 11 16 21 26 31 36 41 46 51 56 61

N
u

m
b

e
r

o
f

R
u

n
n

in
g

 J
o

b
s

N
u

m
b

e
r

o
f

A
v

a
il

a
b

le
 R

e
so

u
rc

e
s

Elapsed Time (Hours)

Number of Running Jobs America Europe Asia

Req.2Req.1 Req.4Req.3Req.2Req.1 Req.4Req.3

Figure 9: The number of available resources and running
jobs status snapshots of C-PonD execution on 440 PlanetLab
nodes during 65 hours of experiment. In Req. 2, 3, and
4 region, jobs runs on America, Europe, and Asia nodes,
respectively.

the vertical bar whose value can be referenced at the sec-
ondary vertical axis.

We controlled the job submission rate not to overwhelm
PlanetLab nodes, as they are shared resources not dedicated
to a single user. Based on observation with varying require-
ments, C-PonD showed a flawless operation for a PonD cre-
ation and job execution.

From the figure, we can observe that the number of run-
ning jobs at a time is more than the number of claimed
machines (equal to total number of nodes minus the num-
ber of available nodes). The reason is as follows: if a worker
node has multi-core CPU, the condor startd daemon recog-
nizes each core as a distinct worker node, and those distinct
worker nodes execute jobs independently. Thus, a node with
multiple cores can run multiple jobs at a time.

5. RELATED WORK
Decentralized resource discovery methods are proposed

from various aspects. In a structured P2P network, Sword [19]
and Mercury [21] enhance DHTs to support range queries
by mapping attribute names and values to the DHT key.
Kim et. al [20], Squid [22], and Artur et. al [35] discuss
resource locating methods on a multi-dimensional P2P net-
work. Kim et. al [20] maps a resource attribute to one
dimension in CAN [36], and a requirement confirming zone
is created from a query requirement. Squid [22] leverages
Space Filling Curve (SFC) to convert a multi-dimensional
space to a one-dimensional ring space, where the locality
preserving feature of SFC allows a range query. However,
the limitation of locality-preservation for dimensions over
five limits scalability of Squid. Artur et. al [35] converts
multi-dimensional spaces into one dimension ring space. The
correlation between multiple dimensions and attribute val-
ues are leveraged for match-making. This algorithm has a
scalability limitation for a large number of attributes. Simi-
lar to our work, Armada [18] use a tree-structure for match-
making by assigning an Object ID based on an attribute
value, where a partition tree is constructed based on the
proximity of the object ID. The resource discovery module
of PonD has advantages in the aspects of rich query pro-

cessing capacity and appropriateness for dynamic attributes
over these works.

In an unstructured network, Iamnitchi et. al [37] proposes
a flooding-based query distribution for match-making on a
P2P network with query forwarding optimization method
leveraging previous query result and similarity of queries.
Due to the characteristics of flooding, duplicated messages
hurt the query efficiency. Shun et. al [38] uses super-peers
which keep the resource status of worker nodes. In order
to minimize information update overhead, they use thresh-
old to decide whether to distribute updated resource in-
formation. Thomas et. al [39] uses hybrid approach of
flooding-based approach and structured id based propaga-
tion method. Different from the resource discovery module
of PonD, these methods do not guarantee that a resource
discovery query can be resolved even there is a node that
satisfies job requirements. Periodic resource information up-
date can also result in result-staleness.

MyGrid [40] provides a software abstraction to allow a
user to run tasks on resources that are available to the user
regardless of scheduler middleware. Based on MyGrid work,
OurGrid [41] toolkit provides a mechanism to allow users to
gain access to computing resources on other administrative
domains while guaranteeing a fair resource sharing among
resources that are connected through P2P network.

BonjourGrid [42] and PastryGrid [23] are decentralized
grid computing middlewares. For resource discovery, Bon-
jourGrid [42] uses publish/subscribe multicast mechanism.
Without structured multicast mechanism, resource discov-
ery results can flood the query initiating node. Due to re-
liance on IP-layer multicast, it has no guarantee to work
on WAN environment. We solved this issue by leveraging
P2P-based virtual overlay network. PastryGrid [23] is built
on a structured P2P network, Pastry [43], and the resource
discovery is performed by sequentially traversing nodes until
a required number of nodes is discovered. Though they did
not measure efficiency of resource discovery method, the cost
of sequential traversing (e.g., O(N), where N is the number
of query satisfying nodes) is much more expensive than our
parallel resource discovery mechanism, which is O(logN).

MyCluster [44] presents a method to submit and run jobs
across different administrative cluster domains. In their ap-
proach, a proxy is used to reserve a specific amount of CPUs
in other clusters for some periods of time. The proxy is also
responsible for setting task execution environment across
different clusters in a user-transparent way. Due to the re-
source reservation mechanism for a specific amount of time,
resource underutilization can happen after job completion.

Celaya et. al. [33] proposes a decentralized scheduler for
HTC using a statically built tree for resource information
aggregation and resource discovery. A parent node keeps
aggregated resource information of a sub-tree rooted at it-
self, and the information is leveraged for scheduling. Due
to the periodic resource information update, the schedul-
ing result might be misleading, and it supports a limited
number of attributes for resource discovery (e.g., memory,
disk space). Without a solid mechanism to handle internal
node failures in a statically built tree, the system can not
guarantee a reliable service.

6. CONCLUSIONS
This paper presents and evaluates PonD, a novel approach

for scalable, self-organizing and fault-tolerant HTC service.

The system combines a P2P overlay for resource discovery
across a loosely-coupled resource “sea” in order to create a
small “pond” of resources using unmodified HTC middle-
ware for job execution and monitoring. Our approach re-
moves the need for a central server or set of servers which
monitor the state of all resources in an entire pool. A de-
centralized resource discovery module provides a mechanism
to discover a list of nodes in the pool which satisfy job re-
quirements by leveraging a self-organizing tree for a query
distribution and result aggregation. Through the first-order
performance analysis and simulations, we compared our ap-
proach with an existing HTC approach, Condor. In terms of
scalability, a job execution pool creation time of PonD grew
logarithmically as the number of resources increases. The
evaluation on scheduling result correctness under a dynamic
environment presents the robustness of our approach to dy-
namic attribute value changes and worker node churn. In
order to demonstrate the validity of our proposed approach,
we deployed and experimented a prototype implementation
of C-PonD using unmodified Condor binary files leveraging
run-time configurations setup in the real-world - PlanetLab
and FutureGrid. Although C-PonD implementation is cen-
tered on a Condor, the clean separation of decentralized re-
source discovery and PonD creation module from the HTC
middleware makes this approach generalizable and applica-
ble to other HTC middleware, and a further differentiation
from other decentralized HTC platforms that try to cover
all phases of operation (e.g., resource discovery, scheduling,
job execution and monitoring).

7. ACKNOWLEDGMENTS
We would like to thank our shepherds Douglas Thain and

Thilo Kielmann, anonymous reviewers, and Alain Roy for
their insightful comments and feedback. This work is spon-
sored by the National Science Foundation (NSF) awards
0751112 and 0910812.

8. REFERENCES
[1] Jim Basney and Miron Livny. Deploying a High

Throughput Computing Cluster. Prentice Hall, 1999.

[2] David P. Anderson. Boinc: A system for
public-resource computing and storage. In Fifth
IEEE/ACM Inter. Workshop on GRID, 2004.

[3] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, and
M. Wilde. Falkon: a fast and light-weight task
execution framework. In Proceedings of the 2007
ACM/IEEE conference on Supercomputing, 2007.

[4] O. Sonmez, N. Yigitbasi, S. Abrishami, A. Iosup, and
D. Epema. Performance analysis of dynamic workflow
scheduling in multicluster grids. HPDC ’10, 2010.

[5] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman. Planetlab: an
overlay testbed for broad-coverage services.
SIGCOMM Comput. Commun. Rev., 2003.

[6] Gregor von Laszewski and et. al. Design of the
futuregrid experiment management framework. In
GCE2010 at SC10, New Orleans, 11/2011 In Press.

[7] Solomon. M. Ruman. R, Livny. M. Matchmaking:
distributed resource management for high
throughputcomputing. In 7th HPDC, 1998.

[8] D.H.J. Epema, M. Livny, R. van Dantzig, X. Evers,
and J. Pruyne. A worldwide flock of Condors: Load

sharing among workstation clusters. Future
Generation Computer Systems, 12:53–65, 1996.

[9] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and
S. Tuecke. Condor-g: a computation management
agent for multi-institutional grids. In HDPC, 2001.

[10] Ali R. Butt, Rongmei Zhang, and Y. Charlie Hu. A
self-organizing flock of condors. J. Parallel Distrib.
Comput., 66:145–161, January 2006.

[11] I. Sfiligoi. glideinWMS a generic pilot-based workload
management system. Journal of Physics Conference
Series, 119(6):062044–+, July 2008.

[12] P.Oscar Boykin and et al. A symphony conducted by
brunet, 2007.

[13] J. M. Kleinberg. Navigation in a small world. Nature,
406, August 2000.

[14] V. Vishnevsky, A. Safonov, M. Yakimov, E. Shim, and
A. D. Gelman. Scalable blind search and broadcasting
over distributed hash tables. Comput. Commun., 2008.

[15] T. Choi and P. O. Boykin. Deetoo: Scalable
unstructured search built on a structured overlay. In
7th Workshop on Hot Topics in P2P Systems, 2010.

[16] A. I. T. Rowstron, A. Kermarrec, M. Castro, and
P. Druschel. Scribe: The design of a large-scale event
notification infrastructure. In Proceedings of the Third
International COST264 Workshop on Networked
Group Communication, 2001.

[17] J. Kim, B. Bhattacharjee, P. J. Keleher, and
A. Sussman. Matching jobs to resources in distributed
desktop grid environments. 2006.

[18] D. Li, J. Cao, X. Lu, and K. C. C. Chen. Efficient
range query processing in peer-to-peer systems. IEEE
Trans. on Knowl. and Data Eng., 2009.

[19] J. Albrecht, D. Oppenheimer, A. Vahdat, and D. A.
Patterson. Design and implementation trade-offs for
wide-area resource discovery. ACM Trans. Internet
Technol., 2008.

[20] Jik-Soo Kim, Peter Keleher, Michael Marsh, Bobby
Bhattacharjee, and Alan Sussman. Using
content-addressable networks for load balancing in
desktop grids. In HPDC, 2007.

[21] A. R. Bharambe, M. Agrawal, and S. Seshan.
Mercury: supporting scalable multi-attribute range
queries. SIGCOMM Comput. Commun. Rev., 2004.

[22] C. Schmidt and M. Parashar. Squid: Enabling search
in dht-based systems. J. Par. Distrib. Comput., 2008.

[23] Heithem A., Christophe C., and Mohamed J. A
decentralized and fault-tolerant desktop grid system
for distributed applications. In Concurrency and
Computation: Practice and Experience, 2010.

[24] J. Dean and S. Ghemawat. Mapreduce: simplified data
processing on large clusters. Commun. ACM, 2008.

[25] K. Lee and et. al. Parallel processing framework on a
p2p system using map and reduce primitives. In 8th
Workshop on Hot Topics in P2P Systems, 2011.

[26] A. Ganguly, A. Agrawal, P. Boykin, and R. Figueiredo.
Ip over p2p: enabling self-configuring virtual ip
networks for grid computing. In IPDPS, 2006.

[27] David Isaac Wolinsky and et. al. On the design of
scalable, self-configuring virtual networks. In Proceed.
of Super Computing, SC ’09, 2009.

[28] David Isaac Wolinsky and Renato Figueiredo.

Experiences with self-organizing, decentralized grids
using the grid appliance. HPDC ’11. ACM, 2011.

[29] G. Fedak, C. Germain, V. Neri, and F. Cappello.
Xtremweb: A generic global computing system.
CCGRID ’01, 2001.

[30] condor auto clustering.
https://condor-wiki.cs.wisc.edu/index.cgi/

wiki?p=AutoclustingAndSignificantAttributes.

[31] Renato J. Figueiredo and et al. Archer: A community
distributed computing infrastructure for computer
architecture research and education. In Collaborative
Computing, 2009.

[32] D Bradley, T St Clair, M Farrellee, Z Guo, M Livny,
I Sfiligoi, and T Tannenbaum. An update on the
scalability limits of the condor batch system. Journal
of Physics: Conference Series, 331(6):062002, 2011.

[33] J. Celaya and U. Arronategui. A highly scalable
decentralized scheduler of tasks with deadlines. In
Grid Computing (GRID), 2011, 2011.

[34] A. Iosup, H. Li, M. Jan, S. Anoep, C. Dumitrescu,
L. Wolters, and D. H. J. Epema. The grid workloads
archive. Future Gener. Comput. Syst., 2008.

[35] A. Andrzejak and Z. Xu. Scalable, efficient range
queries for grid information services. In P2P ’02, 2002.

[36] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Schenker. A scalable content-addressable network.
In SIGCOMM, 2001.

[37] A. Iamnitchi and I. T. Foster. On fully decentralized
resource discovery in grid environments. GRID, 2001.

[38] Shun K. K. and Jogesh K. M. Resource discovery and
scheduling in unstructured peer-to-peer desktop grids.
Parallel Processing Workshops, 2010.

[39] T. Fischer, S. Fudeus, and P. Merz. A middleware for
job distribution in peer-to-peer networks. In Applied
Parallel Computing. State of the Art in Scientific
Computing. 2007.

[40] Lauro B. C., Loreno F., Eliane A., Gustavo M.,
Roberta C., Walfredo C., and Daniel F. Mygrid: A
complete solution for running bag-of-tasks
applications. In In Proc. of the SBRC, 2004.

[41] N. Andrade, W. Cirne, F. Brasileiro, and
P. Roisenberg. Ourgrid: An approach to easily
assemble grids with equitable resource sharing. In
Proceedings of the 9th Workshop on Job Scheduling
Strategies for Parallel Processing, 2003.

[42] Heithem A., Christophe C., and Mohamed J.
Bonjourgrid: Orchestration of multi-instances of grid
middlewares on institutional desktop grids. Parallel
and Distributed Processing Symposium, 2009.

[43] Antony Rowstron and Peter Druschel. Pastry:
Scalable, distributed object location and routing for
large-scale peer-to-peer systems, 2001.

[44] E. Walker, J.P. Gardner, V. Litvin, and E.L. Turner.
Creating personal adaptive clusters for managing
scientific jobs in a distributed computing environment.
In Challenges of Large Applications in Distributed
Environments, 2006.

