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Abstract. Virtual Organizations require infrastructure that meets their scientific 
needs. Traditionally, a VO can require access to computational backends that 
are suited for interactive applications, various levels of parallelism or highly 
distributed systems where users can contribute their own cycles. In this paper, 
we present a middleware integration and deployment strategy that builds a VO 
architecture which offers various computational tiers. The architecture offers 
interactive, real-time backends, batch operated small scale computational 
clusters, batch operated large scale remote supercomputers, and a wide area 
peer-to-peer network. All these middleware components are integrated into a 
cohesive system that accesses production resources and serves the nanotech-
nology community. We also present a middleware integration that meets the 
educational needs of the VO by integrating a course management system into 
the VO’s portal. 

1   Introduction 

Virtual Organizations (VOs) [1] are at the core of grid computing. They come in 
various sizes and have various goals and capabilities, but they all need access to 
services to achieve their goals. While the infrastructures of long-standing VOs like the 
Compact Muon Solenoid (CMS) VO and the National Virtual Observatory (NVO) 
VO have evolved over several years, new VOs face the challenge of designing and 
building their infrastructure in a timely fashion while avoiding the reinvention of 
solutions and the construction of silos. LEAD has built an advanced infrastructure [2] 
and nanoHUB has been previously described [3]. These infrastructures exhibit a 
common architecture based on the concept of service orientation [4] and grid 
resources. Building distributed infrastructures for science has long been a primary 
motivation of grid computing. Service-oriented science [5] is now a well accepted 
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concept. Simplifying the creation of a service-oriented architecture for a VO is key to 
easing the creation of grid architecture for scientific communities, also known as 
cyberinfrastructures. However, current Cyberinfrastructures still focus on integration 
efforts, connecting various pieces of middleware together to access the resources 
needed by the VO.  

In this paper we present the various middleware components used in the nanoHUB 
(http://www.nanohub.org) to provide access to computational resources and also 
support the educational needs of the nanotechnology community. Due to the large 
number of applications provided by the nanoHUB, the computational needs are quite 
diverse. Other middleware needs are present due to the highly educational role of the 
nanoHUB. Learning objects offering training in the nanotechnology area and served 
by the nanoHUB must be managed as digital assets that follow the Shareable Content 
Object Reference Model 1.2 (SCORM). The learning objects and associated 
assessments can be managed through SAKAI, the open source course management 
system.  

The paper is organized as follows; Section 2 gives an overview of the integrated 
architecture hat uses all the middleware components. Section 3 describes all the com-
ponents in more details, section 4 highlights some security aspects and finally usage 
data and interesting usage patterns of that data are presented in section 5. 

 

Fig. 1. Integration of interactive backends,VIOLIN, Condor and the Grid appliance to support 
four types of computational jobs for one VO 

2   Integrated Architecture 

The nanoHUB Cyberinfrastructure was originally supported by PUNCH, [6] a system 
that laid the foundation for the use of virtual machines to isolate the VO infrastructure 
from the underlying service provider hosting the VO’s servers. The current iteration 
of this system is described in [3]. This paper describes the components comprising the 
core capabilities of this Cyberinfrastructure: VIOLIN, Condor, IPOP and SAKAI. 
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Cohesively integrating all these components is done through the deployment of a 
local infrastructure based on virtual machines and the use of web service interfaces.  
The high level architecture is depicted in Figure 1. First, the VO maintains its own 
user database in an LDAP and offers local file systems through a NFS server. A set of 
virtual machines are deployed using Xen 3.0 to ensure that authentication uses the 
LDAP server and that the home directories are NFS mounted. Because each virtual 
backend is setup as a remote PBS submit node and as a remote Condor submit node, 
access to the virtual machine gives direct access to the VIOLIN clusters and to all 
remote resources accessible via Condor, including the Peer to Peer network deployed 
via IPOP. Indeed, the grid appliances form a Condor pool that is accessible via a 
globus gatekeeper or directly from a grid appliance. The remote resources on national 
grid infrastructures are accessed by the community using a community credentials. 
VO users do not need individual certificates on these remote grids; instead, the VO 
accesses the resources and multiplexes the users on a single credential. Security is 
preserved through the use of attributes embedded in the grid proxy. Figure 6 shows 
the overall architecture that integrates all of the computational systems. 

While users can access the architecture via standard shell access, a portal access 
can also be enabled via standard processes such as in OGCE. A more interactive 
access can be setup using VNC sessions running on the virtual backends and by 
embedding these VNC sessions into webpages. Single sign on for this type of access 
was demonstrated in [7]. 

3   Middleware Components 

3.1   VIOLIN 

VIOLIN [8] or Virtual Internetworking on OverLay Infrastructure is a novel 
alternative to application-level overlays. The goal of VIOLIN is to create mutually 
isolated autonomic VIOLIN environments that can be created for users and user 
groups as their “own” private distributed computation environment with the 
configurations of customized physical environments with administrative privileges 
(e.g., their own private cluster). Within VIOLIN, the user can execute and interact 
with unmodified parallel/distributed applications, and can expect strong confinement 
of potentially untrustworthy applications. Virtualised resources also address issues of 
security; a case for using virtual machines on grids is detailed in [9]. 

VIOLIN is inserted as a layer of indirection between the infrastructure and virtual 
machines running atop it. This layer provides users with the familiar look-and-feel of 
a private LAN environment while allowing sharing of the cyberinfrastructure. 
Infrastructure sharing is achieved by manipulating the scale and location of each 
virtual environment's resource allocation.   

Entities in a VIOLIN virtual environment include virtual routers, switches, and 
end-hosts, all of which are implemented in software (many virtual machine platforms 
can be used by VIOLIN including Xen, VMware, and User-Mode Linux).   VIOLIN 
network overlays connect virtual machines in a virtual environment.  These 
environments have their own IP address spaces that completely confine all 
communication within the VIOLIN and maintain the appearance of standard 
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machines connected to standard Ethernet.  Because all entities of a VIOLIN 
environment are software, the system is extremely dynamic; entities can be created, 
destroyed, and migrate on-demand.  Functionally, VIOLIN provides isolated virtual 
environments for deploying standard or non-standard distributed applications across a 
shared cyberinfrastructure. 

Figure 2 shows how a VO user can use VIOLIN. A client connects to the VO 
webserver and accesses an application. The application is started on an interactive 
backend that redirects the application interface on the client through a VNC 
connection. The interactive backend is setup as a PBS frontend to the VIOLIN cluster. 
The VIOLIN cluster is deployed on op of a physical cluster that has installed with the 
Xen virtual machine software [10]. VIOLIN creates individual virtual clusters that 
can be mutually isolated and span various administrative domains. 

 

Fig. 2. VIOLIN Integration 

It is also possible to create VIOLIN environments that are integrated, autonomic 
entities that dynamically adapt and relocate themselves to enhance the performance of 
the applications within [11].  This all-software virtualization of environments presents 
a unique opportunity to advance the performance and efficiency of a VO. Two factors 
drive the adaptation of virtual environments: (1) the dynamic availability of 
infrastructure resources and (2) the dynamic resource needs of the applications within 
VIOLIN environments.  Dynamic resource availability may cause the VIOLIN 
environment to relocate its virtual machines to new physical hosts when current 
physical hosts experience increased workloads.  At the same time, dynamic 
applications may require different amounts of resources throughout their execution. 

The changing requirements can cause the VIOLIN environment to adapt its 
resource capacity in response to the needs of the application. Furthermore, the 
autonomic adaptation (including relocation) of the virtual computation environment is 
transparent to both application and user, giving users the perception of a well-
provisioned, private, networked run-time environment.  
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3.2   Condor 

As part of the nanoHUB architecture, we used the pre-existing Condor [12] software 
to manage jobs run on grid sites around the US. Condor’s derivation, known as 
Condor-G [13] is an aggregate of both the Condor and Globus projects. As such, it is 
well suited as a meta-scheduler for any VO.  

The Condor High Throughput Computing system (Condor) is a specialized 
workload management system for compute intensive jobs. Like other full-featured 
batch systems, Condor provides a job queuing mechanism, scheduling policy, priority 
scheme, resource monitoring, and resource management. Users submit their serial or 
parallel jobs to Condor. Condor queues these jobs, chooses when and where to run the 
jobs based upon an established policy, carefully monitors their progress, and 
ultimately informs the user upon completion.  

Originally, the Condor job submission agent could launch jobs only upon Condor-
managed resources.  Condor-G is an enhanced submission agent that can launch and 
supervise jobs upon resources controlled by a growing list of management systems, 
permitting computing environments that cross administrative boundaries – a primary 
requirement for grid computing. Condor-G can also seamlessly utilize resources 
accessible by Globus Toolkit’s GRAM protocol, as well as other grid interfaces.  
Used as a front-end to a computational grid, Condor-G can manage thousands of jobs 
destined to run at distributed sites. Condor-G provides job monitoring, logging, 
notification, policy enforcement, fault tolerance, credential management, and it can 
handle complex job interdependencies. 

Matchmaking has been implemented to allow a job to be run on any one of the 
available sites. The matchmaking accounts for the need to run applications differently 
at different sites. The reliability of file transfer to a site has been improved. Many of 
the sites that are used for job submission use Globus GRAM and the native file 
transfer interface occasionally fails. To overcome this problem, each job is run as a 
workflow implemented with DAGMan: Select site, marshal data, stage data to site, 
submit job to site and run, stage data from site, unmarshal data. 

Stork and GridFTP are used to stage the job's data back and forth, as the data may 
be quite large for some applications. Condor-G and GRAM are used to submit the job 
to the execute site.  If any of these steps fail, the workflow is restarted from the 
beginning, preferring to select a different site. Condor is used for matchmaking to 
select the execution site. Currently, a random site is selected from the list of 
compatible sites (correct architecture, sufficient memory). All of the sites are tested 
every 6 hours and removed from the selection site if any of them fail. Finally, this 
framework is application-agnostic. For each application, a short script is written that 
describes what files need to be transferred and how the application needs to be 
invoked. 

Figure 3 shows the integration with the client. The interactive backends, on which 
the applications interfaces are running, are setup as remote Condor queues. A Condor 
schedd runs on a virtual machines setup with a public IP address. Every application 
can then submit a job from an interactive backend that is on the private network and 
get out of the local infrastructure through the Condor submission process. In the case 
of Condor-G, the grid resources need a credential. The VO manages a single 
community credential that is refreshed on a regular basis on the Condor gateway 
machine.  
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Fig. 3. Condor Integration 

3.3   The Grid Appliance 

The use of machine and network virtualization techniques is beneficial to provide 
applications with their native execution environment which is isolated from physical 
resources. Albeit virtual, virtual machines and networks are resources that must be 
managed, which is especially challenging in wide-area environments. Manual 
establishment and maintenance of virtual network tunnels and routing tables across 
multiple network domains behind different NATs and firewalls by system 
administrators is time-consuming, error-prone and expensive. This motivates the use 
of self-configuring techniques for facilitating the management of inter-networked 
VMs to reduce the management burdens of a large-scale virtualized WAN 
environment. To address this problem, we use a combination of packaging using 
virtual machine appliances and self-configuring virtual networks, which are integrated 
into easy to deploy, easy to use Grid appliances [14]. 

Grid appliances integrate a full-fledged self-configuring Grid middleware stack in 
a virtual machine image that runs unmodified on a variety of contemporary VM 
technologies. In the current implementation, the Grid appliance middleware is based 
on Condor. In addition, the Grid appliance packages the IP-over-P2P (IPOP) overlay 
[14], which enables self-organizing wide-area virtual private networks.   

The combination of virtual appliances, IPOP and Condor allows the creation of 
scalable wide-area networks of virtual workstations (WOWs [16]) with little 
management effort that provides bi-directional TCP/IP connectivity among VMs even 
when nodes are behind firewalls and/or NATs. The Grid appliance allows for 
customization of additional per-VO software with the use of UnionFS file system 
“stacks.” It also has provisions for facilitating transfer of data from/to its host by 
exporting user files through a host-only Samba file system. 

Surveys from our Grid appliance users show that adding a VM guest hosted by a 
typical Linux, Windows, or MacOS x86-based platform to an already-running WOW 
involves a simple one-time setup that takes 15-30 minutes, even for entry-level users 
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who have not used virtualization or Grid computing tools previously. By lowering the 
barrier of entry for users to deploy Grid middleware, the appliance helps non-expert 
users to learn how to use Grid computing infrastructure with a hands-on environment 
and without a substantial investment of time. It also enables a VO to tap into 
resources that would otherwise be difficult to reach (e.g. multi-domain desktop Grids) 
to establish pools of opportunistic resources. The Grid appliance is available for 
download from http://wow.acis.ufl.edu. 

Figure 4 shows how the grid appliances are accessible from the Condor gateway. 
One of the appliances is a Globus gatekeeper that has a Condor jobmanager. In this 
way, resources contributed by the VO members themselves can be used. 

 

Fig. 4. Grid Appliance Integration 

3.4   SAKAI 

The Sakai Project is a community source software development effort to design, build 
and deploy a new Collaboration and Learning Environment (CLE) for higher 
education. Sakai is a Java-based web application, developed as an open source effort 
[17].  

In order to integrate Sakai with the nanoHUB, the first area of consideration is user 
authentication. Since the VO authenticates users through a LDAP server, the Sakai 
login procedure was modified and used to authenticate and authorize users through 
the same LDAP mechanism as the VO’s portal. Sakai can be configured to authentic-
cate users against an LDAP compliant directory using the UserDirectoryProvider 
interface. This Java class makes use of Novell’s JLDAP free, open-source library for 
communicating with LDAP servers. However, providing LDAP access alone is not 
sufficient to ensure SSO between Sakai and the nanoHUB. Next is the 
implementation of SSO (Single Sign On) between the Web server and Sakai. SSO 
makes it possible for already authenticated users to access Sakai without re-entering 
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their login name and password. The Sakai web service interface allows us to easily 
integrate various components. The architecture utilized for this integration is shown in 
Figure 5. 

The integration layer that is used on the nanoHUB works as follows. Once the users 
have been authenticated, the system automatically identifies the appropriate content 
context that they need to join. Once this identification is complete, the user is 
transparently taken to the appropriate quiz within the learning context.  A learning 
context usually contains multiple quizzes. Therefore, the system automatically 
identifies and tracks users’ previous visits to determine if they have already 
completed the quiz.  

 

Fig. 5. NanoHUB – Sakai Integration Architecture 

4   Security 

One final aspect of the integration which has not been discussed in depth is security. 
In our case, users do not own accounts on the target resource, they do not even have a 
valid grid certificate. Therefore, there is no distinguished name (DN) mapped to a VO 
account. Indeed, a key philosophy of the architecture has been to support users that 
create accounts on the portal that are not aware of the underlying computational 
resources. In the case of the nanoHUB, the VO obtained a community allocation on 
the TeraGrid and formed an official VO on the Open Science Grid. While VO 
accounts are the norm on OSG, TeraGrid requires that some auditing trace be in place 
in order to run jobs under a single account on the resources.  

In order to provide additional information to the targeted resource provider and 
information for auditing, we investigated the use of Gridshib, specifically the use of 
the SAML issuer. We deployed the Gridshib SAML issuer tool to embed user 
attributes onto the community credential used to access the TG resources. We 
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deployed an Identity Provider tied to the LDAP server so that for each job submitted, 
a single proxy can be created for a particular job with the attributes of the user 
initiating the request.. These issues of attribute based authentication and authorization 
and grid security are discussed in detail in [18]. This system has been deployed and 
tested but is not currently used in production. Figure 6 shows the workflow, starting 
with a user’s request, the retrieval of attributes from the identity provider, the pushing 
of attributes to the resource provider and the potential pulling of attributes by the 
resource provider.  

 

Fig. 6. Attribute based infrastructure for VO 

5   Results and Usage Patterns 

This last section, in which we present some usage statistics of the nanoHUB. The 
VIOLIN system, which has been in production since April 2006, has been one of the 
reliable local facilities for production nanoHUB job execution. Between July 2006 
and July 2007, VIOLIN served a total of 527 simulation users and logged a total of 
46,860,689 CPU seconds. 

VIOLIN executed most of the nanowire simulation jobs between April 2006 and 
June 2007. Today, VIOLIN is still executing jobs from other nanoHUB simulations.  
More specifically, the Nanowire calculates current flow through a nanotube; the I-V 
characteristics of which require that several bias points be calculated. This type of 
application can be implemented either through parallel MPI algorithms which 
establishes a parameter sweep or through several Condor jobs.  

Nanowire, which has been running on OSG and TeraGrid since June 2007, uses the 
reliable submission framework described in Section 3. While completed results are 
not yet available, initial testing shows that only 713 nanowire jobs failed of a total of 
15658 jobs run. While this represents an impressive 96% rate of success for jobs 
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going to eight different sites, those jobs that failed did so at the beginning of testing, 
which means that corrected success rate is now closer to 100%. Support for 
additional OSG and TeraGrid sites are being added.  

While grid sites with significant computing capability are now available, most of 
the current applications remain interactive and are run locally on the interactive 
backends or the VIOLIN cluster. Consequently, because users simply wait for the 
results to return to their browser they have yet to adopt a batch oriented mindset that 
is traditional to supercomputing. CPU consumption of users running nanowire 
applications on the VIOLIN cluster has a peak usage period that indicates that 90 
users employed application processes 2000 hours a month, or approximately 22 hours 
of computation per user. This number, while admittedly small, represents the truly 
great potential of such e-science technologies. By placing both applications and 
computational resources with varying capabilities in the hands of users, VIOLIN 
democratises computing in ways not previously thought possible. 

The semi-log scale chart in Figure 8 shows the number of jobs run by users. The  
x-axis represents the users ranked according to the number of jobs each has run. The 
four applications compared are Band Structure Lab, CNTbands, FETtoy and 
MOSFET. Of these four applications, each has between 100 and 150 users with each 
user running between 8 and 1000 jobs. This chart also shows some power law 
behavior and long tails, which appear to be characteristics of new web offerings. New 
web based Internet products always find new consumers and the integrated benefits of 
finding these new consumers outweighs the benefits of offering just a few products. 
Similar power law patterns, observed in the Sloan Digital Sky Survey (SDSS)  
e-science portal [19], substantiate the information in Figure 7. 

 

Fig. 7. Number of jobs per top users for four applications 
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6   Conclusions 

In this paper we presented a strategy to integrate several middleware components that 
meet the diverse needs of a Virtual Organization (VO). For our purposes, we utilized 
the nanoHUB VO for the computational nanotechnology community as a case study. 
However, our emphasis is to show that the strategies and technologies presented in 
this paper are VO agnostic and can be re-used in other Cyberinfrastructures. Here we 
have VIOLIN, Condor and the Grid appliance which provide access to three types of 
computational resources: small local clusters, large scale remote clusters and HPC 
resources and widely distributed peer resources. We have also presented the use of an 
attribute based authentication and authorization system which helps shield users from 
the complexity of using certificates to access grid resources. Finally, we also 
presented an atypical type of middleware integration with SAKAI. Further work in 
studying these e-science usage patterns will be conducted to elucidate user behaviors, 
user needs, and the relevance of offering a large number of services. 
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