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Abstract

Wide-Area Overlays of Virtual Workstations (WOWs)
have been shown to provide excellent infrastructure for de-
ploying high throughput computing environments on com-
modity desktop machines by (1) offering scalability to a
large number of nodes, (2) facilitating addition of new
nodes even if they are behind NATs/Firewalls and (3) sup-
porting unmodified applications and middleware. However,
deployment of WOWs from scratch still requires setting up
a bootstrapping network and managing centralized DHCP
servers for IP address management. In this paper we de-
scribe novel techniques that allow multiple users to cre-
ate independent, isolated virtual IP namespaces for their
WOWs without requiring a dedicated bootstrapping infras-
tructure, and to provision dynamic host configuration (e.g.
IP addresses) to unmodified DHCP clients without requir-
ing the setup and management of a central DHCP server
We give qualitative and quantitative arguments to establish
the feasibility ofour approach.

1. Introduction

Virtualization techniques address key challenges in the
deployment of wide-area distributed computing environ-
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ments. System virtual machines [36] such as VMware [38]
and Xen [7] fully decouple the execution environment ex-
posed to applications within a "guest" VM from that of its
"host", allowing nodes distributed across multiple domains
to be configured and managed with a consistent software
base [18, 26, 33]. Virtual networks ([22, 39, 25, 42]) de-
couple the management of address spaces and can provide
full TCP/IP connectivity for nodes behind network address
translation (NAT) and firewall routers. Combined, virtual
machine and P2P-based self-organized virtual networking
enables the deployment of scalable wide-area networks of
virtual workstations (WOWs [23]). This paper describes
and evaluates novel techniques that facilitate the deploy-
ment and management of WOWs by enabling 1) nodes of
a WOW to dynamically obtain IP addresses using existing
DHCP (Dynamic Host Configuration Protocol) clients but
without relying on centralized DHCP servers, and 2) dif-
ferent WOWs to multiplex a single overlay network while
having independently managed virtual IP address spaces.

WOWs present to end-users and applications an envi-
ronment that is functionally identical to a local area net-
work of workstations. Therefore, WOW distributed sys-
tems can be managed and programmed just like local-area
networks, and can leverage unmodified subsystems such as
batch schedulers, distributed file systems, and parallel ap-
plication environments that are very familiar to system ad-
ministrators and users. Building on scalable peer-to-peer
overlay routing and discovery techniques for firewall "hole-
punching", WOWs can aggregate large numbers of nodes in
a virtual IP network even if they are behind NATs. Further-
more, nodes can be packaged as VM "appliances" [34, 43]
that can be instantiated without disrupting the configuration
of existing, commodity desktops with a variety of hosted
I/O virtualization technologies (e.g. VMware, Parallels,
Linux KVM). These characteristics make WOWs an excel-
lent infrastructure for the deployment of desktop grids by



supporting not only applications designed for such environ-
ments, as in [5, 9, 2, 1] and systems based on BOINC [4],
but also complex, full-fledged O/S environments with un-
modified software and middleware components (e.g. Con-
dor [28, 30, 40]).

Previous work has shown that the process of adding new
nodes to an existing WOW requires a simple procedure
(copying and instantiating a VM image) and can be per-
formed in a matter of seconds [23]. The bootstrapping
of an initial WOW network, however, required the cre-
ation of a separate P2P overlay of (typically public) over-
lay nodes. Furthermore, to enable dynamic virtual IP man-
agement within a WOW as in [43], it was also required
that a centralized virtual DHCP server be configured and
deployed on a publically-accessible machine. In practice,
the need to setup and manage the bootstrapping overlay and
DHCP server can hinder the deployment of WOWs by new
users. To address this problem, in this paper we present
techniques that allow multiple users to create independent,
isolated virtual IP namespaces for their WOWs without re-
quiring a dedicated bootstrapping infrastructure, and to pro-
vision dynamic host configuration (e.g. IP addresses) to
unmodified DHCP clients without requiring the setup and
management of a central DHCP server.

To this end, we extend the IPOP virtual networking
system [22] to support multiple mutually-isolated virtual
networks (called IPOP namespaces) over a common P2P
overlay. In particular, we propose decentralized virtual IP
address management within a WOW that leverages Dis-
tributed Hash Table (DHT) functionality. Creating a new
IPOP namespace only requires executing a simple program
with information about the IPOP namespace (assignable
virtual IP addresses and other network parameters). The
namespace identifier is then provided as a parameter inside
the IPOP configuration of the appliance VMs for distribu-
tion. Experiments show that a new node joining a WOW
takes about 20-30 seconds on average to acquire a virtual IP
address.

The rest of the paper is organized as follows. Section 2,
highlights related work. In Section 3, we describe the IPOP
virtual networking system that provides connectivity be-
tween WOW nodes. In Section 4, we describe our DHT im-
plementation, which enables decentralized techniques for
virtual IP address management presented in Section 5. In
Section 6, we present an experimental evaluation of our ap-
proach. Section 7 concludes the paper.

2. Related work

Desktop grid environments [5, 29, 9, 2, 1] currently re-
quire tailoring the applications to handle idiosyncracies of
wide-area environments with respect to host and network
heterogeneity. BOINC [4] provides a platform to build ap-

plications when compute nodes are volatile desktop ma-
chines. However, in WOW the use of virtual machines and
networks enables building desktop grids not only support-
ing these systems, but also unmodified applications and ex-
isting middleware (e.g. Globus [20], Condor [28, 30, 40]).

Our work can be classified as applying P2P techniques
to computational grids and wide area clusters [19]. In [14]
Cheema et.al and in [24] lamnitchi et.al have investigated
P2P discovery of computational resources for grid applica-
tions. In [10] Cao et.al. have proposed a P2P approach
to task scheduling in computational grids. Related to our
work are the Jalapeno [41], Organic Grid [13], OurGrid [6]
and ParCop [3] projects which also pursue decentralized
computing using P2P technology. Our system currently ap-
plies P2P techniques to solve a different problem, which is
the self-configuration of virtual network links (we missed
here on the adress management part) to enable efficient and
easy-to-deploy virtualized clusters.

There is a rich literature on using P2P tecqhniques to
build scalable and fault-tolerant systems. Notable among
these are large scale storage utlities: CFS [16] based on
Chord [37], and PAST [17] developed by Microsoft based
on Pastry [32]. In [15] Cox et. al. have proposed to
build Distributed DNS using DHash, a distributed hash ta-
ble (DHT) based on Chord [37]. SCRIBE[12] is a large
scale application-level multicast and event notification in-
frastructure based in Pastry P2P system. Similar to to these
systems, our decentralized IP address management (1) elim-
inates any dedicated components, (2) scales to large num-
bers by harnessing the resources at participating nodes and
(3) provides resilience to node failures, which are common
requirements in large-scale desktop grid environments.

In [11], the authors propose to use a universal overlay to
provide a scalable infrastructure to bootstrap multiple ser-
vice overlays providing different functionality. It provides
mechanisms to advertise services and to discover services,
contact nodes, and service code. Our motivation in this
work is to use a universal overlay to facilitate bootstrapping
of multiple WOWs, each supporting a different community
and having its own virtual private IP address space.
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3. IPOP - IP over P2P

In this section we describe the network virtualization
technique that allows VMs within a WOW to communi-
cate using existing TCP/IP implementations. As described
in [22], IPOP runs as a user-level process inside the VM that
captures packets from a virtual device tap inside the source
VM, tunnels them over the application-level Brunet [8] P2P
overlay, and then injects the packet back into a virtual de-
vice on the destination VM. It is also possible to deploy
WOWs by running IPOP on the physical host and confining
the cluster VMs completely within the virtual network.

Figure 1 shows the flow of data between two applica-
tions communicating over the virtual IP network provided
by IPOP: 1) Application (on left) sends data to a virtual IP
destination (src: 172.16.0.2, dest: 172.16.0.18). 2) IPOP
reads out the ethernet frame from the tap and extracts the
virtual IP packet, 3) The virtual IP packet is encapsulated in-
side a P2P (Brunet) packet addressed to P2P node Y (right)
associated with the virtual IP destination, 4) and then routed
within the P2P overlay to a destination node Y. 5) At node
Y, IPOP extracts the virtual IP packet from the P2P packet,
6) builds an ethernet frame that it injects into the tap. 7)
Eventually, data is delivered to application (on Y).

Earlier versions of IPOP [22, 43] have suffered from lim-
itations with respect to:

* Mappingfrom virtual IP to P2P address: The P2P ad-
dress of each IPOP instance was originally the SHA
hash of the virtual IP address, which enabled nodes to
quickly and independently determine the address of a
P2P node on the destination VM. However, because of
the one-to-one mapping from virtual IP to P2P address,
a single P2P node on the host cannot route for multiple
VMs inside the virtual network. When virtual IP ad-
dresses are mobile a situation that can occur when
virtual machines are allowed to migrate ([35], [39]),
thus requires killing and restarting the P2P node on the
target host as shown in [23].

* Management of virtual IP addresses: The original
version of IPOP required static assignment of IP ad-
dresses. In [43], IPOP supports dynamic virtual IP
configuration using unmodified DHCP clients, by cap-
turing DHCP packets from the tap interface, and mak-
ing requests to SOAP server that maintains virtual IP
leases. With the virtual network provided by IPOP
potentially involving hosts spanning wide-area net-
works and owned by multiple organizations, maintain-
ing such dedicated DHCP servers is difficult. More-
over, dedicated servers introduce central points of fail-
ures.

* Separate overlay per virtual network: Each virtual pri-
vate network of VMs must have a separate P2P over-

lay. This requires creating a bootstrap network of pub-
lic nodes and initializing each IPOP node with the ad-
dresses of these bootstrapping nodes. This non-trivial
effort hinders easy deployment of new WOWs.

In this work, we have extended the IPOP prototype to
support dynamic creation and discovery of virtual IP to P2P
address mappings. These mappings can be arbitrary (many-
to-one), thus allowing a single P2P node to route for mul-
tiple VMs on a host. These mappings are stored as objects
in the DHT. Secondly, we have extended IPOP to support
different virtual private networks (each with its own ad-
dress space) on top of a common P2P overlay. Each such
private network is called an IPOP namespace. All nodes
within a WOW node belong to the same namespace, and
cannot communicate with nodes belonging to other WOWs
(or namespaces).

Figure 2 shows how different WOWs (or IPOP names-
paces) can exist on top of a common P2P overlay. Each
virtual IP node belongs to some IPOP namespace and is as-
sociated with a P2P node. In this example, the IP -> P2P
mappings for nodes Al, Bl, A2, B2 (Al -> X8, Bi >

Xl, A2 -> X2 and B2 -> X4) are stored at nodes X3,
X5, X6 and X7 respectively. The DHT key for each such
mapping is a combination of a globally unique identifier for
the namespace and the virtual IP address within that names-
pace. The inclusion of the namespace identifer allows vir-
tual IP nodes in different namespaces to have same IP ad-
dresses. To send a a virtual IP packet to node B 1, the node
Al queries the DHT with (NI, BI) as key. The value asso-
ciated with this key is the P2P address (XI) of the P2P node
associated with B 1, and is quickly retrieved from node X5.
From this point on communication proceeds as shown in
Figure 1.

In Section 5, we describe techniques for lifecycle man-
agement of a WOW with respect to creation of an IPOP
namespace and dynamic virtual IP configuration of WOW
nodes. We propose a decentralized DHCP protocol to
achieve dynamic network configuration that eliminates cen-
tralized components, as in [43]. We now present our DHT
implementation that supports these techniques.

4. Distributed Hash Table

DHTs [37, 32, 44, 31] provide efficient object lookup by
bounding the number of routing hops per lookup and also
the amount of routing information per node. Each object in
a DHT is associated with a key, and the ownership of keys
is partitioned among participating nodes. Keys are chosen
from a large space and each node is assigned an address
chosen from the same space. DHTs are designed to scale
to a large number of nodes and to handle continual node ar-
rivals and failures. DHTs operate over structured P2P net-
works.

3
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Figure 2. Example of two different WOWs with
namespaces Ni and N2 sharing a common
Brunet overlay.

The Brunet P2P [8] library provides mechanisms for
building and maintaining structured P2P networks of over-

lay nodes. Brunet maintains a structured ring of P2P nodes,
where each node maintains connections to its nearest neigh-
bors in the P2P address space called structured near con-

nections. Each node also maintains k connections to distant
nodes in the P2P address space called structured far con-

nections, Given a network of n nodes, Brunet can route a

message between two nodes within 0(1 log2(n)) overlay
hops, using the algorithm of [27].
We have extended the Brunet P2P library with function-

ality to support object storage and retrieval, including repli-
cation for fault-tolerance. Each DHT key is stored at two
P2P nodes which are to its immediate left and right in the
key (or address) space. The P2P nodes support migration of
keys and their asociated values to reflect changes in the ring
due to node arrival and departure. Our DHT implementa-
tion presents the following API to the applications:

1. Create(key k, password p, value v, time-to-live ttl):
Insert a key-value pair (k, v) into the hashtable with
password p for ttl seconds, only if the key k already
does not exists. Returns true on success, otherwise re-

turns an error. Note that the entry is stored only for
ttl seconds.

2. Delete(key k, password p): Delete key k and all values
asociated with it, given the password p. Returns error

in case the key k does not exist, or the pasword does
not match.

3. ReCreate(key k, password old p, password new p,

value new v, time-to-live ttl): Equivalent to Delete(key
k, password old p) followed by Create(key k, pass-
word new p, value new v, time-to-live ttl).

4. Get(key k): Returns all live values (time-to-live not ex-
pired) associated with key k.

Since the objects are stored in the DHT as soft-state for
the lifetime specified in time-to-live, DHT aplications are
thus required to re-insert (using a ReCreate) objects period-
ically into the DHT.
DHT deployments over wide-area suffer from the prob-

lem of inconsistent roots [21] because of missing overlay
edges. These missing edges arise from transient Internet
route outages, and the presence of NATs/Firewalls2. In ei-
ther case, P2P nodes may have inconsistent views about the
structure of the ring. This can lead to a situation where a
DHT operation on a key k may not always be routed to cor-
rect nodes. It is possible that a key already exists in the DHT
on certain nodes, but a subsequent Create operation on the
same key still succeeds (instead of returning an error) be-
cause it is invoked on a different set of nodes which do not
have the key.

To reduce the likelihood of inconsistent roots, each ap-
plication specified key k is internally re-mapped to n keys
(k1, k2...k,), which are then stored (together with the asso-
ciated value) at n different locations on the P2P ring. Appli-
cations can choose this degree of re-mapping for each key,
and expect DHT operations to separately provide return val-
ues for each re-mapped key. This allows applications to im-
plement schemes like majority vote on results obtained for
each such re-mapped key. For a fault to occur now, the roots
of as many as half (more than one) of the re-mapped keys
have to be inconsistent.

Furthermore, a new P2P node joining the overlay is not
allowed to perform any DHT operation until it gets con-
nected correctly, i.e. it forms connections with its nearest
left and right neighbors on the ring. This is because an in-
correctly connected node has an inconsistent view of the
ring and observes roots for the DHT keys that are inconsis-
tent with those observed by existing nodes. We have ob-
served that it takes about 5 seconds on average for a new
node to get correctlty connected.

5. WOW lifecycle management

Based on the API presented above, we now describe
techniques that facilitate the deployment and management
of WOWs by enabling 1) nodes of a WOW to dynamically
obtain IP addresses using existing DHCP clients but with-
out relying on centralized DHCP servers, and 2) different

2Although Brunet P2P library provides robust support for NAT traver-
sal, we still do not rule out NATs which cannot be traversed
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WOWs to multiplex a single overlay network while inde-
pendently managing their own virtual IP address spaces.

The functionality achieved by our system is comparable
with tasks an administrator would typically perform to setup
a private network. Following the setting up of switches
and cables, a private IP address range is set aside. Hosts
connecting to the private network are assigned unique IP
addresses from this IP adrress range. To enable dynamic
network configuration of hosts connecting to the network,
one or more DHCP servers are configured with the list of
assignable IP addresses and other network parameters. New
hosts discover DHCP servers through LAN broadcasts, ac-
quire leases on IP addresses, which they renew periodically.
For exchange of packets between hosts, their IP addresses
must be resolved to their hardware addresses through Ad-
dress Resolution Protocol (ARP). The network swicthes are
automatically configured for routing packets through their
ports.

In contrast, to setup a new WOW, a user is only required
to create an IPOP namespace with a unique identifier and
a private address space. The namespace identifier is spec-
ified inside the IPOP configuration of the WOW VM ap-
pliance image. Each deployed instance of the appliance
on bootup retrieves the namespace information (virtual IP
adress range) and configures itself with a unique virtual IP
address. These steps are described below.

5.1. Creating an IPOP namespace

Creating an IPOP namespace is a simple procedure: ex-
ecuting a simple program and providing information about
the namespace (assignable IP addresses, netmask and lease
times). This program is already initialized with Uniform
Resource Indicators (URIs, [23]) of nodes in the universal
overlay and starts up a P2P node that connects to that over-
lay. The node tries to insert the namespace information into
the DHT (using Create) with a randomly chosen identifier
as the key. If the key already exists, the Create returns an
error and the program retries with a different identifier until
it succeeds. Since the DHT does not store objects indefi-
nitely, this object holding the namespace information has to
be periodically recreated (using Recreate). This namespace
identifier is specified inside the IPOP configuration of the
WOW appliance image.

5.2. Dynamic host configuration

In [43], IPOP supports dynamic virtual IP configuration
using unmodified DHCP clients. This is achieved by captur-
ing DHCP request packets from the tap and making SOAP
requests to a publicly accessible server that stores the list of
assignable IP addresses and active leases, and eventually in-
jecting DHCP reponse packets to the tap. The SOAP server

can be a single point of failure. Our decentralized DHCP
uses the DHT as distributed database for storing all infor-
mation the SOAP server would otherwise keep, assignable
IP addresses and active leases on IP addresses.

On intercepting a DHCP packet, IPOP retrieves infor-
mation about its namespace (assignable IP addresse range,
netmask, lease times) from the DHT (using a Get) on the
namespace identifer as the key. It then chooses a random IP
address from that range, belonging to the namespace, and
attempts to create a DHT entry (using a Create) with: com-
bination of namespace identifier and the guessed IP address
as the key, a randomly chosen password, and its P2P address
as the value. The entry is successfully created only if there
is no other entry with the same key. This prevents IP ad-
dress conflicts between WOW nodes belonging to the same
namespace. In case Create returns an error, IPOP tries an-
other (randomly chosen) IP address until it eventually suc-
ceeds. The DHCP response packet with information about
the lease is written to tap. The password is recorded for
subsequent operations on the key.

The entry is only created with a time-to-live (TTL) equal
to the lease time for that namespace, and thus needs to be
recreated (using a ReCreate) periodically. This process is
again triggered by the DHCP client, which attempts to re-
new a virtual IP lease after half the lease time has elapsed.
In this case, IPOP attempts to ReCreate the same DHT key
corresponding to the virtual IP address bound to tap.

For reasons stated earlier, our DHT implementation
maps each application specified key k to 5 different keys
(k1, k2, k3, k4, k5) and performs the corresponding opera-
tion on each of these keys. To consider a Create or Recre-
ate to have successfully happened, we expect at least 3 of
these operations to be successful. Otherwise, the operation
is considered to have failed and a different IP address is
tried.

Figure 3 shows a timeline of events, from the startup of
the IPOP and DHCP client (dhclient) process, to having
an IP address bound to tap. It should be noted the IP ad-
dress lease acquistion cannot start until the associated P2P
node is correctly connected (i.e., with left/right neighbors).
Once correctly connected, IPOP tries different virtual IP ad-
dresses (one-by-one) until it is assured that no other node
within the same IPOP namespace has acquired the same IP
address. It is possible to have a large IP address range for
the private network, which reduces the chances of two IPOP
nodes guessing the same IP address.

5.3. Resolution of virtual IP to P2P address

Whenever an IPOP node has a virtual IP packet to send
out, it must first must learn the P2P address of the IPOP
node associated with the destination IP address. This map-
ping is created in the DHT when the destination node ac-
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quires its virtual IP address. It can be retrieved by the source
IPOP node (using Get) in less than a second and then cached
locally. During this short period (less than a second), a few
packets to that virtual IP address are dropped at the source
IPOP node. As shown in [23], most TCP/IP based appli-
cations communicating over the IPOP virtual network are
resilient to such transient packet losses. This process of
resolving a virtual IP address to a P2P address is called
"Brunet-ARP".

time to acquire a virtual IP address (T2)

time to join the ring (T1) Attempts to acquire a virtual IP
address

t = 0
1. IPOP starts
2. dhclient starts

t = Ti
Node connects to its
left and right
neighbors on the ring

t = T2
IP addess
bound to tap

(since the leases are not relinquished), and this prevented
the desktop B from acquiring the same IP address over dif-
ferent trials. This mapping between virtual IP address and
P2P address is arbirary and is discovered automatically in
every trial (as described in Section 5.3) before ping packets
start flowing between the desktops over the virtual network.

Figure 4 shows the cumulative distribution of delay seen
by the DHCP client (dhclient) to acquire an IP address on
the tap. We observe that in 90% of the cases, DHCP pro-
cess finishes within 30 seconds of IPOP and DHCP client
startup. As shown in Figure 3, this delay depends on (1)
time taken for the IPOP nodes to get correctly connected
and (2) number of differrent IP addresss that are tried. The
cumulative distributions of these components are shown in
Figure 5 and Figure 6.

In most cases, DHCP succeeds to acquire the first IP ad-
dress it tries. However, despite picking up a large IP ad-
dress range, we did observe a samples where more than one
IP addresses were tried. We explain this as follows. Due to
P2P message losses, the IPOP node doing DHCP did not get
sufficient results to consider a Create or Recreate success-
ful. Our implementation conservatively assumed a failure
and tries a different (randomly chosen) IP address until it
eventually succeeds. We are working on making our imple-
mentation more resilient to such P2P message losses.

Figure 3. Events leading to virtual IP address
configuration of tap interface.

1.2

Cumulative distribution of time to acquire a virtual
IP address

In this section we present an experimental evaluation of
our decentralized technique for virtual IP address configura-
tion. We measure the delay incurred from IPOP and DHCP
client startup to the point that an IP address is bound to the
tap. We set up a bootstrap overlay network of 100 P2P
nodes on PlanetLab, and create an IPOP namespace with
over 650000 assignable IP addresses, and and a lease time
of 12 hours.
We performed an experiment between two desktop ma-

chines A and B as follows. On desktop A, we start IPOP
and DHCP client so that it acquires a virtual IP address,
which remains fixed during the experiment. On the desktop
B, we proceeded an an iterative process of: (1) start IPOP
node and DHCP client (2) wait until an IP address is bound
to tap (3) start pinging the virtual IP address of desktop A
for 200 seconds (4) kill IPOP and DHCP client on B. This
process was repeated 250 times.

In each trial of the experiment, the IPOP node on desk-
top B had a different (randomly chosen) P2P address. The
virtual IP leases from different trials persisted in the DHT

20.8

._
0.6

O
0.4

0.2

100 150

time (seconds)

Figure 4. Time taken by a new IPOP node to
acquire a virtual IP address (T2 in Figure 3).

7. Conclusions and future work

In this paper, we describe techniques that facilitate de-
ployment of isolated WOWs by individual users without re-
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Figure 5. Time taken by a new P2P node to
get connected to its left and right neighbors
in the ring (Ti in Figure 3).

quiring any bootstrapping infrastructure or centralized com-
ponents. We propose a descentralized DHCP protocol for
virtual IP address management within a WOW that lever-
ages the DHT functionality of the P2P network. Experi-
ments show that a new WOW node can acquire a unique
virtual IP address withing 20-30 seconds on average.

In future work, we plan to integrate additional decentral-
ized configuration techniques with WOW. In particular, our

Condor-based WOW deployments currently are configured
from a central server, and we are investigating ways to self-
configure Condor pools leveraging the DHT.
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