
 1

Archer: A Community Distributed Computing Infrastructure for
Computer Architecture Research and Education

Renato Figueiredo, P. Oscar Boykin, José A. B. Fortes, Tao Li,

Jie-Kwon. Peir, David Wolinsky (University of Florida)
Lizy John (University of Texas at Austin)

David Kaeli (Northeastern University)
David Lilja (University of Minnesota)

Sally McKee (Cornell University)
Gokhan Memik (Northwestern University)

Alain Roy (University of Wisconsin-Madison)
Gary Tyson (Florida State University)

Abstract
This paper introduces Archer, a community-based computing resource for computer
architecture research and education. The Archer infrastructure integrates virtualization and
batch scheduling middleware to deliver high-throughput computing resources aggregated from
resources distributed across wide-area networks and owned by different participating entities in
a seamless manner. The paper discusses the motivations leading to the design of Archer,
describes its core middleware components, and presents an analysis of the functionality and
performance of a prototype wide-area deployment running a representative computer
architecture simulation workload.

1. Introduction

Modern computer architecture research is driven by quantitative analysis. Leading-edge
research requires detailed, cycle-accurate evaluation of many benchmark applications with
several simulated configurations and is thus tightly dependent on the availability of high-
throughput computing (HTC) systems. Many research groups are hindered in their ability to
perform research because of lack of access to such resources. This is because, in addition to
hardware costs, the investment of time and funds to train and educate students and staff to
deploy, maintain and effectively use such systems presents a significant barrier of entry,
especially for small- to medium-sized research groups. This paper describes Archer1, a
community-based computing resource for computer architecture research and education.
Archer integrates technologies for resource virtualization, batch job schedulers, and multi-
institution collaboration, in order to create:

• A computing infrastructure which scales in capacity with community buy-in: Archer starts
from a seed set of cluster resources deployed at the Florida Statue University, Northeaster
University, University of Texas at Austin, Northwestern University, University of Minnesota,
Cornell University, and University of Florida. Subsequently, each new user joining Archer
with one or more desktops or servers seamlessly contribute to its aggregate capacity.

• A system that is easy for non-experts to join and use: Archer relies on packaging and
distribution of software environments for HTC as self-configuring virtual networks of virtual
appliances, which can easily be installed by individual users in their own resources. Surveys
from users of the virtual appliance used as a basis for Archer shows that users with no prior
experience can typically install and use the system within 30 minutes.

1 The Archer community infrastructure and Wiki are accessible at: http://archer-project.org

 2

• A community-based repository of simulation environments: Archer allows sharing not only of
hardware resources, but also of full-fledged software simulation modules consisting of
application executables, support scripts, input and output data sets, and usage documents.
In doing so, Archer facilitates the dissemination of useful tools and data sets, and foster
creation of reproducible simulation experiments.

The community-driven features in Archer provide a new way to swiftly create grids of medium
size, differentiating it from related infrastructures such as the Open Science Grid (OSG) and
TeraGrid, in three important ways. First, Archer enables seamless addition of resources by the
community, at a fine grain (at a minimum a single desktop computer by an individual user),
within minutes. This is in contrast to OSG and TeraGrid, where individual resources cannot be
easily incorporated, and to gain access to resources often takes days or weeks. Second, Archer
deployments are virtualized and can be easily replicated, both at a smaller scale within an
institution, and at a multi-institution scale by research communities. Archer’s replicability
enables research groups to easily bring up local Archer pools and be assured of preemptive
access to their resources when needed, while providing opportunistic cycles to the community.
This is in contrast to OSG and TeraGrid, which are large-scale shared physical resources not
easily replicable at a small scale on local resources. Third, Archer empowers entry-level users
to quickly learn HTC skills, from basic to advanced, with a combination of examples tailored to
computer architecture and an interactiveinterface hosted on their own workstations. This is in
contrast to OSG and TeraGrid, where entry-level users need to learn how to operate resources
that are hosted remotely, using non-interactive sessions and unfamiliar interfaces for data
transfer, login, and job scheduling. Figure 1 presents an overview of the Archer infrastructure.

2 Background and motivations
In modern computer architectures, processor performance, power consumption and cost are

significantly affected by design parameters and target workloads. Thus, researchers rely on
simulation environments to evaluate the merit of a new idea before it is implemented in
hardware. In addition, computer architects depend on high-fidelity, cycle-accurate simulation
environments (including the simulators themselves and associated tools such as compilers and
datasets). Because these are complex and time-consuming to develop, researchers have relied
on open-source extensible simulation environments, benchmarks and datasets developed by
others in the community – such as SimpleScalar [5], SESC [29], PTLsim, RSIM, Wisconsin
WARTS, among others – as well as on open-source modules that plug in to commercial
systems, such as GEMS for Simics.

Computer architecture researchers’ broad need to access high-performance resources and
share simulation environments are addressed in an integrated manner by Archer. We believe
that the availability of Archer encourages collaboration among groups by greatly simplifying the
dissemination of applications, and increases the competitiveness of smaller research groups by
providing seamless access to hardware resources and software environments. To illustrate use
cases and the unique capabilities enabled by Archer, consider the scenarios described in Table
1 and illustrated by the following three fictional examples:

Scenario 1: High-throughput cycles for research: Graduate student Maria at Florida State U. is
preparing a paper on a novel cache design for submission to a conference. She has developed
a simulator which models her design. Each simulation takes on average 12 hours to complete
on her desktop, and she wishes to analyze 10 configurations on 16 SPEC CPU benchmarks.
The time to run this experiment on her desktop is prohibitively large (80 days). She downloads,
instantiates an Archer appliance, copies her Linux simulator binary to the VM, prepares a
Condor job file (building on a tutorial), and queues 160 jobs. Archer resources are utilized at
75% capacity by other jobs; still, her simulations are expected to finish within a day.

 3

Scenario 2: Local resource pooling and community sharing: A group at Northeastern University
has a local set of resources, time-shared and scheduled via ad-hoc scripts developed by
students. Because the scripts do not provide load balancing, often resources become
contended. They try out the Archer VM appliance and decide to join. Interacting with Archer
management, they set up a local Condor pool. Their resources are load-balanced, and when not
in use, they become available to other Archer users through Condor flocking.

Scenario 3: Collaborative development and dissemination of tools and experiments: A joint
project between Cornell and Northwestern entails the development of an environment with
extensions to the SESC simulator. Graduate students Carol at Cornell and John at NWU begin
development by downloading code from the SESC software repository onto Archer appliances.
Carol implements and tests new features in the simulator within her VM, creates Condor scripts
that vary a parameter of interest, and places her code and scripts in a shared repository linked
from the Archer Wiki. John uses Carol’s code to perform experiments of his own. After several
iterations, they gather data for their experiments and publish a paper highlighting their findings.
They make the source code snapshot, benchmarks, and Condor scripts available on the Archer
Wiki, enabling others to repeat and build upon their experiment.

Figure 1: Overview of Archer. The seed resources consist of seven clusters at Cornell, Florida State,
Northeastern, Northwestern, U. Minnesota, U. Texas at Austin, and U. Florida. In addition to the hardware
infrastructure, Archer provides virtual appliance and job scheduling software and ready access to user-
contributed data and applications. Users from non-seed sites build upon these elements to increase
available resources when they join the system.

Archer seed resources

Local resource pools:
servers, clusters,
desktop labs

User
desktops

Self-configuring
Virtual appliances

Deployment, support,
configuration, troubleshooting

Archer software and
management

Voluntary
resources

Web portal,
documentation,

tutorials

Community-contributed
content: applications,
datasets

Archer seed resources

Local resource pools:
servers, clusters,
desktop labs

User
desktops

Self-configuring
Virtual appliances

Deployment, support,
configuration, troubleshooting

Archer software and
management

Voluntary
resources

Web portal,
documentation,

tutorials

Community-contributed
content: applications,
datasets

 4

Table 1: Scenarios in which users with different levels of expertise can use Archer.

User Use case scenario Resources and interfaces used

Novice Casual/trial usage of the system (e.g.,
homework assignments in undergraduate
and graduate education).

Access pre-built tools, tutorials, educational
modules through interactive Web portal. No
local software required; only Web browser.

Entry-level Undergraduate research; run small-scale
experiments on Archer resources;
graduate-level class projects.

Advanced Graduate research; run medium/large-
scale experiments on Archer resources.
Develop/modify simulation tools.

Baseline Archer appliance installed on
personal workstation. Entry-level user
leverages existing simulation tools and job
submit scripts. Advanced user builds
simulation tools and scripts of their own.
Software installation time: 15-30 minutes.

Research

groups

Use Archer software to manage local
resources (e.g. desktop grids); deploy
local/multi-site Archer pools with high
priority for group users.

Customized Archer appliance installed on
personal workstations of researchers, lab
PCs, servers and clusters. Customization
and installation times: hours to days.

3 Archer Infrastructure
3.1 Overall design approach

The Archer infrastructure is a distributed system, motivated by scalability, sustainability and
dependability arguments: new resources that join increase the system’s capacity, the
infrastructure is sustained by the community and does not overburden a single site with hosting,
and the system can withstand hardware/software failures in individual sites. A distributed
system, however, poses challenges in management which need to be addressed. Our system
design builds on virtualization and autonomic computing techniques that specifically target ease
of management. They make it possible to have effective centralized management of
decentralized resources, similarly to successful infrastructures such as PlanetLab [16].

The Archer middleware integrates easy-to-install, self-configuring virtual machine appliances
with virtual networks to create scalable community pools of virtual resources. Each Archer
resource is a virtual appliance that is preconfigured with an installation of a Linux O/S and
distributed computing middleware (Condor [15]). Archer virtual appliances are interconnected by
the IPOP self-configuring virtual network overlay [10][11]. The choice of virtual appliances,
virtual networks and Condor is motivated by the following reasons:

1. Ease of deployment: Virtual appliances can be easily deployed on typical x86-based
machines regardless of their existing hardware/software configuration. Today’s VM
technologies are mature and several free virtualization options exist for Windows, Linux
and MacOS systems (including VMware Player/Server, KVM, VirtualBox and Xen).
Experiments with our prototype environment show that Archer virtual appliances can be
deployed typically within 30 minutes by entry-level users.

2. Software compatibility: Virtual appliances can run unmodified, binary software, including
a wealth of existing computer architecture simulators and support tools. Representative
examples include SESC, SimpleScalar, PTLsim and Simics.

3. Seamless connectivity: The IPOP virtual network overlay which runs on Archer
appliances provides bidirectional IP connectivity across all appliances. The virtual
network supports nodes behind firewalls and network address translators (NATs) typical

 5

of educational institutions and Internet service providers. The virtual network is self-
organizing and packaged with the virtual appliance in a way that does not require any
configuration from end users.

4. Scalable and robust job scheduling: Condor is a robust job scheduler used in thousands
of resources across the world. It supports both existing and Condor-linked applications,
facilitates the queuing and management of large numbers of jobs, and has been
successfully demonstrated to be effective in a variety of computer architecture studies.

5. Isolation: Virtual appliances are isolated from their hosts. Undesirable behavior is
confined to a VM, which can be easily shut down and restarted from scratch by its user.

3.2 Archer core middleware

3.2.1 Virtual machines
Classic system VMs [20] were originally developed to enable efficient time-sharing of

mainframe computers by multiple independent applications and O/Ss [13]. They are
implemented by means of VM monitors (also known as hypervisors), which are responsible for
intercepting and emulating the execution of privileged instructions that deal with shared
resources: CPU, memory and I/O. VM technologies have evolved quite rapidly in recent years
[17][9]. VMs now can achieve performance on par with non-virtualized systems [4], and are
increasingly pervasive in commodity systems; virtualization extensions are shipped with all Intel
and AMD x86 processors [26], virtualization software is available from a variety of vendors
(VMware, Miscorsoft, Parallels) and in the open source realm (Xen [4]; KVM, which has already
been integrated with the Linux kernel; and VirtualBox).

The isolation and decoupling properties of VMs are particularly attractive in distributed
systems [1]. Virtual machines assist in the deployment of compute nodes because of their
decoupling from the operating system running on the physical machine. VMs offer unique
opportunities for load balancing and fault tolerance that build upon growing support for
checkpointing and live migration of running VMs [7]. Furthermore, the ability to package VM
software in easy-to-deploy virtual appliances [19] is attractive as a means to disseminate (and
maintain) complex, preconfigured software and middleware stacks.

3.2.2 Virtual networks
Complementary to VMs, virtual networking enables isolated multiplexing of private networks

providing the TCP/IP environment for communication among participating nodes [14][22][25].
Network virtualization techniques for distributed grid computing have been shown to provide
applications their native network environments, despite the idiosyncrasies of the real physical
network—in particular, the increasing use of Network Address Translation (NAT) and IP
firewalls, recognized as a hindrance to programming and deploying distributed computing
applications [21], does not impede the use of virtual network-based systems.

Archer VMs are decoupled not only from the physical hosts by means of the VM monitor, but
also from the physical network by means of tunneling. Once instantiated, an Archer VM
appliance is able to self-configure and maintain connections to other appliances via IPOP
tunnels. The resulting system is akin in functionality to a Network of Workstations (NOW [2]); we
term it a Wide-area Overlay of virtual Workstations (WOW) because both compute nodes and
network links are virtualized, and resources are distributed across wide-area domains. Central
to the scalability of WOWs are peer-to-peer discovery and routing techniques described in detail
in [10][11].

 6

3.2.3 Condor

Condor is an established distributed computing environment appropriate for building an ad-hoc
HTC grid like Archer. The Condor Team has been engaged in constant research, software
development and deployment of Condor for nearly 20 years [15]. Throughout this time, Condor
has evolved from a local batch management system into a full-fledged distributed computing
environment capable of supporting wide-area grids, complex workflows, compute-intensive
applications, and data placement reliably, scalably, and with fault tolerance [24]. It has facilities
for resource monitoring, job scheduling, and workflow supervision. Condor provides easy
access to large amounts of dependable and reliable computational power over prolonged
periods of time by effectively harnessing all available resources, including both dedicated
compute clusters and non-dedicated machines under the control of interactive users or
autonomous batch systems. Current statistics show that Condor has been deployed on well
more than 100,000 computers in well more than 1400 Condor pools [28].

As part of the Grid Laboratory of Wisconsin (GLOW), Condor has built a local environment
similar to the proposed Archer employing multiple Condor pools connected together to share
resources between different research groups. Archer builds on this experience to create a
similar grid across multiple institutions in a wide-area network. In particular, we leverage these
features to deploy multiple Condor pools where priorities for remote and local users can be
differentiated—local users can be in control of the policies that assign priorities and be able to
configure higher-priority and preemptive scheduling to local users over remote users. This
differentiation is an important feature of the Archer system, in that it creates an incentive for
sites to join the infrastructure with several nodes. The pre-packaged Archer VMs provide an
easy way to set up local Condor pools to manage jobs submitted by local users of a site, which
are guaranteed to gain high-priority access to their resources and access to external Archer
resources through flocking, while making their resources available to remote Archer users when
they are idle. This kind of deployment with multiple shared pools where local control and priority
is retained by individual groups has been an important feature of the GLOW infrastructure at
Wisconsin, and we expect it to create further incentives for the growth of Archer.

3.3 Security considerations

By utilizing VMs, virtual networks and Condor, Archer provides several levels of isolation
among users and with respect to the physical infrastructure. The only access that external users
have to any Archer VM is through Condor, as an unprivileged user “nobody”—no direct logins
are allowed. The VM runs only essential middleware services to minimize the possibility of
privilege escalation within the VM. Even if privilege escalation does happen, users are confined
to a virtual machine sandbox and do not have direct access to the underlying physical
resources.

The TCP/IP traffic that is generated by a VM is completely confined to the virtual network, as
described in [27]. Archer hosts are authenticated and traffic is encrypted end-to-end by
deploying an security stack in each VM based on public key cryptography (PKI). In other words,
Archer VMs are only able to communicate with other Archer VMs, preventing the use of Archer
resources to initiate denial of service or other kinds of attacks to physical resources. There are a
couple of exceptions to this rule, which are necessary for Archer VMs to be accessible from
physical resources so users can interact with them. We establish communication channels
between Archer VMs and physical hosts using host-only virtual networks (software-emulated
networks confined to a single host) that are carefully controlled to provide only two types of
services: secure shell logins, and access to user data within the VM through Samba and NFS
file systems.

 7

In a typical usage case of a Windows-based desktop, a user deploys an Archer VM on their
desktop, interacts with the X11-based graphical user interface in the VM through its console,
logs into the VM from the physical host using SSH, and browses a Samba network share
exported by the appliance (accessible only within the host) to copy data to and from the VM.

Security patches are regularly applied to the baseline Archer VMs and made available for
upgrades; the process of upgrading VM appliances is facilitated by the use of UnionFS stacked
file systems, whereby it is possible for users to upgrade the base system configuration of the
appliance by simply replacing a virtual disk file and rebooting the system. User data and local
configurations remain unmodified in the VM after the upgrade as they are stored in different
stacks of the file system [27].

3.4 Performance considerations

The advantages in isolation, security and management provided by VMs connected over
virtual networks have associated performance overheads due to the VM and virtual network
tunneling. However, these overheads are often small for CPU-intensive applications which are
typical in computer architecture simulation. Studies have quantified this overhead under
different scenarios, showing that the overhead CPU-intensive applications such as SPEC
benchmarks is a few percent points [4][8], and in [27] it has been shown that the virtual/physical
overhead for a Xen VM connected to a virtual network approximately 1% for a 37-minute
Condor-scheduled SimpleScalar run (sim-cache, “go” benchmark). The performance of Condor
in VM environments is also studied in [18].

The following experiment illustrates the capabilities and performance of the middleware and
software of Archer in the context of computer architecture research and education. We have run
a simulation experiment in our prototype Archer deployment, in which 200 jobs were submitted
from a virtual appliance. Each job consisted of a cache simulation running 1 billion instructions
of the SPEC benchmark “go” for different cache configurations arising from varying level-1 and
level-2 cache sizes and associativities. The jobs were submitted from a laptop running the
Archer virtual appliance behind a broadband (1MB/s) network provider. The virtual appliances in
which the jobs executed were distributed across five universities (including U. Florida, U.
Minnesota, Northwestern University), making up a pool of 56 VMs.

Figure 2: Distribution of simulation
completion times for an experiment with
200 SimpleScalar sim-cache jobs
executed on a 56-node prototype Archer
system. The median and average single
job execution times are 4080 and 4320
seconds, respectively. In steady state
the system was completing jobs at an
approximate rate of one job every 90
seconds, compared to the throughput of
one job per 42 minutes of a single job
running on a single resource.

The total execution time to finish

all 200 jobs was approximately 7.5 hours. If these jobs were to be executed on a single node,
the execution time would have been 9.5 days assuming the median single job times measured
across the 56 heterogeneous resources. Figure 2 shows a plot of the cumulative distribution of

Cumulative distribution, task completion times

0

50

100

150

200

250

0 5000 10000 15000 20000 25000 30000

Time (s)

N
um

be
r o

f t
as

ks
 c

om
pl

et
ed

sim-cache, go, 1B
instructions

 8

number of jobs completed as a function of time. The virtualization overhead for this application
using VMware-based VMs was measured to be 11 percent, which is acceptable given the goal
of achieving high throughput. Reducing the overhead introduced by virtual machines is an active
area of research and development in academia and industry, and the expected trend is for
these overheads to be reduced. With the use of a different VM technology (Xen) which we also
plan to support on Archer, the overhead due to virtualization for this simulator is only 1% [27].

4 Related Work
Inspired by projects which have been extremely successful at bringing large number of

voluntary resources, such as SETI@home [3] and other BOINC-based (Berkeley Open
Infrastructure for Network Computing) projects, Archer also allows nodes to join the
infrastructure seamlessly. The key difference in Archer is that, in BOINC-based systems,
applications need to be modified to use their application programming interfaces, and users are
constrained to donating resources only. In contrast, in the Archer infrastructure, the computing
node sandboxes are system VMs capable of running existing, unmodified binary applications,
which is critical for adoption by the computer architecture community. Furthermore, users are
able to both donate and make use of Archer resources through their virtual appliances.

Archer is closely related to PlanetLab [16] (www.planet-lab.org) with respect to how
resources are distributed and managed. PlanetLab is also a distributed system where individual
researchers across many sites contribute to the overall aggregate capacity of the system by
providing locally managed physical hardware (805 nodes at 402 sites worldwide, as of July
2007, while the middleware and software is managed in a centralized manner (by PlanetLab
Central). However, Archer differs fundamentally from PlanetLab in purpose. PlanetLab is a
generic testbed for experimental networking research and does not support load balancing of
jobs, while Archer targets compute-intensive applications. Archer is also different in that it does
not require dedicated non-firewalled physical machines.

RAMP (Research Accelerator for Multiple Processors, ramp.eece.berkeley.edu) is a related
resource for the computer architecture community. The focus of RAMP is on the use of
programmable logic to speed up the simulation of large-scale multiprocessors. While RAMP
provides the potential for large speedups over software simulation, it requires users to develop
their simulation infrastructure to match the specific RAMP software and hardware stack. Archer,
in contrast, is general-purpose and supports a wealth of unmodified single- and multi-processor
simulation tools that computer architecture researchers already use in their own local
environments (e.g. SimpleScalar [5], SESC [29]), offering a lower barrier of entry to its use.
Nonetheless, Archer and RAMP are complementary resources in that they focus on different
aspects of quantitative computer architecture research: general-purpose simulation in Archer,
high-performance multi-processor simulation in RAMP.

Archer is related to OSG (www.opensciencegrid.org), where resources are pooled across
institutions using a consistent software base packaged for ease of configuration, deployment
and maintenance of middleware (Virtual Data Toolkit, VDT), and TeraGrid (www.teragrid.org), a
high-performance infrastructure well-suited to run large parallel jobs. Aside from the
fundamental differences in goals outlined in Section C.1, Archer differentiates from these
systems with respect to its technology: the use of VM-based appliances for software distribution
and self-configuring virtual networking to facilitate the addition of resources to the infrastructure.
Also, Archer is targeted at serving a single rather than multiple communities, which enables its
content to be tailored to the interest of computer architects by the architecture community.

Archer is similar to Intel’s NetBatch infrastructure in its support for high-throughput simulation
workloads. NetBatch is also a distributed system consisting of CPUs distributed across multiple

 9

sites, managed by an in-house batch scheduler [6]. It has been highly successful in providing
batch computing cycles for a variety of applications at Intel: it started with hundreds of
computers in 1990, and over the course of ten years grew to 10,000 nodes across 25 sites,
logging 2.7 million jobs per month in their queues [12]. Archer is different from NetBatch in that it
is not internal to a private corporate network, allowing individuals to easily join and contribute
resources to the system.

Acknowledgments
Archer is supported by the National Science Foundation under CRI Grants 0751112,

0750847, 0750851, 0750852, 0750860, 0750868, 0750884, and 0751091. Any opinions,
findings and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National Science Foundation.

References
[1] S. Adabala, V. Chadha, P. Chawla, R. Figueiredo, J. A. B. Fortes, I. Krsul, A.

Matsunaga, M. Tsugawa, J. Zhang, M. Zhao, L. Zhu, and X. Zhu, “From Virtualized
Resources to Virtual Computing Grids: The In-VIGO System”, To appear, Future
Generation Computing Systems, special issue on Complex Problem-Solving
Environments for Grid Computing, David Walker and Elias Houstis, Editors, 21(6), April
2005.

[2] T. Anderson, D. E. Culler, and D. A. Patterson, “A case for network of workstations:
NOW”, IEEE Micro, February 1995.

[3] D. Anderson, J. Cobb, E. Korpella, M. Lebofsky, and D. Werthimer, “Seti@home: An
experiment in public-resource computing”, Communications of the ACM, 11(45):56–61,
2002.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt
and A. Warfield, “Xen and the Art of Virtualization”, Proceedings of the ACM Symposium
on Operating Systems Principles (SOSP), October 2003.

[5] D. Burger, T. Austin, S. Bennett, “Evaluating Future Microprocessors - The Simplescalar
Toolset”, Technical Report #1308, University of Wisconsin, Computer Science Dept.,
July 1996.

[6] D. Clark, “Face-to-face with Peer-to-Peer Networking”, IEEE Computer, 34(1), January
2001, pp 18-21.

[7] C. Clark, K. Fraser, S. Hand, J. Hansen, E. Jul, C. Limpach, I. Pratt, and A. Warfield,
“Live migration of virtual machines”, In Proc. 2nd Symp. on Networked Systems Design
and Implementation (NSDI), Boston, MA, May 2005.

[8] R. Figueiredo, P. A. Dinda, J. A. B. Fortes, “A Case for Grid Computing on Virtual
Machines”, Proc. 23rd IEEE International Conference on Distributed Computing Systems
(ICDCS), May 2003.

[9] R. Figueiredo, P. Dinda, J. Fortes, “Resource Virtualization Renaissance”, IEEE
Computer Magazine 38(5), Special Issue on Virtualization, pp. 28-31, May 2005.

[10] A. Ganguly, A. Agrawal, P. O. Boykin, R. J. Figueiredo, “IP over P2P: enabling
self-configuring virtual IP networks for grid computing”, Proceedings of the IEEE
International Parallel and Distributed Processing Symposium (IPDPS), 2006.

 10

[11] A. Ganguly, A. Agrawal, P. O. Boykin, R. J. Figueiredo, “WOW: Self-organizing
Wide Area Overlay Networks of Virtual Workstations”, Proceedings of the IEEE
International Symposium on High Performance and Distributed Computing (HPDC),
2006.

[12] P. Gelsinger, Keynote Speech, Intel Developer’s Forum, Fall 2000, San Jose,
CA, August 24 2000 (transcript:
http://www.intel.com/pressroom/archive/speeches/pg082400.htm, accessed 11/2/2006)

[13] R. Goldberg. “Survey of virtual machine research”. IEEE Computer Magazine,
7(6):34-45, 1974.

[14] X. Jiang, Dongyan Xu: “VIOLIN: Virtual Internetworking on Overlay
Infrastructure”, Proceedings of ISPA 2004: 937-946

[15] M. Litzkow, M. Livny and M. W. Mutka, “Condor: a Hunter of Idle Workstations”,
Proc. 8th Int. Conf. on Distributed Computing Systems, pp104-111, June 1988.

[16] L. Peterson, T. Anderson, D. Culler, T. Roscoe, “A Blueprint for Introducing
Disruptive Technology into the Internet”, Proc. of the 1st ACM Workshop on Hot Topics
in Networks (HotNets-1), Princeton, NJ, Oct. 2002.

[17] M. Rosenblum and T. Garfinkel, “Virtual Machine Monitors: Current Technology
and Future Trends”, IEEE Computer 38(5), pp. 39-47, May 2005.

[18] S. Santhanam, Pradheep Elango, Andrea Arpaci-Dusseau, and Miron Livny,
"Deploying Virtual Machines as Sandboxes for the Grid", WORLDS 2005, San
Francisco, CA, December 2004

[19] C. Sapuntzakis, D. Brumley, R. Chandra, N. Zeldovich, J. Chow, M. S. Lam, and
M. Rosenblum, “Virtual Appliances for Deploying and Maintaining Software”, In
Proceedings of the 17th Large Installation Systems Administration Conference (LISA
2003), pages 181-194, October 2003.

[20] J. Smith, R. Nair, “Virtual Machines: Versatile Platforms for Systems and
Processes”, Morgan Kaufmann Publishers, 2005, ISBN 1-55860-910-5.

[21] S. Son, B. Allcock, and M. Livny. “Codo: Firewall traversal by cooperative on-
demand opening”, In Proc. of 14th Intl. Symp. on High Performance Distributed
Computing (HPDC), 2005.

[22] A. Sundararaj, P. Dinda, Towards Virtual Networks for Virtual Machine Grid
Computing, Proceedings of the third USENIX Virtual Machine Research and Technology
Symposium (VM 04), May, 2004

[23] D. Thain, Todd Tannenbaum, and Miron Livny, "Distributed Computing in
Practice: The Condor Experience" Concurrency and Computation: Practice and
Experience, Vol. 17, No. 2-4, pages 323-356, February-April, 2005.

[24] D. Thain, Todd Tannenbaum, and Miron Livny, "Distributed Computing in
Practice: The Condor Experience" Concurrency and Computation: Practice and
Experience, Vol. 17, No. 2-4, pages 323-356, February-April, 2005.

[25] M. Tsugawa and J. A. B. Fortes, “A virtual network (ViNe) architecture for grid
computing”, Proceedings of the IEEE International Parallel and Distributed Processing
Symposium (IPDPS), 2006.

 11

[26] R. Uhlig, G. Neiger, D. Rodgers, A. Santoni, F. Martins, A. Anderson, S. Bennett,
A. Kagi, F. Leung and L. Smith, “Intel Virtualization Technology”, IEEE Computer 35(5),
pp. 48-56, May 2005.

[27] D. Wolinsky, Abhishek Agrawal, P. O. Boykin, Justin Davis, Vladimir Paramygin,
Y. Peter Sheng, Renato J. Figueiredo, “On the Design of Virtual Machine Sandboxes for
Distributed Computing in WOWs”, to appear, Proceedings of the First Internation
Workshop on Virtualization Technology in Distributed Computing, Tampa, FL, Nov. 2006
(held in conjunction with Supercomputing 2006).

[28] Web site, http://www.cs.wisc.edu/condor/map/. Statistics from November 6,
2006.

[29] Web site, SESC simulator; http://sesc.sourceforge.net (last accessed Oct. 2006).
Developed by Jose Renau, Basilio Fraguela, James Tuck, Wei Liu, Milos Prvulovic, Luis
Ceze, Smruti Sarangi, Paul Sack, Karin Strauss and Pablo Montesinos.

