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Abstract “Give a man a fish, feed him for a day. Teach
a man to fish, feed him for a lifetime” – Lau Tzu

Large-scale grid computing projects such as Tera-

Grid and Open Science Grid provide researchers vast
amounts of compute resources but with requirements
that could limit access, results delayed due to poten-

tially long job queues, and environments and policies
that might affect a user’s work flow. In many scenarios
and in particular with the advent of Infrastructure-as-

a-Service (IaaS) cloud computing, individual users and
communities can benefit from less restrictive, dynamic
systems that include a combination of local resources

and on-demand resources provisioned by one or more
IaaS provider. These types of scenarios benefit from
flexibility in deploying resources, remote access, and en-

vironment configuration.
In this paper, we address how small groups can

dynamically create, join, and manage grid infrastruc-

tures with low administrative overhead. Our work dis-
tinguishes itself from other projects with similar objects
by enabling a combination of decentralized system orga-

nization and user access for job submission in addition
to a web 2.0 interfaces for managing grid membership
and automate certificate management. These compo-
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nents contribute to the design of the “Grid Appliance,”
an implementation of a wide area overlay network of
virtual workstations (WOW), which has developed over

the past six years into a mature system with several
deployments and many users. In addition to an archi-
tectural description, this paper contains lessons learned

during the development and deployment of “Grid Ap-
pliance” systems and a case study backed by quantita-
tive analysis that verifies the utility of our approach.

Keywords Grid, Cluster, P2P, Parallel Applications,
VPN, Cloud

1 Introduction

Grid computing presents opportunities to combine dis-

tributed resources to form powerful systems. Due to the
challenges in coordinating resource configuration and
deployment, researchers tend to either become mem-

bers of existing grids or deploy their own private re-
sources. The former approach is limited by lack of flex-
ibility in the environment and policies, while the latter

requires expertise in systems configuration and manage-
ment. Though there exists a wealth of middleware avail-
able, including resource managers such as Condor [22],

Torque (PBS) [26], and Sun Grid Engine [32], many see
the cost of installing and managing these systems as
being greater than their usefulness and as a result turn

to inefficient ad hoc resource discovery and allocation.
To combine resources across multiple domains solutions
there exist solutions such as the Globus Toolkit [12]

or gLite [6]; however, these tool sets come with their
own challenges that require the level of expertise most
researchers in fields outside of information technology

lack.
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With the recent advent of cost-effective on-demand

computing through Infrastructure-as-a-Service “clouds”,
new opportunities for user-deployed grids have arisen;
where, for example, a small local computer cluster can

be complemented by dynamically provisioned resources
that run “cloud-burst” workloads. However, while cloud-
provisioned resources solve the problem of on-demand

instantiation, configuring resources to seamlessly and
securely integrate with one’s infrastructure remains a
challenge. In particular, users may provision resources

from multiple IaaS providers as well as their own lo-
cal resources in order to avoid relying on one particular
vendor, a painful lesson learned by those using Ama-

zon’s EC2 exclusively on April 21, 2011 1. On that day
and for some days ensuing, Amazon’s web services were
unavailable rendering many web sites out of commis-

sion. A well balanced approach to avoid these types of
dependencies results in a system with similar config-
uration demands to that of a distributed grid: while
a cloud image can be encapsulated with a grid com-

puting stack, it still needs configuration in terms of al-
locating and distributing the appropriate certificates,
network configuration to establish end-to-end connec-

tivity, and proper configuration of the middleware to
establish worker, submit, and scheduler nodes.

In this paper, we present techniques that reduce

the entry barrier in terms of necessary expertise and
time investment in deploying and extending ad hoc,
distributed grids. To verify this assertion, we have im-

plemented a system supporting these ideas in the “Grid
Appliance,” which as will be demonstrated, allows users
to focus on making use of a grid while minimizing their

efforts in setting up and managing the underlying com-
ponents. The core challenges solved by our approach
include:

– decentralized directory service for organizing grids,
– decentralized job submission,

– grid single sign on through web services and inter-
faces,

– sandboxing with network support,

– and all-to-all connectivity despite network asymme-
tries.

As an extension to our previous work [37], this pa-
per presents updates to the preceding topics, additional
lessons learned, and a discussion on the use of the “Grid

Appliance” as a utility for ondemand construction of
parallel job environments.

The “Grid Appliance” project and concepts have

been actively developed and used in several projects
for the past six years. Of these projects, Archer, a dis-

1 http://money.cnn.com/2011/04/21/technology/

amazon_server_outage/index.htm
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Fig. 1 The “Grid Appliance” connects to other resources
over a common network. Both the grid middleware and the
VPN use the P2P overlay to configure and connect the user
to other members of the grid. The process uses configura-
tion data provided by the web interface to self-configure the
system using information available in the P2P network.

tributed grid for computer architecture research, has

demonstrated the feasibility and utility of this approach
by deploying a shared collaborative infrastructure span-
ning clusters across six US universities, where the ma-

jority of the nodes are constrained by network address
translation (NAT). Every resource in Archer is config-
ured in the same, simple manner: by deploying a “Grid

Appliance” that self-configures to join a wide-area grid.
Researchers interested or desiring the ability to access
both grid resources and specialized commercial simula-

tion tools (such as Simics) can easily use and contribute
resources from this shared pool with little effort by join-
ing a website, downloading a configuration image and

a virtual machine (VM), and starting the VM inside
a VM manager (VMM). Upon completion of the boot-
ing process, users are connected to the grid and able to

submit and receive jobs.
The “Grid Appliance” has more recently been used

as an academic tool for exploring parallel computing

through the Future Grid project. MPI (Messaging Pass-
ing Interface) and Hadoop are excellent utilities for
solving problems using parallel computation and as po-

tential research avenues; however, configuration and re-
source requirements present challenges that may limit
experiences with these tools. To address this, we have

designed a self-configuring environment for deploying
parallel environments for use within the “Grid Appli-
ance.” By incorporating the system into Future Grid,
users can easily deploy their MPI and Hadoop clusters

allowing them to focus on user interaction with these
systems as opposed to management issues.
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At the heart of our approach lies a P2P infrastruc-

ture based upon a distributed hash table (DHT) useful
for decentralized configuration and organization of sys-
tems. Peers are able to store key, value pairs into the

DHT and to query the DHT with a key and potentially
receive multiple values efficiently. The DHT provides
discovery and coordination primitives for the configu-

ration of a decentralized P2P virtual private network
(VPN), which supports unmodified applications across
a network overlay. The DHT is also used for the decen-

tralized coordination of the grid. Users can configure
their grid through a web interface, which outputs con-
figuration files that can be used with the “Grid Appli-

ance.”
The techniques described in this paper have many

applications. The basic system supports the creation of

local grids by starting a virtual machine on the com-
puters intended for use within the grid and using LAN
multicast for discovery. It allows users to seamlessly
combine their dedicated grids with external resources

such as workstations and cloud resources. The level of
familiarity with security, operating systems, and net-
working is minimal as all the configuration details are

handled as components of the system. Management of
the system including users and network configuration
utilizes a social networking like group interface, while

deployment uses pre-built virtual machine images. A
graphical overview of the system is illustrated in Fig-
ure 1.

These techniques simplify the tethering of resources
across disparate networks. The setup of security, con-
nectivity, and their continuous management imposes

considerable administrative overhead, in particular when
networks are constrained by firewalls and NAT devices
that prevent direct communication with each other, and

which are typically outside the control of a user or lab.
Our approach integrates decentralized systems behind
NATs in a manner that does not require the setup of ex-

ceptions and configuration at NAT/firewall by system
administrators.

The rest of the paper is as follows. Section 2 high-

lights our previous work to provide background for our
contributions in this paper. In Section 3, we describe
the components of our “Grid Appliance” WOW. Sec-

tion 4 provides a case study of a grid deployment using
standard grid deployment techniques compared to our
“Grid Appliance,” describing qualitatively the benefits

and evaluating quantitatively the overheads of this ap-
proach. We share our experiences from this long run-
ning project in Section 6. Finally, Section 7 compares

and contrasts other solutions to these problems.

2 WOWs

This work furthers the vision began by our earlier con-
cepts on wide-area overlays of virtual workstations [14]

(WOW). The WOW paper established the use of vir-
tualization technologies, primarily virtual networking
and virtual machines, to support dynamic allocation of

additional resources in grids that span wide area net-
works. For reference, the extensions made in this paper
to the WOW concept are means for the dynamic cre-
ation of grids with support for security, decentralized

access, and user-friendly approaches to grid manage-
ment. This section covers the development of WOWs
over the years as it relates to our other publications

and as means to distinguish the contributions made in
this paper.

2.1 P2P Overlays

Peer-to-peer or P2P systems create environments where

members have a common functionality. P2P systems
are often used for discovery in addition to some user-
specific service, such as voice and video with Skype

or data sharing with BitTorrent. Many forms of P2P
have autonomic features such as self-healing and self-
optimization with the ability to support decentralized

environments. As we will show, this makes their appli-
cation in our system very attractive.

For the “Grid Appliance,” we make use of Brunet [7],

a type of structured overlay. Structured overlays tend to
be used to construct distributed hash tables (DHT) and
in comparison to unstructured overlays provide faster

guaranteed search times (O(logN) compared to O(N),
where N is the size of the network). The two most
successful structured overlays are Kademlia [24], com-

monly used for decentralized BitTorrent, and Dynamo [8],
to support Amazon’s web site and services, while an-
other two, Chord [31] and Pastry [28], dominate aca-

demic proceedings.
Brunet’s support for NAT traversal and seamless

bootstrapping [40] distinguishes it from other struc-

tured overlays. In WOWs [14], Brunet facilitated dy-
namic IP links amongst peers in the grid. Since then, it
has been extended to support DHT with atomic opera-

tions for decentralized DHCP (Dynamic Host Configu-
ration Protocol) [16], efficient relays when direct NAT
traversal fails [38], resilient overlay structure and rout-

ing [15], and cryptographically secure messaging [38].
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2.2 Virtual Private Networks

A common question with regards to this work is “why
VPNs?” The core reason is connectivity. IPv4 has a

limited address space, which has been extended through
the use of NAT allowing a single IP to be multiplexed
by multiple devices. This creates a problem; however, as

it breaks symmetry in the Internet limiting the ability
for certain peers to become connected and which peers
can initiate connections. With the advent of IPv6, the

situation might improve, but there are no guarantees
that NATs will disappear nor can users be certain that
firewalls will not be in place that inhibit symmetry. A

VPN circumvents these issues, so long as the user can
connect to the VPN, as all traffic is routed through a
successfully connected pathway.

The problem with traditional VPN approaches is

management overhead including maintaining resources
on public IP addresses and establishing links amongst
members in the VPN. The VPN used in the system is

called IPOP [38,13]. IPOP (IP over P2P), as the name
implies, uses a P2P overlay (Brunet) to route IP mes-
sages. By using P2P, maintaining dedicated bootstrap

nodes have less overhead, our approach with IPOP al-
lows an existing Brunet infrastructure to bootstrap in-
dependent Brunet infrastructures in order to isolate

IPOP networks in their own environments [40].
Once IPOP has entered its unique Brunet overlay,

it obtains an IP address. IP address reservation and

discovery relies on Brunet’s DHT. Each VPN stores its
P2P identifier into the DHT at the key generated by
the desired IP address, such that the key, value pair

is (hash(IP ), P2P ). In order to ensure there are no
conflicts, the storing of this value into the DHT uses an
atomic operation, which succeeds only if no other peer

has stored a value at hash(IP ).
The process for creating connections begins when

IPOP receives an outgoing message. First it parses the

destination address and queries the DHT for the re-
mote peers P2P address. The peer then attempts to
form a secure, direct connection with the remote peer

using Brunet’s secure messaging layer. Once that has
formed, packets to virtual IP address are directed over
that secure link.

In our original design [36], the virtual network was
secured through a kernel-level IPsec stack, a model kept
through our first generation Archer deployment. This

approach limits security to virtual network links be-
tween parties leaving the P2P layer insecure; further-
more, in IPsec configuration each peer requires a unique

rule for every other peer, which limited the maximum
number of peers in the VPN. Without security for the
P2P layer, malicious users could easily derail the en-

tire system, but securing with IPsec would practically

negate the benefits of the P2P system, because of net-
work configuration issues related to NATs and firewalls.
In our modern deployments, we have employed the se-

curity layer at the P2P layer, which in turn also secures
virtual networking links.

Grids that rely upon VPNs to connect resources and

users may impose the need for a certificate for the VPN
and one for the grid. Our approach avoids this problem
by using a VPN that allows a user to verify the iden-

tity of a remote peer and obtain its certificate, which
then through software hooks in the grid software veri-
fies the remote peers identity in terms relevant to the

grid. In other words, user access is limited by the VPN
and identity inside the grid is maintained by that same
certificate. This might not be possible if all users were
submitting from the same resources but is feasible in

our system since each user submits from their own sys-
tem.

2.3 Virtual Machines in Grid Computing

Earlier work [11] advocated the use of virtual machines
(VMs) in grid computing for improved security and
customization. Others since [29,19,4] have been estab-

lished VMs as means for sandboxing, that is environ-
ments that allow untrusted users to use trusted re-
sources in a limited fashion. VMs run as a process on a

system, limiting processes running inside the VM from
accessing the host operating system. Furthermore, a
VM’s network access may be limited by the host, ef-

fectively sealing them in a cage or sandbox protecting
the hosts environment. VMs are also useful for cus-
tomization and legacy applications, since a developer

can configure the VM and then distribute it as an appli-
ance, with the only requirement of the end user having
VM manager software installed. Quantitatively, previ-

ous work has shown that CPU-bound tasks perform
fairly well running with no more than 10% overhead
and in some cases 0%, which is the case with VMs like

Xen.
While not a direct correlation to grid computing,

clouds have benefited significantly from VMs, as they

provide the magic behind cloud infrastructures that
provide IaaS, such as EC2. In these environments, users
are able to create customized instances, or packaged op-

erating systems and applications, inside of cloud envi-
ronments; share with each other; and dynamically cre-
ate or shutdown them as necessary. While the appli-

cation of clouds is generic, it can easily be applied to-
wards grids. A user can create push excess jobs into the
cloud, when there is overflow, high demand, or the user

lacks their own hardware infrastructure. One challenge,
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however, is the dynamic creation of a grid as well as ex-

tension of an existing grid using the cloud, challenges
that are addressed in this paper.

3 Architectural Overview

Our approach attempts to reuse as many available com-
ponents to design a grid middleware generic enough
that the ideas can be applied to other middleware stacks.

As a result, our contribution in this paper and in partic-
ular this section focuses primarily on the following key
tasks: making grid construction easy, supporting decen-
tralized user access, sandboxing the users environment,

limiting access to the grid to authorized identities, and
ensuring priority on users own resources.

3.1 Web Interface and the Community

Before deploying any software or configuring any hard-
ware, a grid needs organization including certificate man-
agement, grid access, user account management, and

delegation of responsibilities. These are complex require-
ments, which can be challenging to address, though for
less restrictive systems, like a collection of academic

labs sharing clusters, they may be very easy. One of
the professors could handle the initial authorization of
all the other labs and then delegate the responsibility

of providing access to their their affiliates, such as stu-
dents and scholars access.

For academic environments, grids become more chal-

lenging when the professor or worse yet students must
maintain the certificates, handling certificate requests,
and placing signed certificates in the correct location.

Security is a serious topic and should ideally be handled
by those that understand its nuances. Our solution to
this potentially confusing area was a group interface,

akin to something like Facebook’s or Google’s groups.
Albeit, those types of groups are not hierarchal, which
is a necessity in order to have delegated responsibili-

ties. Thus we have a two layer approach, a grid group
for members of the grid trusted by the grid organizers
and user groups for those who are trusted by those in

the grid group. Members of the grid group can create
their own user groups. A member of a user group can
gain access to the grid by downloading grid configura-

tion data available within the user group web interface.
This configuration data comes in the format of a disk
image, when added to a “Grid Appliance” VM, it is

used to obtain the user’s credentials and enabling them
to connect to the grid.

To give an example, consider our computer archi-

tecture grid, Archer. Archer was seeded initially by the

University of Florida, so we are the founders and main-

tainers of the Archer grid group. As new universities
and independent researchers have joined Archer, they
request access to this group. Upon receiving approval,

they then need to form their own user group so that
they can allow others to connect to the grid. So a trusted
member might create a user group titled “Archer for

University X” and all members of university X will ap-
ply for membership in that group. The creator can make
decisions to either accept or deny these users. Once the

user has access, they will download their configuration
data formatted as a virtual disk image and the “Grid
Appliance” VM and start the “VM.” After starting the

VM, the user automatically be connected to Archer and
able to submit and receive jobs.

Joining is easy; a grid requires a user to sign onto

a website and download a configuration data, which
can then be used on multiple systems. To support this
process, the configuration data contains cryptographic
information that facilitates acquisition of a signed cer-

tificate from the web interface through XML-RPC over
HTTPS. The process begins by either booting the “Grid
Appliance” or restarting a “Grid Appliance” service.

When starting the service will detect if there is new con-
figuration data, if there is, it contacts the web interface
with the cryptographic information and a public key.

The web interface verifies the user’s identity using this
cryptographic information, retrieves their profile from
its database and binds that information with the public

key to create a certificate request, which will then be
signed and returned to the user.

With a public web interface, we have been able to

create a variety communities. By bringing so many in-
dividuals from disperse locations, we have been able to
foster a large distribution of peers who all contribute in

a bootstrapping community for others in the P2P sys-
tem on which the grids run. The web interface has been
designed to support many grid groups, so too has the

P2P infrastructure as it supports bootstrapping into
unique private overlays for individual grids by means
of Brunet’s ability to support recursive bootstrapping.

By using the public interface, users have an opportunity
to reuse our bootstrap infrastructure and only need to
focus on the configuration of their VPN and grid ser-

vices, which has been trivialized to accepting or denying
users access to a group and turning on resources. We
would like to note that there is no need to make an

explicit public grid community through the web inter-
face, since all “Grid Appliances” come with a default
configuration file that will connect them to an insecure

public grid.
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Description Scalability Job queue / submission
site

API Requirements

Boinc Volunteer computing,
applications ship with
Boinc and poll head node
for data sets

Not explicitly mentioned,
limited by the ability of
the scheduler to handle
the demands of the client

Each application has a
different site, no separa-
tion from job queue and
submission site

Applications are bundled
with Boinc and must be
written to use the Boinc
API in order to retrieve
data sets and submit re-
sults to the head node

BonjourGrid Desktop grid, use zero-
conf / Bonjour to find
available resources in a
LAN

No bounds tested, lim-
its include multicasting
overheads and processing
power of job queue node

Each user has their own
job queue / submission
site

None

Condor High throughput com-
puting / on demand /
desktop / etc / general
grid computing

Over 10,0001 Global job queue, no
limit on submission
sites, submission site
communicates directly
with worker nodes

Optional API to support
job migration and check
pointing

PastryGrid Use structured overlay
Pastry to form decentral-
ized grids

Decentralized, single
node limited by its pro-
cessing power, though
collectively limited by
the Pastry DHT

Each connected peer
maintains its own job
queue and submission
site

None

PBS /
Torque [26]

Traditional approach to
dedicated grid computing

up to 20,000 CPUs2 Global job queue and
submission site

None

SGE Traditional approach to
dedicated grid computing

Tested up to 63,000 cores
on almost 4,000 hosts3

Global job queue and
submission site

None

XtremWeb Desktop grid, similar to
Condor but uses pull in-
stead of push, like Boinc

Not explicitly mentioned,
limited by the ability of
the scheduler to handle
the demands of clients

Global job queue, sepa-
rate submission site, op-
tionally one per user

No built-in support for
shared file systems

Table 1 Grid Middleware Comparison

3.2 The Organization of the Grid

The previous section focused on facilitation of grid con-
figuration using the web interface and skirted the issues
of detailed configuration and organization. The config-

uration of the grid mirrors that of the connection pro-
cess. The first tier group maps to a common grid and
each grid maps to a VPN. Thus when a user creates

a new grid group, they are actually configuring a new
VPN, which involves address range, security parame-
ters, user agreements, and the name of the group. The

system provides defaults for address range and security
parameters, so users can focus on high level details like
the user agreement and the grid’s name.

As mentioned previously, the second tier of groups
enables members in the grid group to provide access
to their community. It is also the location that users
download their configuration data. The configuration

files come in three flavors: submission, worker, or man-
ager. Worker nodes strictly run jobs. Submission nodes
can run jobs as well as submit jobs into the grid. Man-

ager nodes are akin to head nodes, those that manage
the interaction between worker and submission nodes.

While the configuration details are handled by the

web interface and scripts inside the “Grid Appliance,”
organization of the grid, more specifically the linking of
worker and submission nodes to manager nodes, relies

on the DHT. Managers store their IP addresses into the
DHT at the key managers. When workers and clients

join the grid, they automatically query this key, using
the results to configure their grid software. Managers
can also query this key to learn of other managers to

coordinate with each other.

3.2.1 Selecting a Middleware

Our grid composition is largely based upon a desire to
support a decentralized environment, while still retain-
ing reliability and limiting our documentation support

efforts. As there exist many middlewares to support
job submission and scheduling, we surveyed available
and established middleware to determine how well they

matched our requirements. Our results are presented in
Table 1, which covers most of the well established mid-
dleware and some recent research projects focused on

decentralized organization.
Of the resource management middlewares surveyed,

we chose to use Condor as it matches closest with our

2 http://www.cs.wisc.edu/condor/CondorWeek2009/

condor\_presentations/sfiligoi-Condor\_WAN\

_scalability.pdf
3 http://www.clusterresources.com/docs/211
4 http://www.sun.com/offers/docs/Extreme\

_Scalability\_SGE.pdf



Experiences with Self-Organizing, Decentralized Grids Using the Grid Appliance 7

00
FA

12

23

3C

5A

CB

AA

83

79

5.1.1.1 := 00

5.23.155.3 := 83

Grid Manager := 

5.1.1.1

User) Join group, 

obtain credentials 

and P2P information

1) Request / obtain 

group certificate

2) Bootstrap into 

overlay

4) Query for the task 

manager (server)

6) Register with 

the task manager

The Grid!

Group

Server

5) Resolve the IP 

to P2P mapping

3) Obtain local IP

Fig. 2 An example deployment scenario: obtaining configuration files, starting the appliance, and connecting with a resource
manager.

goals due to its decentralized properties and focus on

desktop grids. With Condor, we are able to have mul-
tiple submission points, a non-trivial obstacle in some
of the other systems. Additionally, adding and remov-

ing resources in Condor can be done without any con-
figuration from the managers. Conversely, in SGE and
Torque, after resources have been added into the sys-

tem, the administrator must manually configure the
manager to control them. Most scheduling software as-
sumes that resources are dedicated, while Condor sup-
ports opportunistic cycles, by detecting the presence of

other entities and will suspend, migrate, or terminate
a job, thus enabling desktop grids. A common draw-
back to established middlewares is the requirement of

a manager node; having no manager in an ad hoc grid
would be ideal.

3.2.2 Self-Organizing Condor

While the requirement of a central manager may be un-

desirable, they can easily be run inside a VM and Con-
dor supports the ability to run many in parallel through
the use of “flocking [9].” Flocking allows submission

sites to connect to multiple managers. This serves two
purposes: 1) to provide transparent reliability by sup-
porting multiple managers and 2) users can share their

resources through their own manager. Flocking allows
each site to run its own manager or share the common
manager.

To configure Condor, manager IP addresses are stored
into the DHT using the key managers. Joining peers
query the DHT to obtain a list of managers, selecting

one randomly to use as its primary manager with the

result used for flocking. If the system prefers managers

from its group, it will randomly contact each manager
in an attempt to find a match, selecting one at random
if no match is found. Until a manager is found, the pro-

cess repeats every 60 seconds. Upon finding a manager,
the state of the system is verified every 10 minutes and
new managers are added to the flock list.

3.2.3 Putting It All Together

The following summarizes the configuration and orga-

nization of the grid. Minimally a grid will constitute a
manager, some workers, and a submitter. Referencing
Figure 2, a user begins by creating an account on the

group server, joining a group, and obtaining configu-
ration data for use with the “Grid Appliance.” After
adding the configuration data to a “Grid Appliance”

system, the user will start the system initiating the au-
tomated system beginning with step “1.” During which
and without user interaction, each machine contacts the

group website to obtain a valid VPN certificate. Where-
upon, it connects to the P2P overlay whose bootstrap
peers are listed inside the configuration file, “step 2.” At

which point, the machine starts the VPN service run-
ning on top of the P2P overlay, also part of step “2.”
The self-configuring VPN creates a transparent layer

hiding from the user and administrators the complexity
in setting up a common fabric that can handle poten-
tial network dynamics. Machines automatically obtain

a unique IP address and find their place inside the grid,
step “3.” For a manager machine, this means register-
ing in the DHT (not shown), while clients and workers

search for available managers by querying the DHT,
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step “4;” IPOP translates the IP to a P2P address, step

“5;” and then client contacts the manager directly, step
“6.”

3.3 Sandboxing Resources

As tasks can run on worker and potentially submission

nodes, we have devised means to sandbox the environ-
ments that do not limit user interactions with the sys-
tem. While more traditional approaches to sandboxing

emphasize a separation between worker and submission
machine, in our deployments, very few users explicitly
deploy worker machines, most are submission machines.

Thus we developed our sandboxing techniques to limit
the ability of submitted jobs on systems that are simul-
taneously being used for submission. So our sandboxing

technique considers more than just locking down the
machine but also ensuring a reasonable level of access.

3.3.1 Securing the Resources

The core of our sandboxing approach is to limit attacks

to software in the system and not poorly configured user
space, such as poorly chosen passwords or resources ex-
ternal to the “Grid Appliance.” All jobs are run as a set

of predefined user identities. When the jobs are finished
executing, whether forcibly shutdown or completed suc-
cessfully, all processes from that user are shutdown, pre-

venting malicious trojan attacks. Those users only have
access to the working directory for the job and those
with permission for everybody. Escalation of privilege

attacks due to poor passwords are prevented by disal-
lowing use of “su” or “sudo” for these users. Finally,
through the use of firewalls, a running jobs network ac-

cess is limited to the VPN, thus so long as jobs cannot
escalate into root, they are unable to perform denial of
service attacks on the Internet.

Additionally, systems can be configured such that
the only network presented to them is that of the vir-
tual network. To support this, IPOP has been enhanced

to support a router mode, which can be bridged to a
virtual machine adapter running on the host machine
that connects to the network device running inside the

VM. Not only does this improve performance, due to
reduced I/O overhead, the same virtual network router
can be used for multiple VMs.

To ensure that submit machines still have a high
level of functionality without risking the system to ex-
ternal attacks even from users on the same network,

user services are run only on a “host-only” network de-
vice within the virtual machine. This includes an SSH
server and a Samba or Windows File Share. The user

name and password matches that from the website. We

would like to note that file sharing services work the

opposite to that of host to guest as most VMs already
have in place. Instead users can access their files on the
VM from the host. This was done to limit potential

attacks on submission machine.

3.3.2 Respecting the Host

Another aspect of sandboxing is respecting the usage
of the host. While Condor can detect host usage on a
machine it is running, when run inside a VM it can-
not detect usage on the host. Thus it is imperative to

support such a configuration otherwise our approach
would be limited in that it can only be run during idle
times. In the “Grid Appliance”, this is addressed by

running a light-weight agent on the host that communi-
cates to the VM through the second Ethernet interface.
The agent discovers a VM through multicast service

discovery executed only on ”host-only” virtual network
devices. When a user accesses the host, the agent noti-
fies a service in the VM, which results in running tasks

being suspended, migrated, or terminated. The machine
remains off limits until there has been no user activity
for 10 minutes.

3.3.3 Decentralized Submission of Jobs

From the administrator’s perspective, not requiring a

submission machine is also a form of sandboxing. Main-
taining a worker machine requires very low overhead,
since jobs and their associated files are removed upon

the completion of a job and corrupted workers can be
deleted and redeployed. Maintaining a submission ma-
chine means user accounts, network access, providing

data storage, and trusting users to play nicely on a
shared resource. So having users be able to submit from
their own resources reduces the overhead in managing a

grid. It does come with a consequence, most grids pro-
vide shared file systems, which are statically mounted
in all nodes. In a dynamic grid that might have multiple

shares, this type of approach may not be very feasible.
All is not lost, for example, Condor provides data

distribution mechanisms for submitted jobs. This can

be an inconvenience, however, if only a portion of the
file is necessary, as the entire file must be distributed to
each worker. This can be particularly true with disk im-

ages used by computer architecture simulations and ap-
plications built with many modules or documentation.
To support sparse data transfers and simplify access

to local data, each “Grid Appliance” has a local NFS
share exported with read-only permission. To address
the issue of mounting a file system, there exists a tool

to automatically mount file systems, autofs. autofs tool
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works by intercepting file system calls inside a specific

directory, parsing the path, and mounting a remote file
system. In the “Grid Appliance,” accessing the path
/mnt/ganfs/hostname, where hostname is either the

IP address or hostname of an appliance, will automati-
cally that appliance’s NFS export without the need for
super-user intervention. Mounts are automatically un-

mounted after a sufficient period of time without any
access to the mounted file system.

4 Deploying a Campus Grid

We now present a case study exploring a qualitative and
quantitative comparison in deploying a campus grid
and extending it into the “Cloud” using traditional

techniques versus a grid constructed by “Grid Appli-
ance.” One of the target environments for the “Grid
Appliance” is resources provided in distributed com-

puter labs and many small distributed clusters on one
or more university campus as shown in Figure 3. The
goals in both these cases are to use commodity soft-

ware, where available, and to provide a solution that
is both simple but creates an adequate grid. In both
cases, Condor is chosen as the middleware, which is

a push scheduler and by default requires that all re-
sources be on a common network thus a VPN will be
utilized. Additionally, in this section, we cover details

of the “Grid Appliance” that did not fit in the context
of previous discussions in the paper.

4.1 Background

In this case study, we will compare and contrast the
construction of two types of grids: a static grid con-

figured by hand and a dynamic grid configured by the
“Grid Appliance.” Each grid is initially constructed us-
ing resources at the University of Florida and later ex-

tended to Amazon’s EC2 and Future Grid at Indiana
University using Eucalyptus. Each environment has a
NAT limiting symmetric communication: University of

Florida resources are behind two layers, first an “ipta-
bles” NAT and then a Cisco NAT; EC2 resources have
a simple 1:1 NAT; and the Eucalyptus resources appear

to have an “iptables” NAT.

4.2 Traditional Configuration of a Campus Grid

A VPN must be used to connect the resources due to
the lack of network symmetry across the sites. There ex-
ists a wealth of VPNs available [23,42,30] and some ex-

plicitly for grids [18,34,33]. For simplicity sake, Open-

EngineeringComputer Lab
ArchitectureComputer Lab External EC2Resources for P2P Lab

ComputerArchitecture LabMolecularBiology Lab Student / Researcher Laptops
Fig. 3 A collection of various computing resources at a typ-
ical university.

VPN was chosen due to the simplicity in its configura-
tion. In reality, OpenVPN makes a poor choice because
it is centralized, thus all traffic between submitter and

worker must traverse the VPNs server. Whereas others
in the list are distributed and thus allow nodes to com-
municate directly, but in order to do so, manual setup is

required, a process, that would overwhelm many novice
grid deployers. In all these cases, the VPN requires that
at least a single node have a public address, thus we had

to make a single concession in the design of this grid,
that is, the OpenVPN server runs on a public node.

OpenVPN clients must be preconfigured with a signed

certificate and knowledge of one ore more server’s. While
typically, most administrators would want a unique pri-
vate key for each machine joining the grid, in our case

study and evaluation, we avoided this process and used
a common key, certificate pair. In doing so, there are po-
tential dangers, for example, if any of the machines were

hijacked, the certificate would have to be revoked and
all machines would be rendered inoperable. To create
a properly secured environment, each resource would

have to generate or be provided a private key, a certifi-
cate request submitted to the certificate authority, and
a signed certificate provided to the resource.

With the networking and security components in
place, the next step is configuring grid middleware. Prior
to deploying any resources, the manager must be allo-

cated and its IP address provider to other resources
in the system. Submission points are not a focus on
this case study, though in general most systems of this

nature have a single shared submission site. The chal-
lenges in supporting multiple submission points in this
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environment include creating certificates same as worker

nodes, requiring users to configure OpenVPN and Con-
dor, and handling NFS mounts. Whereas a single sub-
mission point creates more work for the system admin-

istrator, who will need to dedicate time for managing a
resource with direct user interaction. Both approaches
have their associated costs and neither is trivial. The

evaluation assumes a single user submitting from a sin-
gle resource.

To address potential heterogeneity issues. An ad-

ministrator would need to collaborate with others to
ensure that all resources are running a common set of
tools and libraries. Otherwise an application that works

well on one platform could cause a segmentation fault
on another, through no fault of the user, but rather due
to library incompatibilities.

To export this system into various clouds, an ad-
ministrator starts by running an instance that contains
their desired Linux distribution and then installing the
grid utilities like Condor and OpenVPN. Supporting

individualization of the resources is challenging. The
simplest approach is to store all the configuration in
that instance including the single private key, certifi-

cate pair as well as the IP address of the manager node.
Alternatively, the administrator could build an infras-
tructure that receives certificate requests and returns

a certificate. The IP address of the manager node and
of the certificate request handler could be provided to
the cloud via user data, a feature common to most IaaS

clouds that allows users to provide either text or binary
data that is available via a private URL inside a cloud
instance.

4.3 Grid Appliance in a Campus Grid

All these configuration issues are exactly the reasons

why “Grid Appliance” and its associated group Web in-
terface are desirable for small and medium scale grids.
The first component is deciding which web interface

to use, public (www.grid-appliance.org) or private
hosted on their own resources. Similarly, users can de-
ploy their own P2P overlay or use our shared overlay.

The web interface enforces unique names for both
the users and the groups. Once the user has member-
ship in the second tier of groups, they can download a

file that will be used to automatically configure their
resources. As mentioned earlier, this handled obtain-
ing a unique signed certificate, connecting to the VPN,

and discovering the manager in the grid. Configura-
tion of the VPN and grid are handled seamlessly, the
VPN automatically establishes direct links with peers

on demand and peers configure based upon information

available in the P2P overlay dynamically allowing for

configuration changes.
Heterogeneity is a problem that will always exist if

individuals are given governance of their own resources.

Rather than fight that process, the “Grid Appliance”
approach is to provide a reference system and then in-
clude that version and additional programs in the re-

source description exported by Condor. Thus a user
looking for a specific application, library, or computer
architecture can specify that in their job description.

Additionally, by means of the transparent NFS mounts,
users can easily compile their own applications and li-
braries and export them to remote worker nodes.

Extending the “Grid Appliance” system into the
clouds is easy. The similarity between a VM appliance
and a cloud instance are striking. The only difference
from the perspective of the “Grid Appliance” system is

where to check for configuration data. Once a user has
created a “Grid Appliance” in a cloud, everyone else can
reuse it and just supply their configuration data as the

user data during the instantiation of the instances. As
we describe in Section 6.2, creating “Grid Appliance”
from scratch is a trivial procedure.

As described in detail earlier, an administrator needs
to install the necessary software either by deploying
VMMs and VM appliances or installing “Grid Appli-

ance” packages on Debian / Ubuntu systems. Addition-
ally, these systems need to be packaged with the con-
figuration files or floppy disk images. At which point,

the systems will automatically configure and connect to
the grid. An administrator can verify this by monitoring
Condor. Additional resources can be added seamlessly,

likewise resources can be removed by shutting them off
without direct interaction with the “Grid Appliance”
or manager node.

4.4 Comparing the User Experience

In the case of a traditional grid, most users will contact
the administrator and make a request for an account.

Upon receiving confirmation, the user will have the abil-
ity to SSH into a submission site. Their connectivity to
the system is instantaneous, their jobs will begin exe-

cuting as soon as it is their turn in the queue. User’s
will most likely have access to a global NFS. From the
user’s perspective, the traditional approach is very easy

and straightforward.
With the “Grid Appliance,” a user will obtain an

account at the web interface, download a VM and a

configuration file, and start the VM. Upon booting, the
user will be able to submit and receive jobs. To access
the grid, users can either SSH into the machine or use

the consoles in the VM. While there is no single, global
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NFS, each user has their own unique NFS and must

make their job submission files contain their unique
path. For the most part, the user’s perspective of the
“Grid Appliance” approach has much of the same feel

as the traditional approach. Although users have addi-
tional features such as accessing their files via Samba
and having a portable environment for doing their soft-

ware development.

4.5 Quantifying the Experience

For evaluation, we consider two epochs: time to boot-
strap a grid assuming all user configuration has been

completed and time to submit and complete a job on
all available resources. The first task focuses on admin-
istrative time overheads for the self-configuring aspects

of both systems, whereas the latter considers overheads
introduced from the perspective of a user.

All configurations consisted of a single manager and

submission node located at the University of Florida
though on different resources. Because OpenVPN re-
quires a public IP address, we ran a dedicated Open-

VPN server also at the University of Florida. The “Grid
Appliance” relies on the PlanetLab bootstrap system
distributed across the world and a group server run-

ning at the University of Florida. Workers were started
using virtual machines and cloud instances at Yale Uni-
versity using KVM and University of Chicago and the

San Diego Supercomputer Center both using Nimbus
as part of FutureGrid. 50 workers were started at each
site and verified online prior to starting the experiment.

To isolate the cost of self-configuration, all machines
booted into a grid free running state remaining in that
state while polling a server for the initiation of the ex-

periment. Workers query the server every 30 seconds
waiting to find when to start the experiment. Upon ini-
tiating the experiment, the server would count down

from 120 seconds with the workers being told amount
of time they needed to wait prior to enable a simulta-
neous start. To determine how long it took for a node

to connect to the manager, we examined the time the
node appeared in the Condor Collector log and sub-
tracted the initiation time as well as the 120 seconds

delay.
The purpose of the job was to evaluate how long it

took an independent client to connect to each resource

in the grid, transfer a trivial sized file, and receive noti-
fication of job completion. Thus the job chosen was to
sleep for 600 seconds.

The evaluation herein exhibits a significant improve-
ment over our previous evaluation [37]. In this evalua-
tion, we are not only considering OpenVPN and “Grid

Appliance,” we have recently done some radical redesign

to the underlying systems to support a more active and

event oriented system, to differentiate we call the pre-
vious system old and the current system new. Further-
more, our previous experiment had a significant de-

ficiency with regards to determining the overhead of
bootstrapping, as the time for resources to actually
start could impact the time to get connected to the

overlay as there was no separation between starting a
resource and it connecting to the grid. Finally, we have
included a set of resources that are on more constrained

resources than before. Previously, resources either ran
on a public IP address or all behind a common NAT.
In this experiment, we have a set of workers behind a

KVM NAT at Yale and the manager and submit node
behind an IPTables firewall at the University of Florida.

The times measured include the time from when the
last grid resource was started to the time it reported to

the manager node, Figure 4, as well as the time required
for the submit node to queue and run a 5 minute job
on all the connected workers, Figure 5. The purpose of

the second test is to measure the time it takes for a
submission site to queue a task to all workers, connect
to the workers, submit the job, and to receive the re-

sults; thus a stress test on the VPN’s ability to dynam-
ically create links and verifying all-to-all connectivity.
The tests were run on 50 resources (virtual machines

/ cloud instances) in each environment and then on a
grid consisting of all 150 resources with 50 at each site.
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Fig. 4 Time in seconds for the self-configuring components
of the grid to activate and connect workers to a manager.

Connection times in the grids are presented in Fig-

ure 4. Static or OpenVPN based grids certainly have
the least amount of time in self-configuration as the
system comes nearly completely configured. The only

component left unconfigured is the IP address, which
is provided by the central server. The old system re-
lied on polling the VPN system to determine when an

IP address was allocated in order to start Condor, in
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contrast to the new system which uses routing sock-

ets. Additionally the new system contains significantly
more aggressive NAT traversal and connection estab-
lishment. The large delay between connections in the

old and new systems stems from the underlying polling
nature of Condor. Condor uses a static delay in order
to determine how frequently to contact a manager. If

the packet is dropped, the system will have to wait for
the next cycle. Packet drops can occur in the P2P sys-
tem, because of delayed connection establishment and

potentially due to having an inadequate buffer in the
VPN, which is part of an ongoing investigation. The
slope in the curves relates to either the manager queue

for more narrow slopes and to delays in connecting to
the overlay for wider slopes.
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Fig. 5 Time in seconds for a 600 minute job to complete on
resources connected to a grid.

The results from running jobs are shown in Figure 5.
Interestingly enough, in no run was a single resource

able to gain access to all resources in the first attempt,
represented by nodes finishing significantly later than
the origin. In the previous experiments [37], this was

not the case; however, since this experiment consists
of a more restrictive system the results were not unex-
pected. The most important conclusion is that our new

approach presents an actual negligible overhead even
for extremely short jobs, whereas both approaches show
a negligible overhead for very long running tasks.

The outcome of the evaluations suggest that our
new approach has taken away much of the overheads
that had previously existed. This is particularly im-

pressive when considering all the additional automated
work that the “Grid Appliance” handles in compari-
son to all the manual labor required in order to create

the static systems, something that can not be reason-
ably quantitatively evaluated. Also since the evaluation
consists of only a single submit node and a negligible

transfer overheads of using OpenVPN are not readily

apparent. In a system with multiple submitters, the

OpenVPN server will become both a bandwidth and
latency bottleneck in the system as all data must pass
through it, which can be avoided using IPOP.

4.6 Batch Scheduling Tasks

The previous evaluation focused on the self-configuring
aspects of the “Grid Appliance,” it did not showcase the
value offered by having seamless extensions to a grid.

With the “Grid Appliance,” a user can take an existing
cluster and connect with others for mutual sharing of
resources, users’ can potentially complete tasks faster

if not equally as fast with their cluster alone. We eval-
uated this behavior by constructing two different types
of systems: 1) a cluster consisting of 10 resources and

1 submit node and 2) a grid created by the “Grid Ap-
pliance” consisting of 4 clusters each with 10 resources
each and a submit node co-located with one of the clus-

ters. Taking these systems, we ran 40 jobs such that
each resource in the first system ran 4 and each resource
in the second ran one job.

The first system consisted of resources located at
the University of Florida all connected to the same
network switch. The second system spanned the Uni-

versity of Florida, Florida State University, Northeast-
ern University, and University of Texas at Austin with
the submit node located at the University of Florida,

all resources were behind various Cisco and IPtables
based firewalls and NATs. The task selected came from
a virtual computing course taught at the University of

Florida5, specifically use Simics with a simulated cache
to run a GCC check point for 500,000,000 cycles. The
specific details are unimportant as the purpose of the

evaluation was to investigate wide area overheads of
using the system. Another important detail is that we
only use Condor for scheduling the job, files are actu-

ally transferred via the NFS, thus only blocks required
for running the checkpoint will be transferred.

The results for our evaluation are presented in Fig-

ure 6. Clearly as anticipated, having more resources
solved the problem much more quickly. The graph shows
a completion delay between resources running locally,

at the University of Florida, in comparison to those run-
ning at the other institutions. While network overheads
certainly played a role in this, they were not as signif-

icant as the fact that the hardware at the other sites
was one year older and clearly out performed by the
University of Florida resources, see Table 2. The only

reason why the first round of cluster results came in

5 http://www.grid-appliance.org/wiki/index.php/

EEL6892_Spring_11_HW_2:_Understanding_Simics
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Fig. 6 Time in seconds for running batch tasks in a local
cluster and a distributed grid.

more slowly than the grid was due to Condor’s polling

based scheduling system.

Locally Grid Appliance

Florida State Univ. 5031.646 5175.556
Univ. of Florida 4015.927 4065.1

Northeastern Univ. 5032.643 5196.7
Northwestern Univ. 5034.228 5185.7

Table 2 Execution times in seconds for the Simics task.

One a side note, this evaluation does not cover the
advantage of using NFS versus a full file transfer. The
results in Table 2 show the networking overhead when

using NFS, but they do not represent the time to ac-
tually transfer the file and decompress it in the case of
the local run. The compressed file was 1.7 GB, which

when decompressed produces a set of files consisting of
10.3 GB. The file transfer and decompression are not
non-negligible.

5 An Academic Tool for Parallel Computing

Our second case study explores the possibility of us-

ing Grid Appliance as a medium for enabling academic
investigations into parallel computing systems. While
these frameworks are not particularly complicated in

configuring, they may take considerable time for first
time users. Also they require the user to have complete
control over the set of resources. Using Condor to de-

ploy these types of jobs requires that submission from
a single entry point and resources be dedicated, some-
thing not typically done in Condor pools. As a result,

we defined a container for parallel computing systems
that works well with the two we have considered thus
far: MPICH26 and Hadoop7.

6 http://www.mcs.anl.gov/research/projects/mpich2/
7 http://hadoop.apache.org

5.1 Traditional Configuration

Both MPICH2 and Hadoop require a similar setup.
They both begin by an administrator installing the

frameworks and the necessary support libraries on each
resource. In order for the systems to self-configure, the
administrator will need to install a common user and

SSH key on each resource. All but one of the resources
will be slave nodes with the other being the master
node. The system is configured and tasks are submit-

ted from the master node, which will push the requests
out to the slaves. In order to connect to the slaves, the
master keeps a file containing all the hostnames of the

slaves and has access to the private SSH key enabling
passwordless access to the slaves. At which point, the
systems can be started and tasks submitted.

5.2 Grid Appliance Configuration

In designing our framework, we wanted a user to go
from an unconfigured environment to running tasks with
as minimal effort as possible. Using the “Grid Appli-

ance’s” other components as our baseline, we already
had all-to-all connectivity and the ability to start ap-
plications remotely via IPOP and Condor, respectively.

Our initial approach was to use Condor to distribute
configuration in order to run SSH server at each node
and then use this SSH session in configuration of the

parallel framework. Unfortunately, this approach was
fraught with problems. Many of these tools assumed
a common user on each resource; however, in Condor,

a unique user will be used for each task in a multiple
CPU machine. Additionally, there was a non-trivial is-
sue of ensuring that multiple SSH session for parallel

frameworks would not conflict.
Going back to the drawing boards, we dissected the

parallel frameworks in order to understand how they

worked. While the traditional configuration of most par-
allel frameworks follow what was described earlier, the
use of a single point capable of starting and stopping

the system via SSH is not required. By investigating the
actual SSH calls, we discovered that the SSH was start-
ing a binary on each of the slaves and passing in by

command-line arguments information about the mas-
ter. The rest of the configuration happened between
processes running on the master and slaves indepen-

dent of any channeling via SSH.
With this knowledge in hand, we began applying the

constraints provided by the “Grid Appliance” to this

configuration. The new approach was to start a Python
based XML-RPC server on the submission node, it would
be responsible for waiting for all nodes to join as well

as triggering the start and end of tasks. Each of the
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slaves would start an XML-RPC server as well, register

their IP and port with the master and wait for a no-
tification to start. Once the master heard from all the
slaves, it would notify the slaves to configure the par-

allel framework. At this point, the framework would be
running and tasks could be submitted into the system.
The system supports both interactive sessions as well

as batch requests. At the conclusion of batch requests,
the master will notify the slaves via XML-RPC and no-
tify them to end. An interactive session would conclude

with a user running a script that would notify the mas-
ter’s XML-RPC server to initiate termination with the
slaves.

The only unresolved issue is dealing with frame-
works files and required libraries, which may not be in-
stalled on the remote machines. Fortunately, each “Grid

Appliance” has a NFS mount, which can be used to
host these files. When a job gets executed on a remote
machine, it simply updates the appropriate Unix envi-
ronmental variables to know about the NFS and the

libraries and files it hosts.
The end result is the following. The user installs

our package for MPI or Hadoop into their NFS share.

The user will then run a script that requests how many
nodes to provide and optionally a file for batch tasks.
This will start the XML-RPC server and generate a

condor submit script which will then be submitted to
Condor. As the nodes are claimed by Condor for this
task, the XML-RPC server on the master will receive in-

coming requests for registration. Once all the expected
slaves have registered, the master will send a signal to
all of them notifying them to start the parallel frame-

work. Each slave will access the required files by the
NFS share from the master and start the parallel frame-
work. Upon completion, they will notify the master of

the port where they started the parallel framework ses-
sion. When all have responded, the master finalizes its
configuration and either batch tasks will be executed or

user interaction will be enabled.

5.3 Quantifying the Experience

Like the previous evaluation comparing the standard

grid to the “Grid Appliance,” this evaluation largely
focuses on the overheads of using the self-organizing
environments provided by our parallel framework and

the “Grid Appliance.” Because MPI can be configured
in so many different ways, we made the assumption that
a user would install it on each resource and use SSH to

complete the setup. In contrast, when using the “Grid
Appliance” none of the resources have MPI installed
and only the submission site does. The evaluations were

run using Future Grid Nimbus resources at the Texas

Advanced Computing Center located at the University

of Texas at Austin. We evaluated the time to construct
an MPI ring or an environment that can accept MPI
jobs and the time it took to run a job after the ring

was constructed. The MPI job was a 30 second sleep
followed by a MPI “HelloWorld.”

Traditional Grid Appliance

MPI Initialization 1.09 6.85
MPI Task 30.35 30.54

Table 3 Time in seconds for the MPI.

Our evaluation results are presented in Table 3. The
actual task time is negligibly different. Even the over-

heads for MPI ring formation are not significant. The
overhead primarily comes from waiting for all the nodes
to receive the Condor job, as nothing will proceed until

all of them have received the task and begun execut-
ing. Most importantly as most MPI jobs do not last
seconds, but rather, minutes, hours, or even longer, a

delay of a few seconds can be considered negligible.

6 Lessons Learned

This section highlights some the interesting develop-
ments and experiences, we have had that do not fit the

topics discussed so far.

6.1 Deployments

A significant component of our experience stems from
the computational grid provided by Archer [10], an ac-

tive grid deployed for computer architecture research,
which has been online for over 3 years. Archer currently
spans six seed universities contributing over 600 CPUs

as well as contributions and activities from external
users. The Archer grid has been accessed by hundreds
of students and researchers from over a dozen insti-

tutions submitting jobs totaling over 500,000 hours of
job execution in the past two years alone. The batch
scheduling of Simics evaluation actually used Archer

resources. In practice, we have seen that there has been
minimal conflict in resource demands on the syste, and
even when there is higher demand, each user is guaran-

teed high priority on their own resources. Thus we have
only heard praises and no complaints with regards to
the availability of resources.

The Grid Appliance has also been utilized by groups
at the Universities of Florida, Clemson, Arkansas, and
Northwestern Switzerland as a tool for teaching grid

computing. Meanwhile the universities of Clemson and



Experiences with Self-Organizing, Decentralized Grids Using the Grid Appliance 15

Purdue are using the Grid Appliance’s VPN (GroupVPN

/ IPOP) to create their own grid systems. Over time,
there have been many private, small-scale systems using
our shared system available at www.grid-appliance.

org with other groups constructing their own indepen-
dent systems. Feedback from users through surveys have
shown that non-expert users are able to connect to our

public Grid appliance pool in a matter of minutes by
simply downloading and booting a plug-and-play VM
image that is portable across VMware, VirtualBox, and

KVM.

6.2 Towards Unvirtualized Environments

Because of the demands put on Archer in terms of
avoiding the overheads of virtualization and the per-

ceived simplicity of managing physical resources as op-
posed to virtual resources running on top of a phys-
ical resources, many users have requested the ability

to run Grid Appliances directly on their machine. Un-
like clouds with machine images such as AMIs or VM
appliances, physical machines images cannot be easily

exported. Most physical OS installed on physical ma-
chines will need some some custom tailoring to handle
environment specific issues.

With this in mind, we moved away from stackable
file systems and towards creating repositories with in-
stallable packages, such as DEB or RPM. The impli-

cations of packages mean that users can easily pro-
duce “Grid Appliances” from installed systems or dur-
ing system installation. With the VPN router mode,

mentioned earlier, resources in a LAN can communicate
directly with each other rather than through the VPN.
That means if they are on a gigabit network, they can

full network speeds as opposed to being limited to 20%
of that due to the VPN, overheads discussed in [39].

Using an APT repository in combination with unat-

tended upgrades, we have enabled our Debian based
systems to automatically upgrade minimizing concerns
about upgrade failures and requirements for user inter-

vention. This is in contrast to our old method of having
a single monolithic package and package management
technique that we employed previously. Using existing

package managers and distribution systems reduces our
dependency count and also enables users to easily ac-
cept or reject upgrades by following well documented

procedures.

6.3 Advantages of the Cloud

We have had the experience of deploying the “Grid

Appliance” on three different cloud stacks: Amazon’s

EC2 [2], Future Grid’s Eucalyptus [25], and Future Grid’s

Nimbus [21]. All of the systems, encountered so far, al-
low for data to be uploaded with each cloud instance
started. The instance can then download the data from

a static URL only accessible from within the instance,
for example, EC2 user data is accessible at http://

169.254.169.254/latest/user-data. A “Grid Appli-

ance” cloud instances can be configured via user-data,
which is the same configuration data used as the vir-
tual and physical machines, albeit zip compressed. The

“Grid Appliance” seeks the configuration data by first
checking for a physical floppy disk, then in specific di-
rectory (/opt/grid_appliance/var/floppy.img), fol-

lowed by the EC2 / Eucalyptus URL, and finally the
Nimbus URL. Upon finding a floppy and mounting it,
the system continues on with configuration. Clouds have

been also very useful for debugging. Though Amazon is
not free, with Future Grid, grid researchers now have
free access to both Eucalyptus and Nimbus clouds. Many
bugs can be difficult to reproduce in small system tests

or booting one system at a time. By starting many in-
stances simultaneously, we have been able to quickly
reproduce and isolate problems, leading to timely reso-

lutions, and verification of those fixes.

6.4 Stacked File Systems

Configuring systems can be difficult, which makes it im-

portant to have the ability to share the resulting system
with others. The approach of actually creating pack-
ages can be overly complicated for novices. To address

this concern, our original “Grid Appliance” supported a
built-in mechanism to create packages through a stack-
able file system using copy-on-write, as describe in [36].

In this environment, the VM used 3 disks: the “Grid
Appliance” base image, the software stack configured
by us; a module; and a home disk. In normal usage,

both the base and module images are treated as read-
only file systems with all user changes to the system
being recorded by the home image, as depicted in Fig-

ure 7.
To upgrade the system, users replaced their current

base image with a newer one, while keeping their mod-

ule and home disks. While the purpose of the module
was to allow users to extend the configuration of the
“Grid Appliance.” To configure a module the system

would be booted into developer mode, an option dur-
ing the boot phase, where only the base and module
images are included in the stacked file system. Upon

completing the changes, a user would run a script that
would clean the system and prepare it for sharing. A
user could then share the resulting module image with

others.
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Fig. 7 Example of a stackable file system from our previous
“Grid Appliance.” A file will be read from the top most file
system in the stack and all writes are directed to Home.

Issues with this approach made it unattractive to

continue using. First, there exists no kernel level sup-
port for stackable file systems, we had to add UnionFS [41]
to the kernel, adding the weight of maintaining a kernel

upon our shoulders. While FUSE (filesystem in userspace)
solutions exist, they require modifications to the initial
ram disk, which is reproduced automatically during the

installation of every new kernel, furthermore, our ex-
perience with them suggests they are not well suited
for production systems. Additionally, the approach was

not portable to clouds or physical resources. So while
we have deprecated the feature for now, we see it as
a potential means to easily develop packages like DEB

and RPM.

6.5 Priority in Owned Resources

In Archer, seed universities should have priority on the

resources at their university. Similarly, users should have
priority on their contributions. Otherwise, users will re-
move their resources from the grid, when they want

guaranteed access. To support user and group based
priorities, Condor has mechanisms that can be enforced
at the server that allow for arbitrary means to specify

user priority for a specific resource. So our configuration
specifies that if the resource’s user or group matches
that of the submitter, the priority is higher than other-

wise. This alone is not sufficient as malicious users could
easily tweak their user name or group to obtain priority
on all resources. Thus whenever this check is made the

user’s identity in the submission information is verified
against their P2P VPN certificate. Failed matches are
not scheduled and are stored in a log at the manager

for the administrator to deal with later.

6.6 Timing in Virtual Machines

Certain applications, particularly license servers, are
sensitive to time. Because of the nature of grids, there

exist possibilities of having uncoordinated timing, such
as improperly specifying the time zone or not using
a network time protocol (NTP) server With regards

to VMs, VMWare [35] suggests synchronizing with the
host’s time and to avoid using services like NTP, which
may have adverse affects on timing inside the virtual

machine. While NTP might have some strange behav-
ior, relying on host time may produce erratic jumps in
time that some software cannot handle. Our experiences
recommends the use of NTP to address these concerns,

which has resolved many issues with strange software
behavior and frustration from users when their jobs fail
due to being unable to obtain a license due to a timing

mismatch.

6.7 Selecting a VPN IP Address Range

One challenge in deploying a VPN is ensuring that the

address space does not overlap with that over the en-
vironments where it will be used. If there is overlap,
users will be unable to connect to the VPN. Doing so

will confuse the network stack, as there will be two net-
work interfaces connected to the same address space
but different networks. A guaranteed, though not nec-

essarily practical solution is to run the resource on a
VM NAT or a cluster NAT that does not overlap the
IP address space of the VPN.

Users of the “Grid Appliance” should not have to
concern themselves with this issues. Prior work on the
topic by Ala Rezmerita et al. [27] recommends using the

experimental address class E ranging between 240.0.0.0
- 255.255.255.254, unfortunately this requires Linux ker-
nel modifications. With the amount of bugs and secu-

rity fixes regularly pushed into the kernel, maintaining
a forked kernel requires a significant amount of time,
duplicating the work already being performed by the

OS distribution maintainers. This would also limit the
ability to easily deploy resources in physical and cloud
environments. Additionally, users that wanted to mul-

tipurpose a physical resource may not want to run a
modified kernel, while in most cloud setups the kernel
choice is limited.

We have since moved towards using the 5.0.0.0 -
5.255.255.255 address range. Like the class E address
space it is unallocated, but it requires no changes to

any operating systems. The only limitation is that some
other VPNs also use it, thus a user would not be able to
run two VPNs on the same address space concurrently.

This approach is much better than providing kernels
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or dealing with network address overlaps. Interestingly,

even with this in place, we still see some “GroupVPNs”
using address ranges in normal private network address
ranges for the VPN, like 10.0.0.0 - 10.255.255.255 and

192.168.0.0 - 192.168.255.255.

6.8 Administrator Back Door

While most administrators will agree that most prob-

lems that users encounter are self-inflicted, there are
times, when the system is at fault. Debugging systems
faults in a decentralized system can be very tricky, since
it is very difficult to track down a resource in order

to gain direct physical access. Additionally, having a
user bring their resource to an administrator may be
prohibitively complicated, as the user would need to

relocate their “Grid Appliance” instance and have net-
work connectivity in order to connect to the grid and
show the problem to the administrator. To address this

and other concerns that only appear after running the
system for long periods of time, we have supplied an
administrator back door into all resources by installing

our public ssh key, though users are informed of this
and are free to remove it for privacy concerns. In typi-
cal configurations, this approach might not be feasible,

but because the “Grid Appliance” ships with a decen-
tralized VPN supporting all-to-all connectivity, any re-
source connected to the VPN is accessible for remote

debugging by an administrator. Most users involved are
extremely delighted with the process as it has an ap-
pearance that the system “just works.”

6.9 Enabling Access to Manager and Worker Systems

In the original system, we used the password “pass-
word” as the default for directly interacting with a ma-

chine. Since this is inherently insecure, we disable “su”
and “sudo,” but also only enabled accounts on submit
nodes, where users would be guaranteed to access the

system and hence more likely to change the password.
Unfortunately this prevents users from easily accessing
worker and manager resources. More advanced users

who were setting up their own systems would occasion-
ally want to access these resources for debugging pur-
poses or to enable additional features in live systems.

While a user could provide a SSH key in the floppy,
which is done for the administrator back door, there
is not a clear cut way for a user to identify a resource

without directly accessing it via a console. We have de-
vised some multicast discovery applications as well as
employed network search tools such as nmap, but their

use is not trivial. By using the password as stored in

the database, we can enable accounts on worker and

manager resources with minimal concern of hijacks as-
suming of course that the user properly selected their
password at account creation.

Implementation of this feature was not straight for-
ward. Most web sites do not store passwords in the same
format as the Linux password database, and converting

between two one-way functions is mathematically chal-
lenging. As a result, we needed to convert the password
at the time of user account creation. Because we were

adding this to an existing system, we also needed to take
into account existing users, and so we wrote a hook that
would obtain the password during authentication and

store the Linux formatted password to the database.
During the creation of a user account on a “Grid Ap-
pliance,” the encrypted format of the users password

is then passed as a parameter into the user account
adding application, adduser. While for our system, we
experienced no show stoppers, a system incorporating
Javascript and XML-RPC (AJAX) to perform authen-

tication may.

7 Related Work

Existing work that falls under the general area of desk-

top grids/opportunistic computing include Boinc [3],
BonjourGrid [1], and PVC [27]. Boinc, used by many
“@home” solutions, focuses on adding execute nodes

easy; however, job submission and management rely on
centralization and all tasks must use the Boinc APIs.
BonjourGrid removes the need for centralization through

the use of multicast resource discovery; the need for
which limits its applicability to local area networks.
PVC enables distributed, wide-area systems with de-

centralized job submission and execution through the
use of VPNs, but relies on centralized VPN and re-
source management.

Each approach addresses a unique challenge in grid
computing, but none addresses the challenge presented
as a whole: easily constructing distributed, cross-domain

grids. Challenges that we consider in the design of our
system include allowing submission sites to exist any
where without being confined to complex configura-

tion or highly available, centralized locations; the abil-
ity to dynamically add and remove resources by start-
ing and stopping a a resource; and the sharing of com-

mon servers so that no group in the grid is dependent
on another. We emphasize these points, while still re-
taining the ease of use of Boinc, the connectivity of

PVC, and the flexibility of BonjourGrid. The end re-
sult is a system similar to OurGrid [5]; however, Our-
Grid requires manual configuration of the grid and net-

working amongst sites, administration of users within a
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site, and limits network connectivity amongst resources,

whereas “Grid Appliance” transparently handles these
issues with a P2P overlay and VPN to handle network
constraints and support network sandboxing and a web

interface to configure and manage the grid.
With regards to clouds, there exists contextualiza-

tion [20]. Users construct an XML configuration file

that describes how a cloud instance should be config-
ured and provide this to a broker. During booting of
a cloud instance, it will contact a third-party contex-

tualization broker to receive this file and configure the
system. This approach has been leveraged to create dy-
namic grids inside the Nimbus cloud [17]. While this ap-

proach can reproduce similar features of the “Grid Ap-
pliance,” such as creating grids inside the cloud, there
are challenges in addressing cloud bursting, automated

signing of certificates, and collaboration amongst dis-
parate groups.

Contextualization has made even further in roads
through a project known as “Globus Provision8,” which

creates an entire Globus and Condor pool in the clouds.
Our approaches are orthogonal in many ways. For ex-
ample, Globus seeks to create a traditional grid with

users sharing common submission points and having
dedicated entry points into and across the grid. While
“Globus Provision” could allow remote access into a

“Grid Appliane” system, it is not trivial to add a “Grid
Appliance” system into a “Globus Provision” system.
As the “Globus Provision” system would require each

user to authenticate with the “Globus” agents or have
a set of trusted systems act on behalf of the “Grid Ap-
pliance” system.

8 Conclusions

In this paper, we have presented a grid framework that
enables users to easily deploy their own grids. By reduc-

ing the entry barrier to constructing wide-area grids,
rather than just providing a grid, our approach teaches
users to create grids rather than providing access. The

features of the “Grid Appliance” significantly simplify
the construction of a grid over traditional approaches.
These methods are based upon and have been verified

through experience with individuals and groups coming
from various backgrounds. Furthermore, we have pre-
sented both qualitative and quantitative utility of the

“Grid Appliance” in Section 4. Namely, decentralized,
P2P VPNs are resilient and easily configured; web in-
terfaces ease the burden of crafting configuration files

and signing of certificates; and package management
systems can be used to create appliances nearly as con-

8 http://globus.org/provision

veniently as VMs. Those interested are able to test drive

the system by coming to our public Web interface at
the www.grid-appliance.org, where they can either
use our public testing grid or deploy their own.

The concepts in this paper are intentionally generic
so that they can easily be applied to other systems. For
example, more complex approaches to grids involve en-

tities known as virtual organizations. A virtual organi-
zation allows the same set of resources to be members of
many distinct grids. Our web interface idea could be ex-

tended to support virtual organizations. Additionally,
the sandboxing technique could be applied to many en-
vironments, including OurGrid, to allow grid network

access without compromising the safety of the system.
For future work, we are considering mechanisms to

fully decentralize the “Grid Appliance” by using a de-

centralized grid system that requires no manager nodes,
though the challenges in doing so, are efficient resource
discovery, clustering of group resources, and fair use

scheduling. A completely decentralized grid could be
constructed completely by client machines, in which,
no one is more responsible than another for maintain-
ing the grid. While the parallel framework works quite

well it can still be significantly improved by attempting
to be scheduled on resources based upon proximity and
supporting some form of reliability in order to deal with

disappearing or reclaimed nodes.
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1. Abbes, H., Cérin, C., Jemni, M.: Bonjourgrid: Orches-
tration of multi-instances of grid middlewares on institu-
tional desktop grids. In: International Parallel and Dis-
tributed Processing Symposium (IPDPS) (2009)

2. Amazon.com, Inc: Amazon elastic compute cloud. http:
//aws.amazon.com/ec2 (2009)

3. Anderson, D.P.: Boinc: A system for public-resource com-
puting and storage. In: the International Workshop on
Grid Computing (2004)

4. Andrade, N., Costa, L., Germoglio, G., Cirne, W.: Peer-
to-peer grid computing with the ourgrid community. In:
Brazilian Symposium on Computer Networks (2005)

5. Andrade, N., Costa, L., Germglio, G., Cirne, W.: Peer-
to-peer grid computing with the ourgrid community. In:
Brazilian Symposium on Computer Networks (SBRC) -
4th Special Tools Session (2005)

6. Andreetto, P., Andreozzi, S., Avellino, G., Beco, S., Cav-
allini, A., Cecchi, M., Ciaschini, V., Dorise, A., Giaco-
mini, F., Gianelle, A., Grandinetti, U., Guarise, A., Krop,
A., Lops, R., Maraschini, A., Martelli, V., Marzolla, M.,
Mezzadri, M., Molinari, E., Monforte, S., Pacini, F., Pap-
palardo, M., Parrini, A., Patania, G., Petronzio, L., Piro,
R., Porciani, M., Prelz, F., Rebatto, D., Ronchieri, E.,
Sgaravatto, M., Venturi, V., Zangrando, L.: The glite
workload management system. Journal of Physics: Con-
ference Series 119(6), 062,007 (2008)

7. Boykin, P.O., Bridgewater, J.S.A., Kong, J.S., Lozev,
K.M., Rezaei, B.A., Roychowdhury, V.P.: A symphony
conducted by brunet. http://arxiv.org/abs/0709.4048
(2007)

8. DeCandia, G., Hastorun, D., Jampani, M., Kakulap-
ati, G., Lakshman, A., Pilchin, A., Sivasubramanian,
S., Vosshall, P., Vogels, W.: Dynamo: amazon’s highly
available key-value store. In: Symposium on Operating
Systems Principles (SOSP). ACM, New York, NY, USA
(2007)

9. Epema, D.H.J., Livny, M., van Dantzig, R., Evers, X.,
Pruyne, J.: A worldwide flock of condors: Load sharing
among workstation clusters. Future Generation Com-
puter Systems 12(1), 53 – 65 (1996)

10. Figueiredo, R.J., Boykin, P.O., Fortes, J.A.B., Li, T.,
Peir, J., Wolinsky, D., John, L.K., Kaeli, D.R., Lilja, D.J.,
McKee, S.A., Memik, G., Roy, A., Tyson, G.S.: Archer:
A community distributed computing infrastructure for
computer architecture research and education. In: Col-
laborateCom (2008)

11. Figueiredo, R.J., Dinda, P.A., Fortes, J.A.B.: A case for
grid computing on virtual machines. In: International
Conference on Distributed Computing Systems. IEEE
Computer Society (2003)

12. Foster, I.: Globus toolkit version 4: Software for service-
oriented systems. Journal of Computer Science and Tech-
nology 21, 513–520 (2006). URL http://dx.doi.org/10.

1007/s11390-006-0513-y. 10.1007/s11390-006-0513-y
13. Ganguly, A., Agrawal, A., Boykin, O.P., Figueiredo, R.:

IP over P2P: Enabling self-configuring virtual IP net-
works for grid computing. In: International Parallel and
Distributed Processing Symposium (2006)

14. Ganguly, A., Agrawal, A., Boykin, P.O., Figueiredo, R.:
Wow: Self-organizing wide area overlay networks of vir-
tual workstations. In: IEEE High Performance Dis-
tributed Computing (HPDC) (2006)

15. Ganguly, A., Boykin, P.O., Wolinsky, D., Figueiredo,
R.J.: Improving peer connectivity in wide-area overlays of
virtual workstations. Cluster Computing Journal (2009)

16. Ganguly, A., Wolinsky, D., Boykin, P., Figueiredo, R.:
Decentralized dynamic host configuration in wide-area
overlays of virtual workstations. In: International Parallel
and Distributed Processing Symposium (2007)

17. Harutyunyan, A., Buncic, P., Freeman, T., Keahey,
K.: Dynamic virtual AliEn grid sites on nimbus with
CernVM. Journal of Physics: Conference Series (2010)

18. Jiang, X., Xu, D.: Violin: Virtual internetworking on
overlay. In: International Symposium on Parallel and Dis-
tributed Processing and Applications, pp. 937–946 (2003)

19. Keahey, K., Doering, K., Foster, I.: From sandbox to
playground: Dynamic virtual environments in the grid.
In: International Workshop in Grid Computing (2004)

20. Keahey, K., Freeman, T.: Contextualization: Providing
one-click virtual clusters. In: eScience (2008)

21. Keahey, K., Freeman, T.: Science clouds: Early experi-
ences in cloud computing for scientific applications. In:
Cloud Computing and Its Applications (2008)

22. Livny, M., Basney, J., Raman, R., Tannenbaum, T.:
Mechanisms for high throughput computing. SPEEDUP
Journal 11(1) (1997)

23. LogMeIn: Hamachi. https://secure.logmein.com/

products/hamachi2/ (2009)
24. Maymounkov, P., Mazières, D.: Kademlia: A peer-to-peer

information system based on the XOR metric. In: Inter-
national Workshop on Peer-to-Peer Systems (2002)

25. Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G.,
Soman, S., Youseff, L., Zagorodnov, D.: The eucalyptus
open-source cloud-computing system. In: IEEE/ACM In-
ternational Symposium on Cluster Computing and the
Grid (CCGrid) (2009)

26. Resources, C.: Torque resource manager. http:

//www.clusterresources.com/pages/products/

torque-resource-manager.php (2007)
27. Rezmerita, A., Morlier, T., Neri, V., Cappello, F.: Pri-

vate virtual cluster: Infrastructure and protocol for in-
stant grids. In: Euro-Par (2006)

28. Rowstron, A., Druschel, P.: Pastry: Scalable, decentral-
ized object location and routing for large-scale peer-to-
peer systems. In: IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware) (2001)

29. Santhanam, S., Elango, P., Dusseau, A.A., Livny, M.: De-
ploying virtual machines as sandboxes for the grid. In:
WORLDS (2005)

30. Sliepen, G.: tinc. http://www.tinc-vpn.org/ (2009)
31. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R.,

Kaashoek, M.F., Dabek, F., Balakrishnan, H.: Chord: a
scalable peer-to-peer lookup protocol for internet appli-
cations. IEEE/ACM Transactions on Networking 11(1)
(2003)

32. Sun: gridengine. http://gridengine.sunsource.net/

(2007)
33. Sundararaj, A.I., Dinda, P.A.: Towards virtual networks

for virtual machine grid computing. In: Conference on
Virtual Machine Research And Technology Symposium,
pp. 14–14 (2004)

34. Tsugawa, M., Fortes, J.: A virtual network (vine) archi-
tecture for grid computing. International Parallel and
Distributed Processing Symposium (2006)

35. VMware, Inc.: Timekeeping in vmware virtual machines.
http://www.vmware.com/pdf/vmware_timekeeping.pdf

(2008)
36. Wolinsky, D.I., Agrawal, A., Boykin, P.O., Davis, J., Gan-

guly, A., Paramygin, V., Sheng, P., Figueiredo, R.J.: On
the design of virtual machine sandboxes for distributed
computing in wide area overlays of virtual workstations.
In: International Workshop on Virtualization Technolo-
gies in Distributed Computing (2006)



20 David Isaac Wolinsky et al.

37. Wolinsky, D.I., Figueiredo, R.: Experiences with self-
organizing decentralized grids using the grid appliance.
In: International Symposium on High Performance Dis-
tributed Computing (ACM HPDC 2011) (2011)

38. Wolinsky, D.I., Lee, K., Boykin, P.O., Figueiredo, R.: On
the design of autonomic, decentralized vpns. In: Inter-
national Conference on Collaborative Computing: Net-
working, Applications and Worksharing (2010)

39. Wolinsky, D.I., Liu, Y., Juste, P.S., Venkatasubrama-
nian, G., Figueiredo, R.: On the design of scalable, self-
configuring virtual networks. In: IEEE/ACM Supercom-
puting 2009 (2009)

40. Wolinsky, D.I., St. Juste, P., Boykin, P.O., Figueiredo, R.:
Addressing the P2P bootstrap problem for small overlay
networks. In: 10th IEEE International Conference on
Peer-to-Peer Computing (P2P) (2010)

41. Wright, C.P., Zadok, E.: Unionfs: Bringing file systems
together. In: Linux Journal (2004)

42. Yonan, J.: OpenVPN. http://openvpn.net/ (2009)


