
Litter: A Lightweight Peer-to-Peer Microblogging Service

Pierre St Juste, David Wolinsky, P. Oscar Boykin, Renato J. Figueiredo

Advanced Computing and Information Systems Lab, University of Florida, Gainesville, FL 32611
Email: {pstjuste,davidiw,boykin,renato}@acis.ufl.edu

Abstract

Microblogging has become an important part of the
social web evolution and is being utilized in many
aspects such as advertising, political campaigns, and
popular uprisings. Due to its heavy centralization,
many have proposed decentralized alternatives based
on a variety of models. This paper suggests a fully
distributed approach built on top of existing peer-to-
peer technologies. We demonstrate that, by exploiting
the services of current peer-to-peer middleware along
with the properties of the social graph, it is possible
to create a simple, yet practical microblogging service
that is impervious to many of the shortcomings of
their centralized counterparts. The approach has been
implemented as a software prototype that is readily
available for download in order to test our design in
real life environments.

1. Introduction

Microblogging, which began as a simple means of

publishing your statuses, has now become a primary

mechanism for publishing information in a concise,

and practical manner; for example, microblogs are used

in advertising, stock analysis, news reporting, political

campaigns, and revolutionary uprisings. Hence, mi-

croblogging is being accepted as an efficient method of

disseminating information to the masses by leveraging

the social web. However, most microblogging activities

occur in a few well-known services such as Twitter

or Identica, which has prompted the research and free

software community to start thinking about decentral-

ized alternatives [1]–[4]. Unfortunately, no practical

implementation has ever materialized.

This paper aims to be the first to describe a prac-

tical distributed microblogging service which is built

on top of peer-to-peer technologies, making the sys-

tem self-sustaining without dependence on centralized

servers. More specifically, we focus on leveraging

readily available peer-to-peer, virtual private network-

ing technology such as Hamachi [5], Wippien [6],

or SocialVPN [7] to minimize the complexity of our

microblogging service. This paper demonstrates that

the system requirements of a microblogging service

are relaxed enough so the service can be deployed on

a dynamic peer-to-peer system, such as one dominated

by mobile nodes while delivering fairly adequate per-

formance in terms of message latency and bandwidth

consumption.

Our paper focuses on the following novel contribu-

tions:

• A decentralized microblogging approach which

uses best-effort packet delivery without the use

of acknowledgments or timeouts for message re-

transmissions.

• A functional prototype implementation which

demonstrates the feasibility and practicality of

our design and also works on both typical LAN

environments and virtual private networks.

The rest of the paper is outlined as follows. Section 2

discusses the benefits and features adopted from avail-

able peer-to-peer networking system. We elaborate on

our design in Section 3, followed by the details of our

implementation in Section 4. Finally, Sections 5 and 6

present related works and conclusion.

2. Requirements and Assumptions

Peer-to-peer networking and public key cryptogra-

phy are the two fundamental pillars of our design.

This paper does not focus on solving the intricacies of

peer-to-peer connectivity because that topic has been

researched extensively over the past decade. Therefore,

we assume the availability of peer-to-peer systems that

enable direct communication amongst peers [8], [9].

One such solution is SocialVPN, a peer-to-peer virtual

private network which leverages social networks to

bootstrap encrypted IP tunnels through network ad-

2011 IEEE International Conference on Privacy, Security, Risk, and Trust, and IEEE International Conference on Social Computing

978-0-7695-4578-3 2011

U.S. Government Work Not Protected by U.S. Copyright

DOI 

900



dress translators between friends [10]. Our microblog-

ging service relies on this peer-to-peer communication

layer to propagate updates to followers. For peer

discovery and cryptographic key distribution, we can

adopt the Freenet darknet model, which allows users

to exchange their endpoint information and public keys

through some trusted, out-of-band communication path

(e.g. thumbdrive, email, or instant messaging) [11].

Another solution is the SocialVPN approach which

utilizes the XMPP federation as the trusted medium

for peer discovery and key exchange [10], [12]. Once

again, our design assumes the adoption of one or more

of these peer discovery and key distribution solutions.

3. The Litter Design

Our design consists of three main components: the

message format, a push/pull model for propagating

messages, and a message recovery mechanism. In

this section, we demonstrate that how our algorithms

achieve this and we analyze it in the following section.

3.1. The Message Format

The message form is the first basic component of

our design and it contains the following fields: uid,

timestamp, sequence number, data, and signature. The

uid is the unique identifier for the creator of the post.

The timestamp is simply the time of the message

creation. Each user maintains a local counter which

increments by one for every new post the user creates

and also serves as the message’s sequence number. The

sequence number is key in detecting missing messages

in a user’s timeline. The data is the actual message

created by the user with a 140 character limit. Finally,

each message has a unique signature which serves to

identify the message, verify its integrity, and confirm

its creator. The signature is the typical HMAC scheme

of encrypting the hash of the whole message (i.e

uid, timestamp, sequence number, and data) with the

creator’s private key.

3.2. Pushing Messages

Messages propagate through the peer-to-peer social

graph through a combination of both a push and pull

model. When a user creates a post, that post is sent

to followers by broadcasting it to all one-hop peers

in the peer-to-peer graph. Every peer who receives the

messages stores it locally. Since one-hop peers are also

followers, they serve as both consumers of the message

as well as caches for the message (Algorithm 1). In

the ideal scenario, this basic push model would be

Algorithm 1 Push Mechanism

1: procedure PUBLISHPOSTS(post, C, seq)

2: C is a list connections to online followers

3: seq := seq + 1
4: msg := (uid, time, seqno, post, sig)
5: for all con in C do
6: sendTo(con, msg)

7: end for
8: end procedure
9: procedure RECEIVEPOST(msg, DS)

10: DS is the local datastore

11: if isValidSig(msg) and msg not in DS then
12: storeMsg(DS, msg)

13: updateHighestSeq(msg)

14: end if
15: end procedure

sufficient since posts are sent directly to all followers

once they are generated. However, there are three main

factors which preclude this. The most obvious obstacle

is churn in peer-to-peer systems meaning that a node

may be offline during the time of the post. Therefore,

with the simple push model, followers would never

receive posts sent while they were offline. The second

obstacle is packet loss. Although, actual packet drop on

the Internet is fairly low at about 1%, it has been shown

that it can be much higher in particular continents

such as Asia or Africa where the networking infras-

tructure is less developed [13], [14]. In our analysis,

we evaluate the performance of our design at both

1% and 10% packet drop rates. The third barrier is

resource limitation, or more specifically, bandwidth. It

would not be realistic to expect a user with thousands

of followers to send each post to thousands of peer-

to-peer nodes without exhausting his/her bandwidth.

To cope with these issues, our design also employs

periodic pulls and a simple message recovery system.

3.3. Pulling Messages

Churn is a common side-effect of peer-to-peer de-

sign because many of the nodes that make up the

system can be mobile. This can include laptops, tablets,

smartphones, or any other mobile device where uptime

is low and connectivity is dynamic. As a result, mecha-

nisms have to be in place to deal with the unavailability

of peers during the time of a post. Our design uses a

periodic pull model to handle this issue. Online nodes

periodically send a pull request to all the nodes that

they have direct peer-to-peer connections with. The

pull request contains a time range, a list of unique

identifiers of the users being followed, and the highest

901



Algorithm 2 Pull Mechanism

1: procedure REQUESTPOSTS(C, F , range)

2: C is a list connections to online followings

3: F is a list of uids with highest seq
4: range is the time window for request

5: msg := (F, range)
6: for all con in C do
7: sendto(con, msg)

8: end for
9: end procedure

10: procedure PROCESSREQUEST(con, msg, DS)

11: DS is local datastore

12: con is connection to requester

13: for all post in DS do
14: if post.uid is in msg.uids and post.seq >

msg[uid].seq and post.time is in range then
15: sendto(con, post)
16: end if
17: end for
18: end procedure

sequence number received from the particular user.

Upon receiving the pull request, the node scans its local

datastore for any messages from the list of uids in the

request, and sends back messages with timestamps that

fall within the range of the request (Algorithm 2).

3.4. Message Recovery

Our microblogging service is designed to use a best-

effort datagram messaging system because it allows the

most flexibility and the least amount of maintenance.

We assume a messaging layer where packet drops

occur or packets arrive out-of-order. Therefore, both

our push-based publishing and our pull-based retrieval

of messages are vulnerable to packet loss. The resulting

effect of deploying our system on a best-effort medium

is gaps in a user’s timeline. As previously described,

each generated post contains a sequence number which

increments with each new post created. Therefore, it is

easy to identify missing messages by looking for gaps

in the timeline of a particular user. To counteract the

message lost, our algorithm periodically scans the local

datastore for missing posts. When one is found, a pull

request is sent directly to the creator of the missing

post if they are online. If the creator of the post is

offline, the pull request is sent to one of the creator’s

followers since there will be a high likelihood that they

have the missing post cached.

4. Prototype Implementation

In order to determine the feasibility of our design,

we implemented a prototype. To deal with peer-to-

peer connectivity, peer discovery, and key distribution,

we chose the SocialVPN project (http://socialvpn.org)

which provides of all these services. With SocialVPN,

users are able to create IP connections by emailing

each other their P2P address and the hash of their pub-

lic key. Alternatively, they can automate that exchange

of credentials through the XMPP protocol. Because

SocialVPN virtualizes the peer-to-peer layer into a

virtual private network, our microblogging service uses

the well-known Berkley sockets API to communicate

with peers. This also means that our implementation

works in a LAN or private network as long as multicast

is enabled.

When publishing a post, that message is sent using

IP multicast over SocialVPN. Since messages are lim-

ited to 140 characters, they are able to fit into one UDP

message without IP fragmentation. Therefore, when

Alice creates a post, she is able to send it to all her fol-

lowers by simply encapsulating the message in a UDP

datagram and sending it a multicast IP address (i.e.

239.192.1.100, the chosen address for our protocol).

As we all know, IP multicast is always a best-effort

protocol, meaning that there are no guarantees against

packet drops.

As part of our push/pull model, the local Litter

node periodically checks for updates from its local

connections through the use of IP multicast as well.

In our current implementation, a pull request for new

messages is done every 5 minutes to check whether the

follower has missed any messages. Furthermore, our

message recovery mechanism searches for gaps in the

sequences of messages every 30 seconds. Whenever

a gap is found, the user sends a request to only the

nodes that may have that message cached. The pull

request also helps each Litter node determine common

friends by comparing the list of uids in the request with

the user’s own list of friends. The prototype has been

tested internally in our lab on both the LAN and over

SocialVPN. We also made posts through the use of

mobile devices such as the iPhone.

5. Related Works

There have been a few proposals for decentraliz-

ing microblogging systems. Sandler et. al presented

FETHR [2] with a design for a decentralized mi-

croblogging service based on an unstructured social

graph. Messages were propagated with a gossip mech-

anism to all followers or application-level multicast

902



trees. Instead of sequence numbers, messages are

chained by a list of message signatures. The Cuckoo

project [3] seeks to combine both a structured and un-

structured peer-to-peer design with a hybrid approach.

Similar to our approach, new posts are pushed to

followers through direct links and also stored in a DHT.

Followers also periodically pull messages from nodes

they are following if they have a direct connection with

these nodes. If not, they retrieve new messages through

the DHT. In contrast, Litter does not have to rely on a

DHT if there is enough clustering among social nodes

and it implements a message recovery mechanism to

deal with lost packets.

6. Conclusion and Future Work

In this paper, we propose a distributed microblog-

ging design which leverages existing middleware,

specifically peer-to-peer, virtual private networks. Our

approach reuses the peer discovery and key exchange

mechanism available in today’s peer-to-peer system

along with the small-world properties of the social

graph. We also described a functional, open-source

prototype implementation that can be downloaded and

tested to show the feasibility of the system. Future

work will focus on getting real live measurements with

real users to verify our simulated predictions.

7. Acknowledgements

This research is sponsored by the National Science

Foundation under grant IIP-0758596, CCF-0622106,

the Amazon Web Services Academic Resource Credits,

the South East Alliance for Graduate Education and the

Professoriate, the Florida Education Fund under the

McKnight Doctoral Program. Any opinions, findings

and conclusions or recommendations expressed in this

material are those of the authors and do not necessarily

reflect the views of the sponsors.

References

[1] M. Arrington. (2008, May) Twitter can be liberated.
[Online]. Available: http://techcrunch.com/2008/05/05/
twitter-can-be-liberated-heres-how/

[2] D. R. Sandler and D. S. Wallach. Birds of a fethr: Open,
decentralized micropublishing.

[3] T. Xu, Y. Chen, J. Zhao, and X. Fu, “Cuckoo: towards
decentralized, socio-aware online microblogging ser-
vices and data measurements,” in Proceedings of the
2nd ACM International Workshop on Hot Topics in
Planet-scale Measurement, ser. HotPlanet ’10. New
York, NY, USA: ACM, 2010, pp. 4:1–4:6.

[4] P. Saint-Andre. (2011, June) Microblogging over
xmpp. [Online]. Available: http://xmpp.org/extensions/
xep-0277.html

[5] “Hamachi - instant, zero configuration vpn.”
https://secure.logmein.com/products/hamachi/vpn.
asp?lang=en.

[6] “Wippien p2p vpn,” http://wippien.com/, 2010.
[Online]. Available: http://wippien.com/

[7] “Socialvpn,” http://socialvpn.org/, 2010. [Online].
Available: http://socialvpn.org/

[8] B. Wang, X. Wen, S. Yong, and Z. Wei, “A novel
nat traversal mechanism in the heterogeneous environ-
ment,” in Proceedings of the 2009 Eigth IEEE/ACIS
International Conference on Computer and Information
Science. Washington, DC, USA: IEEE Computer
Society, 2009, pp. 161–165.

[9] S. Guha, Y. Takeda, and P. Francis, “Nutss: a sip-
based approach to udp and tcp network connectivity,”
in Proceedings of the ACM SIGCOMM workshop on
Future directions in network architecture, ser. FDNA
’04. New York, NY, USA: ACM, 2004, pp. 43–48.

[10] P. St. Juste, D. Wolinsky, P. Oscar Boykin, M. J.
Covington, and R. J. Figueiredo, “SocialVPN: Enabling
wide-area collaboration with integrated social and over-
lay networks,” Computer Networks, January 2010.

[11] I. Clarke, S. Oskar, O. Wiley, and T. W. Hong, “Freenet:
A distributed anonymous information storage and re-
trieval system,” in In Workshop on Design Issues in
Anonymity and Unobservability, 2000, pp. 46–66.

[12] A. V. Ramachandran and N. Feamster, “Authenticated
out-of-band communication over social links,” in Pro-
ceedings of the first workshop on Online social net-
works, ser. WOSN ’08. New York, NY, USA: ACM,
2008, pp. 61–66.

[13] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon,
T. Anderson, A. Krishnamurthy, and A. Venkataramani,
“iplane: an information plane for distributed services,”
in Proceedings of the 7th symposium on Operating
systems design and implementation, ser. OSDI ’06.
Berkeley, CA, USA: USENIX Association, 2006, pp.
367–380.

[14] Y. A. Wang, C. Huang, J. Li, and K. W. Ross. Queen:
Estimating packet loss rate between arbitrary internet
hosts.

903


