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ABSTRACT
Self-configuring virtual networks rely on structured P2P rout-
ing to provide seamless connectivity among nodes through
overlay routing of virtual IP packets, support decentral-
ized hole-punching to establish bi-directional communica-
tion links among nodes behind network address translators,
and dynamic configuration of virtual IP addresses. Our ex-
periences with deployments of virtual networks in support
of wide-area overlays of virtual workstations (WOWs) reveal
that connectivity constraints imposed by symmetric NATs
and by Internet route outages often hinder P2P overlay
structure maintenance and routability, subsequently limiting
the ability of WOWs to deliver high-throughput computing
through aggregation of resources in different domains.

In this paper, we describe and evaluate two novel ap-
proaches which are generally applicable and fully decen-
tralized, and show that they improve routability of struc-
tured P2P networks in such connectivity constrained envi-
ronments: (1) a fault-tolerant routing algorithm based on
simulated annealing from optimization theory, and (2) tun-
neling of connections between adjacent nodes (in the P2P
identifier space) over common neighbors when direct com-
munication is not possible. Simulation-based analyses show
that when pairs of nodes only have 70% chance of being
able to communicate directly, the described approaches im-
prove all-to-all routability of the network from 90% to 99%.
We have implemented these techniques in the IP-over-P2P
(IPOP) virtual network and have conducted experiments
with a 180-node WOW Condor pool, demonstrating that,
at 81% probability of establishing a pair-wise connection,
annealing and tunneling combined allow all nodes to be con-
nected to the pool, compared to only 160 nodes in the ab-
sence of these techniques.
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1. INTRODUCTION
Wide-area overlays of virtual workstations (WOWs) are

appealing infrastructures for the creation of high-throughput
computing pools and cross-domain collaborative environ-
ments ([12][3][23][5]) due to their ability of self-configuring
functionally homogeneous virtual networks of virtual ma-
chines on top of a heterogeneous wide-area physical infras-
tructure ([15][32]). Like several related efforts (such as Chord
[31], Kademlia [25] and Pastry [30]), WOWs rely on struc-
tured P2P overlays to provide the core service of message
routing and additional capabilities such as object storage
and retrieval. In the case of WOWs, a structured P2P
virtual network (IPOP [14]) provides all-to-all connectiv-
ity among nodes, automatic configuration of virtual IP ad-
dresses of nodes using a decentralized Dynamic Host Con-
figuration Protocol (DHCP) [16] implementation, and self-
optimization through creation of direct overlay links between
virtual IP nodes [15].

Structured P2P routing assumes each node has a con-
sistent view of its local neighborhood in the P2P identi-
fier space, which is reflected in its ability to communicate
with its neighboring nodes. However, in practice, wide-
area environments are becoming increasingly constrained in
terms of peer connectivity, primarily due to the prolifera-
tion of NAT and firewall routers. These constraints can ren-
der structured P2P routing inconsistent, negatively affecting
routability and services built upon the assumption of consis-
tent routing. In this paper, we describe and evaluate novel
techniques that achieve consistent routing in connectivity-
constrained environments and demonstrate their applicabil-
ity in representative WOW-based high-throughput comput-
ing environments.

Studies have shown that about 30%-40% [21] of the nodes
in a P2P system are behind NATs. Certain kinds of NAT
devices can be “traversed” to support bi-directional com-
munication links through UDP-hole punching, a technique
which has been implemented in systems such as IPOP and
is known to work for a large variety of “cone” NATs. How-
ever, certain scenarios often arise where hole-punching is not
possible, such as in “symmetric” NATs. In addition, stud-
ies have also shown the existence of permanent or transient
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route outages between pairs of nodes on the Internet; for
example, [13] reports 5.2% pair-wise outages among nodes
on PlanetLab [9], and an experiment described in this pa-
per reveals 9 broken structured connections in a 420-node
P2P ring overlaid on PlanetLab. Together, these connectiv-
ity constraints pose a challenge to overlay structure main-
tenance: two adjacent nodes cannot communicate directly,
creating false perceptions of a neighbor not being available.
In general, these missing links on a P2P structure lead to
inconsistent routing decisions, and subsequently hinder the
correctness of structured routing. As applied to WOWs,
they hinder the ability of IPOP to provide all-to-all connec-
tivity among nodes that form a virtual cluster.

Related work has addressed challenges including construc-
tion of efficient overlay topologies [18], correct routing of ob-
ject lookups under churn [28][6], and proximity-aware rout-
ing [7]. However, an implicit underlying assumption com-
mon in previous work is of an environment where P2P nodes
are able to establish direct connections to one another. De-
ployments of these systems have recognized the problem
of overlay structure maintenance when only a small frac-
tion of pairs (about 4% [20]) cannot communicate with each
other [13] [17]. However, from our practical experience with
WOW deployments, we have observed that this fraction can
be significantly larger due to nodes behind (multiple) NATs,
and NATs that are symmetric or do not support “hairpin”
translation that preclude hole-punching. To illustrate the
negative impact of pair-wise connectivity constraints, re-
sults from a simulation-based analysis show that the all-to-
all routability of a 1000-node ring structured overlay using
a conventional (greedy) structured routing algorithm is less
than 90% when there is a 70% chance that P2P nodes will be
able to communicate directly using TCP or UDP transports.

This paper makes the following contributions. We de-
scribe and evaluate two novel, synergistic techniques for
fault-tolerant routing and structured overlay maintenance in
the presence of network outages: annealing routing, an algo-
rithm based on simulated annealing from optimization the-
ory, and tunnel edges, a technique to establish connections
between P2P nodes over common neighbors. These tech-
niques are fully decentralized, self-configuring and generally
applicable to any structured P2P system. An implementa-
tion of these techniques in IPOP has been demonstrated to
operate in actual wide-area PlanetLab deployments as well
as in NATed environments with emulated pair-wise outages.
The effectiveness of these approaches are analyzed for var-
ious system configurations with the aid of analytical mod-
els, simulation, and data collected from realistic system de-
ployments. We demonstrate these techniques significantly
improve all-to-all routability (with respect to conventional
greedy routing) from 90% to over 99% at 70% probability of
successful pair-wise connections. We also report on results
from realistic NAT-constrained environments through ex-
periments which demonstrate the benefit of annealing rout-
ing and tunnel edges to improve connectivity within nodes
of a 180-node WOW Condor [22] pool, increasing the frac-
tion of reported worker nodes from 88% to 100% at 81%
probability of successful pair-wise connections.

The rest of the paper is organized as follows. In Section 2,
we overview several sources of connectivity constraints found
in wide-area environments for deployment of desktop grids
and collaborative environments. In Section 3 we qualita-
tively describe the impact of incorrect routing on the func-

tioning of WOW distributed systems. We then describe a
fault-tolerant annealing routing algorithm that can route
messages to their correct destinations, even in the presence
of missing overlay links (Section 4.1). In Section 4.2, we
describe a technique that allows tunneling of overlay links
over connections to other nodes and the implementation of
this technique in IPOP. In Section 5, we quantify the im-
provement in structured routing using these two techniques
through simulations. We describe our implementation of
tunnel edges in the IPOP system in Section 6. In Section 7,
we describe experiments that demonstrate the operation of
IPOP in connectivity constrained environments. We discuss
related work in Section 8, and conclude the paper in Sec-
tion 9.

2. CONNECTIVITY HAZARDS
IN WIDE-AREA NETWORKS

Several structured P2P systems have been deployed on
wide-area infrastructures when participating hosts are on
the public Internet. For example, OpenDHT [29] relies on
non-firewalled PlanetLab P2P nodes to deploy its DHT;
however, nodes behind NATs and firewalls can only act as
OpenDHT clients and do not store keys. In order to aggre-
gate the increasing number of hosts behind NATs/firewalls
as WOW nodes, the IPOP virtual network must be able to
deal with a complex wide-area environment as the one de-
picted in Figure 1, where typical end users of a P2P system
are constrained by NATs in which they do not have the con-
trol (or expertise) necessary to set up and maintain firewall
exceptions and mappings necessary for NAT traversal.

Figure 1: Illustration of the connectivity-
constrained wide-area deployment scenario targeted
by deployments of the IPOP P2P system.

The scenario which we address in this paper allows the
vast majority of P2P nodes to run on hosts that connect
to the Internet through one or more levels of NATs. For
example, it is common for broad-band hosts to be behind
two levels of NAT (a home gateway/router and the ISP
edge NAT, nodes A and B in Figure 1). IPOP supports
establishment of UDP communication using hole-punching
techniques for “cone” type NATs (e.g. between nodes A and
C in Figure 1), and there is empirical evidence pointing to
the fact that these are the common case [11]. Cone NATs
consistently map a private IP endpoint to same extenal IP
endpoint, irrespective of the destination. These external
IP endpoints can be discovered and subsequently exchanged
out-of-band between peers in different private networks for
hole-punching.
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However, nodes behind“symmetric”NATs for which hole-
punching does not prove effective cannot communicate with
nodes in different private networks, and only communicate
with public nodes or full-cone NATs (e.g. nodes C and D).
Symmetric NATs map a private IP endpoint a different ex-
ternal IP endpoint for each destination. Hole-punching for
symmetric NATs rely on the ability to predict the external
IP endpoint prior to communication with the destination –
such port prediction techniques have not been very effective.

Recognizing the importance of supporting traversal, some
of recent NATs have started supporting Universal Plug and
Play (UPnP)[2] which allow them to be configured to open
ports so that other hosts (outside the NAT) can initiate com-
munication with hosts behind the NAT (e.g. hosts I and H).
However, UPnP is not ubiquitous, and even when it is avail-
able, multi-level NATs create the problem that hosts can
only configure their local NATs through UPnP, while hav-
ing no access to control the behavior of the edge NAT. This
problem renders the UPnP approach ineffective outside the
domain. For example, although hosts A and E in Figure 1
are connected to UPnP NATs, they are also subject to rules
from an ISP NAT and a University NAT respectively, which
they do not control.

Some NATs support“hairpinning”, where two nodes in the
same private network and behind the same NAT can com-
municate using each other’s translated IP and port. Such
a behavior is useful in a multi-level NAT scenario, where
two hosts behind the same public NAT but different semi-
public NATs are able to communicate only using their IP
address and port assigned by the public NAT. However, not
all NATs support hairpinning, creating a situation in which
two nodes in the same multi-level NATed domain may not
be able to use hole-punching to communicate directly (e.g.
nodes E and F) as depicted in Figure 2. Through communi-
cation with nodes on the public Internet, nodes E and F can
only learn their IP endpoints assigned by the public NAT-P.
In case NAT-P does not support hairpinning, these learned
endpoints cannot be used for communication between nodes
E and F. Only 24% of the NATs tested in [11] support hair-
pinning.

Figure 2: Nodes E and F behind two different semi-
public NATs respectively, which in turn are behind
a public NAT-P.

Some hosts are behind firewall routers (e.g. host G) that
might block all UDP traffic altogether. Only a few P2P
nodes are public and are expected to be able to communi-
cate with each other. Connectivity even among these hosts
is constrained: Internet-1 and Internet-2 hosts cannot com-
municate with each other (e.g. hosts J and K), while multi-
homed hosts can communicate with them both. In addi-

tion, link failures, BGP routing updates, and ISP peering
disputes can easily create situations where two public nodes
cannot communicate directly with each other. In [13], the
authors observed that about 5.2% of unordered pairs of hosts
(P1,P2) on PlanetLab exhibited a behavior such that P1 and
P2 cannot reach each other but another host P3 can reach
both P1 and P2.

We observe that a typical wide-area environment presents
several deterrents to connectivity between a pair of nodes,
and when two such nodes have adjacent identifiers on the
P2P ring, structure maintenance is affected. To the best
of our knowledge, while structured P2P systems have been
demonstrated in public infrastructures such as PlanetLab,
where there are only a few pair-wise outages and a small
amount of disorder can be tolerated [17], no structured P2P
systems described in the literature have been demonstrated
where the majority of P2P nodes are subject to NAT con-
straints of various kinds as illustrated in Figure 1.

3. IMPACT OF CONNECTIVITY
CONSTRAINTS

Peer connectivity constraints result in the inability to cor-
rectly maintain an overlay structure, which in turn affects
the deployment of virtual networks and WOWs in important
ways. These are presented and discussed in the remainder
of this section.

3.1 Impact on core structured overlay routing
The IPOP virtual network implements a ring-structured

P2P network where each node has a randomly generated
160-bit identifier. Each node maintains 2m structured near
connections, m connections on each side of the P2P ring.
In addition to the neighbor connections, each node also ac-
quires k structured far connections that are far away in the
address space, so that the average number of overlay hops
between nodes is O( 1

k
log2(n)) for a network of size n using

the algorithm of [19].
Similar to other structured systems, routing in IPOP uses

the greedy algorithm where at each hop a message gets
monotonically closer to the destination until it is either de-
livered to the destination or to the node that is closest to
the destination in the P2P identifier space. Greedy routing
assumes each node has a consistent view of its local neigh-
borhood, which is reflected in its ability to form structured
near connections with its left and right neighbors in the P2P
identifier space. The inability to form connections with im-
mediate neighbors in the identifier space creates inconsistent
view of the local neighborhood, thus resulting in incorrect
routing decisions as shown in Figure 3 (a). In this figure,
nodes 115 and 110 cannot cannot form a connection. A mes-
sage is sent to key 112, and the closest node is 110. In one
case (a), the message (Create) addressed to key 112 arrives
at node 115; it believes that it is the closest to the destina-
tion and the message is delivered locally (also replicated at
node 100). In another case (b), a message Create addressed
to the same key arriving at node 83 is correctly routed to
node 110, the key is not found and created again.

3.2 Effect on all-to-all connectivity
Techniques for the creation of overlay links between P2P

nodes behind “cone” NATs have been presented in earlier
work, which incorporates decentralized NAT traversal using
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Figure 3: Inconsistent roots in DHT.

UDP hole-punching [15]. The notion of a connection, which
describes an overlay link between two P2P nodes, is key to
establishing such links. Connections operate over physical
channels called edges, which in IPOP can be based on dif-
ferent transports such as UDP or TCP. Besides assisting in
overlay structure maintenance, the connection protocols al-
low the creation of 1-hop shortcuts between WOW nodes
to self-optimize the performance of the virtual network with
respect to latency and bandwidth.

The connection setup between P2P nodes is preceded by a
connection protocol for conveying the intent to connect and
exchanging the list of Uniform Resource Indicators (URIs)
for communication. These connection messages are routed
over the P2P network. Incorrect routing leads to situations
where connection messages are either misdelivered (or not
delivered at all), thus affecting both overlay structure main-
tenance and connectivity within the virtual network.

3.3 Effect on dynamic virtual IP
configuration

The structured P2P system in IPOP also provides decen-
tralized object storage and retrieval based on a DHT [16],
which is used for dynamic virtual IP configuration of WOW
nodes, summarized as follows. IPOP supports creation of
multiple mutually-isolated virtual networks (called IPOP
namespaces) over a common P2P overlay. The virtual IP
configuration of WOW nodes in each such private network
is achieved using a decentralized implementation of the Dy-
namic Host Configuration Protocol (DHCP). The DHCP im-
plementation uses a DHT primitive (called Create) to create
key/value pairs mapping virtual network namespaces and
virtual IP addresses uniquely to P2P identifiers. The Create
primitive relies on the consistency of key-based routing to
guarantee uniqueness of IP-to-P2P address mappings. That
is, messages addressed to some key k must be delivered to
the same set of nodes regardless of its originator. Incorrect
routing decisions can cause Create messages addressed to
the same key from different sources to be routed to different
nodes, as shown in Figure 3 (a) and (b). This problem is
also identified in [13] and is referred to as inconsistent roots,
and can lead to a situation where two WOW nodes claim
the same virtual IP address.

3.4 Effect on completion of DHT operations
To reduce the impact of inconsistent roots, the IPOP-

DHT internally re-maps each application specified key k to
n keys (k1, k2...kn), which are then stored (together with
the associated value) at n different locations on the P2P
ring and the DHT operations are expected to separately
provide return values for each re-mapped key. Majority vot-
ing on results obtained for each such re-mapped key is used
to determine the outcome of an operation. For a fault to
occur in this scenario, the roots of as many as half of the
re-mapped keys have to be inconsistent. However, major-
ity voting can reach a consensus only when results from at
least half of the n re-mapped keys are communicated back
to the source node. If the nodes close to the source node
in identifier space have inconsistent view of their neighbor-
hoods, situations can arise when not enough results arrive
at the source node for consensus, causing the operation to
fail. This inability to complete a DHT operation impacts
both the process of acquiring a virtual IP address, and also
resolution of a virtual IP address to P2P identifier.

3.5 Effect on DHT dynamics
The inability to create overlay links also hinders the dy-

namics of a DHT as it reacts to changes in ownership of keys
when nodes join, and actively replicates keys when nodes
leave. Until a new node can form a consistent view of its
local neighborhood by communicating with its neighbors, it
can neither retrieve any keys (that it is supposed to store)
from its neighbors, nor copy (or migrate) some keys that are
now supposed to be stored at its neighbors. This affects the
degree of replication of keys in the DHT, and subsequent
reliability of object storage.

To summarize, incorrect routing in the P2P network im-
pacts the virtual IP connectivity between WOW nodes, which
directly affects the applications using the virtual network.
For example, in a WOW-based Condor pool [32], the in-
ability of a worker node to obtain an IP address implies it
does not join the pool. Even if a node “N” obtains an IP
address, if it cannot communicate with the central manager
node “M”, it is not available for computation. Furthermore,
the inability of node “N’ to route to a worker node “W” pre-
vents jobs submitted by “N” to execute on “W”. All these
situations result in the system not being able to achieve the
maximum available throughput because not all nodes can
participate in computations.

4. CONSISTENT P2P ROUTING UNDER
CONNECTIVITY CONSTRAINTS

Based on the observations from the previous section, we
propose two synergistic approaches to cope with missing
overlay links in a structured P2P network: (1) annealing
routing and (2) tunnel edges. These are described in the
rest of this section.

4.1 Annealing routing
The first technique we propose is a fault-tolerant routing

algorithm based on simulated annealing that, unlike con-
ventional greedy routing, does not force a message to mono-
tonically get closer to the destination at each hop. This
algorithm is inspired by optimization theory. Under the as-
sumption of a convex function, a greedy method converges to
a global minimum (or maximum); however, with non-convex
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functions, a greedy approach can stop at local minima and
not find the global minimum. In optimization theory, a sim-
ulated annealing approach allows for a deviation from greedy
search in order to “escape” from a local minimum. In the
context of P2P routing, connectivity constraints create anal-
ogous situations where a greedy algorithm can reach a local
minimum when a node is not able to establish a near link
which would allow the distance between the message and its
destination to be reduced. Even if the underlying network
is free from connectivity constraints, transient churn can
also create situations where a node has an inconsistent view
of its local neighborhood. For successful operation of con-
nection setup protocols for overlay structure maintenance,
structured routing has to be designed to be tolerant to such
disorder on the P2P ring. The annealing algorithm is de-
scribed in Algorithm 1 and works as follows.

In lines 10-17, the node looks up its connection table to
determine if it is adjacent to the destination in the identifier
space. In that case, the node delivers the message locally
and also sends it to the node on the other side (left or right)
of the destination in the identifier space.1 Otherwise (line
19), it finds the two closest nodes to the destination from
the connection table, umin and usec.

If the message has not taken any hops yet (i.e. it orig-
inated at the current node), it is sent to the closest node
umin. Otherwise (lines 23-29), until the message has taken
MAX UPHILL hops it is delivered to the closest node umin

or the next closest usec (if it was already received from the
closest node umin). Until this point, the algorithm does not
check for the forward progress of the message towards the
destination in identifier space.

Beyond MAX HILL hops (lines 30-41), the message is sent
to umin or usec, only if the next hop is closer to the desti-
nation than the previous hop. It should be noted that this
condition only requires progress with respect to the previous
node; it still allows a message take one hop that is farther
away from destination than the current node.

The annealing algorithm is very useful for routing mes-
sages addressed to exact destinations, which include connec-
tion setup messages between P2P nodes, virtual IP packets
between IPOP nodes, and the results of DHT operations
back to the source node. In a perfectly-formed structured
ring, this algorithm works exactly as the greedy algorithm
and incurs the same number of hops.

When messages are addressed to DHT keys, this algorithm
has a better chance to reach the node closest to the key, by
delivering the message at each local minima. As a side ef-
fect, DHT operations for a key are performed at more than
one node in the P2P overlay. This redundancy is useful for
applications using only Put and Get DHT interfaces, which
do not require uniqueness of key values. However, anneal-
ing is not sufficient for scenarios including the decentralized
DHCP protocol of IPOP, where it is required to guarantee
uniqueness of creation of a key to avoid IP address colli-
sions. Ensuring that each key is delivered to exactly one
node (closest to the key in the identifier space) is possi-
ble by using greedy routing on a completely formed overlay.

1The state of the local connection table may not correctly
reflect the local neighborhood. While greedy routing may
terminate the progress of the message here; by also sending
the message to the node on the other side, the annealing
algorithm continues its search for the node closest to the
destination.

Our next technique is designed to provide a complete over-
lay structure in face of connectivity constraints that may
prevent direct connections among overlay neighbors.

Algorithm 1 AnnealingNextHop(v, prev, dest, p) This al-
gorithm describes how a packet p arriving at v from prev

takes its next hop towards the destination dest using an-
nealing mode.

1: if v == dest then
2: Deliver locally.
3: Return.
4: end if
5: if v has a connection to dest then
6: Send to dest.
7: Return.
8: end if
9: /** Case 1: Connection table indicates that current

node v is adjacent to dest. Deliver locally and send
to the node on the other side of dest, according to the
connection table.**/

10: if v is adjacent to dest then
11: if (v is to the left of dest) then
12: Deliver locally.
13: Send to v′ which is on the right of dest.
14: else if (v is to the right of dest) then
15: Deliver locally.
16: Send to v′ which is on the left of dest.
17: end if
18: else
19: Find first and second closest nodes umin and usec to

dest, respectively.
20: if p.Hops == 0 then
21: /** Case 2: This is the first hop. Let the packet

go to closest even if v itself is closest.**/
22: Send to umin.
23: else if p.Hops ≤ MAX UPHILL then
24: /** Case 3: Not the first hop. We will do this for

up to MAX UPHILL (= 1) hops. **/
25: if prev 6= umin then
26: Send to umin.
27: else
28: Send to usec.
29: end if
30: else
31: /** Case 4: Send only if can get closer than pre-

vious node.
32: if prev 6= umin then
33: w ⇐ umin

34: else
35: w ⇐ usec

36: end if
37: dmin ⇐ DISTring(w, dest)
38: if dmin < DISTring(prev, dest) then
39: Send to w.
40: end if
41: end if
42: end if

4.2 Tunnel edges
In this section, we describe our second novel technique —

it allows an overlay link between two nodes A and B, which
cannot communicate directly over TCP or UDP, to be prox-
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ied by a set nodes to which both A and B can communicate.
It is a fully decentralized technique for both discovering a
proxy node C, and establishing an edge “tunnel” connecting
A and B through C.

The idea behind tunnel edges is as follows. Assume that
each node in the network attempts to acquire connections
to its closest 2m near neighbors on the P2P ring, m such
neighbors at each side. Consider a situation where there
is an outage between two adjacent nodes A and B on the
P2P ring. Since both A and B also attempt to form near
connections with 2m nodes each, their neighborhoods inter-
sect at 2(m − 1) nodes as shown in Figure 4. For a tunnel
edge to exist between A and B, there must be at least one
node C in the intersection I to which both A and B are con-
nected. Such node C is a candidate to be used in tunneling
the structured near connection between A and B.

This enhancement allows the connection state at a node
to consistently reflect the overlay topology even when it is
not possible to communicate with some neighbors using the
conventional TCP or UDP transports. In the IPOP imple-
mentation (described in Section 6), tunnel edges are func-
tionally equivalent to UDP or TCP edges once they are es-
tablished, allowing seamless reuse of the code responsible for
state maintenance and routing logic in the system.

Figure 4: Tunnel edge between nodes A and B that
cannot communicate over TCP or UDP transports.

4.2.1 Probabilistic analysis of tunnel edges
Two important questions arise in the context of this pro-

posed approach: what is the probability of tunnel edges to
be formed between two nodes A and B? how many nodes
are candidates for proxying tunnel edges? We address these
questions analytically in this section.

Let q be the probability of successful edge setup between
a pair of nodes. For a tunnel edge to exist between A and
B, there must be at least one node C in the intersection I

to which both A and B are connected. Assuming m near
connections at each side of both nodes, the probability for
a tunnel edge between A and B to exist through C is given
by:

P [A and B can connect]

= 1 − P [A and B cannot connect]

= 1 −
∏

C∈I

P [A and B cannot connect through C]

= 1 − (1 − q
2)2(m−1)

In Table 1, we show the probability of forming a tunnel
edge between unconnected nodes A and B for different values
of edge probability q and number of near connections m. It
should be noted that the there is a sharp increase in the
probability of being able to form a tunnel edge when nodes
acquire more than 2 near connections on each side. This
fact is also reflected in simulation results which show that
improvements in correctness of routing using tunnel edges
are significantly higher when m ≥ 3. Figure 7 shows 3.9%
broken pairs when m = 2 and 0.86% broken pairs when
m = 3.

tunnel edge probability
edge prob m = 2 m = 3 m = 4 m = 5
0.70 0.7399 0.9323 0.9824 0.9954
0.75 0.8085 0.9633 0.9929 0.9986
0.80 0.8704 0.9832 0.9978 0.9997
0.90 0.9638 0.9986 0.9999 0.9999

Table 1: Probability of being able to form a tunnel
edge as a function of edge probability and number
of required near connections on each side

Now consider a situation where a tunnel edge involves
exactly one forwarding node. When the forwarding node
departs, the current node also loses the tunnel edge connec-
tion. Therefore, for fault-tolerance, it is also important that
the forwarding set of nodes for tunnel edge contains more
than one node. The probability that that forwarding set
consists of at least 2 nodes is given by:

P [forwarding set of size atleast 2]

= 1 −

k=1
∑

k=0

P [forwarding set of size exactly k]

= 1 −

k=1
∑

k=0

(

2(m − 1)

k

)

· (q2)k
· (1 − q

2)2(m−1)−k

and the expected size of the forwarding set is given by:

E[expected size of forwarding set]

=

k=2(m−1)
∑

k=0

k · P [forwarding set of size exactly k]

=

k=2(m−1)
∑

k=0

k ·

(

2(m − 1)

k

)

· (q2)k
· (1 − q

2)2(m−1)−k

= 2(m − 1) · q2

For m = 3, and q = 0.9, the expected size of the forwarding
set for a tunnel edge is 3.24, while the probability of having
a forwarding set of at least 2 nodes is 0.976.

It can further be shown that if each node maintains O(log2 N)
neighbors, then the probability of not being able to form a
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tunnel edge is:

= (1 − q
2)2(m−1) = (1 − q

2)O(m) = (1 − q
2)O(log

2
N)

= O(N log
2

(1−q2))

For q = 0.9, the above expression evaluates to: O(N−2.39).
Therefore, as the network grows in size and nodes tend to
acquire more near connections, tunnel edges become more
and more probable.

5. IMPROVEMENTS IN STRUCTURED
ROUTING

In this section, we quantify the improvements in struc-
tured routing due to annealing routing and tunnel edges
with respect to: (1) the all-to-all routability of the P2P
network, and (2) consistent routing of keys. The analysis
is conducted by simulating structured routing on randomly
generated static graphs that model the IPOP overlay, for
varying edge probabilities between pairs of nodes.

Scenarios such as symmetric NATs, multi-level NATs and
Internet route outages result in complex models for the likeli-
hood of two nodes being able to communicate. For example,
the likelihood of a node behind a symmetric NAT being able
to form an edge with another arbitrary node depends on the
fraction of nodes that are public (or behind full-cone NATs).
In the multi-level NAT scenario (Figure 2) where the outer-
most NAT-P does not support “hairpinning”, the likelihood
of a node E to form an edge with another arbitrary node is
a function of the fraction of nodes that are behind the same
NAT-P, but in a different semi-private network. An Inter-
net route outage between two sites A and B results in the
inability of any node in A to communicate with any node in
B.

In the absence of any published work that provides a fault
model to capture all such scenarios, we model the likelihood
of an edge between a pair of nodes with a uniform pair-
wise edge probability and allow for high probabilities of P2P
edges not being able to form — as high as 30%.

5.1 Simulation methodology
The simulation environment captures the algorithms used

in IPOP for structured overlay creation and routing, and
models pair-wise outages with configurable probability q.
We create 1000 nodes with randomly generated 160-bit iden-
tifiers. Based on the probability q of any pair of nodes being
able to communicate using TCP or UDP, we create a connec-
tion matrix that allows/disallows connections between pairs
of nodes. We then add connections to nodes in the following
steps:

1. At each node, attempt to add near connections to the
immediate m neighbors (on each side) respecting the
connection matrix.

2. If tunneling is enabled: identify all the missing connec-
tions between pairs of nodes, compute the overlap of
their connection tables to see if tunneling is possible,
and add the possible tunnel edges to the network.

3. If there are nodes with fewer than m connections on
each side: each such node tries to acquire more near
connections (to its closest neighbors, and fully respect-
ing the connection matrix), until it has successfully
acquired m near connections on each side.

4. If there are nodes which acquired more than m con-
nections on each side, these excess connections are
trimmed in the subsequent step.

5. We then add one far connection at each node (that
is allowed by the connection matrix). The distances
traveled by these connections in the structured ring
follow the distribution described in [19].

To study the all-to-all routability of the network, we sim-
ulate the sending of a message between each pair of nodes,
and count the number of times the message is incorrectly
delivered. We conduct this experiment for 200 different ran-
domly generated graphs. To investigate correct routing of
keys, we randomly generate 10000 different keys. For each
key, we simulate the sending of a message addressed to that
key from each node as the source, and count the number of
times the lookup is wrongly delivered, i.e. to nodes other
than the the node closest to the key in identifier space. We
conduct this experiment for 200 different randomly gener-
ated graphs.

Figure 5 shows the number of non-routable pairs (out of
1000 × 1000 possible pairs) of nodes for different values of
the number of near neighbors m, when neither annealing
routing nor tunnel edges are used. We observe that as edge
likelihood drops to 70%, the all-to-all routability of the net-
work drops to less than 90%, i.e. more than 10% of pairs are
non-routable. Furthermore, keeping more near connections
at each node only marginally improves the network routabil-
ity. Similar observations are also made for routing of keys
(see Figure 6) - there is more than 10% chance that a key is
wrongly routed as the edge likelihood drops to 70%,

Figure 5: At edge likelihood of 70% (0.7), the per-
centage of non-routable pairs varies from 9.5% to
10.9% (the total number of pairs in the simulated
network is 1,000,000).

5.2 Evaluating the impact of annealing
routing

In Figure 8, we show the reduction in average number of
non-routable pairs using Algorithm 1 with m = 3; tunnel
edges are not enabled. We observe that, at an edge like-
lihood of 85%, the percentage of non-routable pairs with
annealing routing is about 0.6%, which is less than one-fifth
of the percentage when greedy routing (3.3%) is used. Even
when the edge likelihood drops to 70%, the percentage of
non-routable pairs (less than 3.4%) is still less than half
of that when greedy routing is used (more than 10%). It
should also be noted that annealing routing with m = 3
is more likely to reach the correct destination than using
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Figure 6: At edge likelihood of 70%, the percent-
age of wrongly routed keys varies from 9.5% to
10.7% (the total number of simulated messages is
10,000,000).

greedy routing with m = 5, for the same edge likelihood in
these networks of 1000 nodes.

We measured the average number of hops taken by a mes-
sage for both greedy and annealing routing for these cases.
In a perfectly formed structured network, both routing algo-
rithms incur exactly the same number of hops. Otherwise,
the average number of hops between P2P nodes for anneal-
ing is almost the same as for greedy routing. For an edge
likelihood of 70% and m = 3, the ratio of number of hops
incurred by annealing to that of greedy is 1.01. Therefore,
annealing routing only incurs a marginal overhead in terms
of number of hops.

In Figure 9, we show the average number of wrongly routed
key lookups for both annealing and greedy routing using
the methodology as described in Section 5.1. We observe at
an edge likelihood of 70% (m = 3), annealing routing re-
duces the chances of a key being wrongly routed from 10.2%
to 3.4%. By delivering a message at more than one node,
the annealing algorithm can result in creation of additional
(more than two) replicas for a key2. The storage overhead
due to this additional replication was found to be 9.5%.

5.3 Evaluating the impact of tunnel edges
Figure 8 shows how the enhanced overlay structure be-

cause of tunnel edges can improve the all-to-all routability
of the network, for m = 3. We observed that even at an
edge likelihood of 70%, tunnel edges substantially reduce
the percentage of non-routable pairs of nodes from 3.4% to
0.21% for annealing routing (from 10% to 0.86% for greedy
routing).

Each virtual hop over a tunnel edge actually corresponds
to two overlay hops. We also recorded the actual number
of hops taken by messages addressed to exact destinations
in an overlay that supported tunnel edges. For an an edge
likelihood of 70% and m = 3, the ratio of number of actual
hops to that of virtual hops was observed to be 1.14, which is
a small overhead considering the improvement in routability.

Figures 9 also compares how tunnel edges improve the
consistency of key routability of the network, for m = 3.
We observed that, at an edge likelihood of 70%, with tunnel
edges the chances of a key being wrongly routed are 0.86%
for greedy routing (and 0.19% for annealing routing).

2Each key in IPOP-DHT is typically replicated at two nodes,
on either side of the key in identifier space.

Figure 7: Comparing greedy routing with tunnel
edges for m = 3 and m = 2. At edge likelihood of
70%, the percentage of non-routable pairs in a net-
work of 1000 nodes is (1) 3.9% for m = 2, and (2)
0.86% for m = 3.

6. TUNNEL EDGE IMPLEMENTATION IN
IPOP

The IPOP P2P system provides extensive support for cre-
ating overlay links between nodes over a variety of transports
and incorporates decentralized UDP hole-punching. To im-
plement tunnel edges, we extend the existing mechanisms for
connection setup to discover suitable proxy nodes for tunnel
edges, when direct communication is not possible.

Connection setup between P2P nodes is preceded by a
connection protocol [15] that uses the P2P overlay to ren-
dezvous with a remote node for out-of-band exchange of
information relevant for communication (through Connect
To Me (CTM) messages), followed by a bidirectional link-
ing protocol that establishes the connection. In the original
IPOP system, the connection protocol allows nodes to ex-
change their NAT-assigned IP address/port. In this paper,
we use the same mechanism to also exchange information
about their connections to near neighbors.

6.1 TunnelEdgeListener
As described earlier, each connection in IPOP is based on

an edge. Each node has one or more Uniform Resource Indi-
cators (URIs) that abstract the edge protocols it can support
and the endpoints over which it can communicate. For each
type of edge, an EdgeListener is responsible for creating and
maintaining edges of that type, and also sending and receiv-
ing messages over connections using that edge type. For
example, to create an edge with another node using a URI
ipop.udp://128.227.56.123:4000, the UdpEdgeListener is in-
voked, whereas to communicate with the same node using
URI ipop.tcp://128.227.56.123:4001, the TcpEdgeListener
is invoked. An IPOP node can have more than one Edge-
Listener, and new types can be easily added.

Before we further describe the process of creating a tunnel
edge, we overview the functionality that allows each IPOP
node C to also act as a message forwarder for communi-
cation between two nodes A and B. The message from the
original source A is encapsulated inside a forward request
message addressed to node C. When node C receives the
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Figure 8: Average number of non-routable pairs.
At edge likelihood of 70%, the percentage of non-
routable pairs for greedy and annealing routing is
(1) without tunnel edges, 10.26% and 3.4% respec-
tively; (2) with tunnel edges, 0.86% and 0.21% re-
spectively. At edge likelihoods of 95%, there are no
non-routable pairs with tunnel edges.

message from A, it extracts the original message (from A to
B), and sends it to node B. This functionality is used by a
new IPOP node to identify its left and right neighbors in
the P2P ring [15].

To enable connections between nodes A and B to be prox-
ied by common neighbors, we have implemented an Edge-
Listener called TunnelEdgeListener. The TunnelEdgeLis-
tener is invoked together with the TCP and UDP EdgeLis-
teners during the process of a connection setup. The URI
for a node corresponding to the tunnel edges is computed
dynamically by concatenating the addresses of its closest
structured connections. In addition to URIs corresponding
to TCP or UDP, nodes also exchange their tunnel URIs in-
side CTM messages during the connection protocol. Once
node A learns about the connections of node B, it can com-
pute the forwarding set F which is the intersection of its
own connections with those listed in the tunnel URI of B.

Having computed the forwarding set F with remote node
B, the node A sends this information to B in an Edge Request
using the forwarding services of one of the nodes in F . When
B receives an Edge Request, it replies back with an Edge
Response and also records the new tunnel edge. On receiving
the Edge Response, the node A also records the new tunnel
edge. Once the tunnel edge is successfully created, nodes A
and B can subsequently create a connection between them.

Our implementation does not require the nodes in the
forwarding set to keep any state about the tunnel edges that
are using them. Furthermore, the periodic ping messages to
maintain a connection based on a tunnel edge also keep the
underlying connections alive. Therefore, no extra overhead
is incurred by nodes in the forwarding set. The forwarding
set for a tunnel edge can change over time as connections
are acquired or lost. To keep the forwarding set up to date
and synchronized, nodes A and B notify each other about
the changes in their connections.

When a node joins an existing overlay and cannot commu-
nicate with its immediate left and right neighbors, its tunnel
URI is initially empty since it does not have any connections

Figure 9: Average number of wrongly routed keys.
At edge likelihood of 70%, the percentage of wrongly
routed keys for greedy and annealing routing is (1)
without tunnel edges, 10.2% and 3.4% respectively;
(2) with tunnel edges, 0.86% and 0.19% respectively.

yet. However, it is possible that the new node can commu-
nicate with its other near neighbors, therefore it must first
try to form connections with them and then use those con-
nections to form tunnel edges with its immediate neighbors
on the P2P ring. The new node learns about its other close
neighbors through the CTM messages it receives from its
immediate neighbors, which also contain a list of their near
connections.

7. EXPERIMENTS
In this section, we demonstrate the ability of our tun-

nel edge implementation to provide a complete ring of P2P
nodes in environments where the majority of nodes are be-
hind NATs and some pairs of nodes cannot communicate
with each other directly. We also observe the time it takes
for a new node to become connected with its left and right
neighbors in an existing P2P ring, in situations where these
connections have to use tunnel edges. Finally, we also study
the impact of using annealing routing and tunnel edges on
connectivity within a WOW when P2P nodes only had 81%
chance of being able to setup connections.

7.1 Structure verification of P2P network
To verify the completeness of the P2P ring, we iteratively

“crawl” the IPOP network using the immediate right neigh-
bor information at each node. We check the consistency of
its connections with respect to its predecessor. Specifically,
for every node, we check if its immediate left near connec-
tion node identifies it as immediate right right connection
node.

When two adjacent P2P neighbors cannot form a connec-
tion, it is likely that crawling the network using neighbor
information will skip a node. If the next reported node has
a connection with the missing node, an inconsistency will be
reported. However, in case even the second node does not
have connection to the missing node, the inconsistency may
go unnoticed. It is still possible that we observe a a 100%
consistent ring with a few nodes completely missing. These
hidden nodes can be detected using information logged by
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IPOP at each node; knowledge of the number of nodes and
their identifiers is also available.

We demonstrate the effect of our techniques with respect
to overlay structure, in both a synthetic environment where
we artificially create situations where connection setup is
not always possible, and also in a large-scale PlanetLab en-
vironment, which is known to exhibit route outages between
pairs of hosts.

7.1.1 NATed environment
To demonstrate the ability of IPOP to deal with heavily-

NATed environments, we deployed a P2P network of 1030
nodes involving 12 private networks (each containing 80 P2P
nodes) behind port-restricted cone NATs, and a seed net-
work of 70 P2P nodes that was reachable from all other
P2P nodes.

Each node was configured to form connections with 3
neighbors on its immediate left and right. Of the total
of 6180 structured near connections reported by all nodes,
about 4926 (70%) existed between nodes which were on dif-
ferent private networks. These connections were not possi-
ble without decentralized NAT traversal. The P2P ring was
100% consistent.

7.1.2 Incomplete underlying network
In this experiment, we built a network of 711 P2P nodes

incrementally. Starting with a seed network of 71 nodes,
we bootstrapped another 640 P2P nodes on 16 hosts (each
running 40 P2P nodes). Each P2P node was configured to
use a unique pre-defined UDP port number. Using IPtables,
we configured the firewall rules on the hosts to drop UDP
packets such that the probability of setting up UDP-based
connection between any pair of P2P nodes was 0.95.

Once the P2P structure was formed, we observed there
were 35 pairs of adjacent nodes on the P2P ring that could
not setup a UDP connection because of firewall rules. These
pairs of nodes were however able to connect using tunnel
edges, thus rendering a complete P2P ring.

7.1.3 Wide-area deployment
In this experiment, we deployed a network of over 420

nodes on PlanetLab with distinct hosts in North America,
South America, Asia, Europe and Australia. We observed
that as many as 9 adjacent pairs on P2P ring (in North
America, Europe and Asia) could not communicate using
TCP or UDP transports. Their inability to connect, which
we observed indirectly through the fact that tunnel edges
had been created, was verified directly by logging into each
host and observing that ICMP messages (and SSH connec-
tions) to its peer did not go through either.

To further evaluate the ability of tunnel edges to form,
we deployed additional 20 P2P nodes on hosts H1 and 20
nodes running on host H2. These nodes were configured to
use only UDP transports, and their hosts H1 and H2 were
configured to drop UDP packets between them, thus model-
ing a scenario where there is a routing outage between two
sites. We observed two instances where one of the adja-
cent pairs was running on H1, while the other was running
on H2. Tunnel edges formed between these nodes in both
cases, again rendering a 100% consistent P2P ring. Without
tunnel edges, these nodes would have had inconsistent view
of their local neighborhoods (in identifier space), and the
messages addressed to them were likely to be misdelivered.

We measure the delay incurred by a new P2P node (on a
home desktop) to get connected with its left and right neigh-
bors on the ring using tunnel edges over several trials. The
average time to get connected with neighbors is less than
10 seconds, using UDP or TCP. The home desktop did not
have an Internet path to a few nodes on PlanetLab and ev-
ery time it became a neighbor to one of these nodes, it relied
on tunnel edges to get connected, which took 41 seconds on
average. Our current implementation delays creation of tun-
nel edges by an arbitrarily chosen interval of 15 seconds (to
accommodate for the delay in setting up TCP or UDP con-
nections due to hole-punching or packet losses). However,
we also observed cases where it took up to 124 seconds to
form tunnel edges with the neighbors. This delay in forming
tunnel edges is explained as follows.

The linking protocol for connection setup is executed
through one or more linkers; each linker sends link messages
using the different URIs of the remote node in parallel until
it starts receiving replies. Only one linker is active at a time,
during which it sends several link messages over a URI until
it starts receiving replies or gives up. Initially, the new node
does not have any connections to tunnel over and its tunnel
URI is empty. The first linker that is created can thus only
succeed using TCP or UDP. When TCP or UDP communi-
cation is not possible, it takes several attempts for the linker
to finish, and the next linker to be activated. In some cases,
the linker containing a usable tunnel URI (created after the
node has acquired a few connections) is still waiting in the
queue. In future work, we are considering an implementa-
tion that would allow updations to the tunnel URI listed in
the currently active linker, which would obviate the need to
wait for the next linker.

7.2 Connectivity within a WOW
In this section, we study the impact of using annealing

routing and tunnel edges with respect to improvements in
connectivity within a WOW-based Condor pool. Using a
bootstrap infrastructure of 20 P2P nodes, we created a WOW
consisting of 180 Condor worker nodes and 1 manager. We
measure the number of workers reported by the manager
(using the condor status command), which is representative
of the achievable throughput of the Condor pool. Further-
more, once a worker has been chosen for job execution by
the Condor manager through matchmaking, the process of
job submission involves direct communication between the
submit node and the worker. We also report on the all-to-
all connectivity between worker nodes. We send 30 ICMP
ping messages from each worker to every other worker, and
counted a pair as not being connected if ping reported 100%
packet loss.

Initially P2P edges are allowed to form without constraints.
The Condor manager reported all 180 workers, and the work-
ers were all-to-all connected. The P2P ring was 100% consis-
tent. To create situations where direct communication was
not always possible, we configured the UdpEdgeListener at
each node to deny UDP-based connections with a probabil-
ity 0.10. The probability of two nodes being able to form
a UDP-based connection is thus given by: (1 − 0.10)2 =
0.902 = 0.81.

We then configured the P2P nodes to only use greedy
routing and no tunnel edges. The Condor manager reported
at most 160 nodes, i.e. only 88% of the worker nodes were
available. In addition, there were 6020 pair-wise worker con-
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nections (out of 180 × 180) that could not form. In another
experiment, we configured the P2P nodes to use annealing
routing but no tunnel edges. The Condor manager reported
177 worker nodes, and there were 859 pairs of workers that
could not communicate with each other.

Finally, we configured the P2P nodes to use both anneal-
ing routing and tunnel edges. The P2P ring consisting of
201 nodes (20 bootstrap, 1 manager and 180 workers) re-
ported 40 tunnel edges, which formed when UDP communi-
cation was denied by one of the UdpEdgeListener between
adjacent P2P nodes. We observed only one inconsistency
on the P2P ring, where a tunnel edge did not form because
the P2P nodes did not have any overlap on their UDP-based
connections, the overlapping connections were already based
on tunnel edges and our existing implementation does not
support recursive tunneling. The Condor manager reported
all 180 workers, and there were only 7 pairs of workers that
could not communicate.

8. RELATED WORK
In [24], the authors describe the implementation of a Sock-

ets library that can be used by applications for communi-
cation between nodes subject to a variety of constraints in
wide-area networks. Our work, on the other hand, investi-
gates an approach where applications can be deployed with-
out any modifications, by providing a virtual network with
all-to-all connectivity. Furthermore, our approach is self-
configuring and fully decentralized.

Structured P2P systems (Chord [31], Pastry [30], Bam-
boo [1], Kademlia [25]) have primarily focused on efficient
overlay topologies [18], reliable routing under churn [28][6],
and improving latency of lookups through proximity-aware
routing [7]. In [13][17], the authors describe the affect of
a few (5% broken pairs) Internet routing outages on wide-
area deployments of structured P2P systems. On the other
hand, our focus is to enable overlay structure maintenance
when a large majority of nodes are behind NATs, and several
scenarios hinder communication between nodes. The tech-
nqiues described in this paper faciliate correct structured
routing, even when many (up to 30%) pairs of nodes cannot
communicate directly using TCP or UDP.

In [26], the authors present techniques to provide con-
tent/path locality and support for NATs and firewalls, where
instances of conventional overlays are configured to form
a hierarchy of identifier spaces that reflects administrative
boundaries and respects connectivity constraints among net-
works. In a Grid scenario, however, network constraints are
not representative of collaboration boundaries, as virtual or-
ganizations (VOs) are known to span across multiple admin-
istrative domains.

A technique similar to tunnel edges is also described in [27],
in the context of a P2P-based email system built on top
of Pastry. Our work, on the other hand, uses tunneling
to improve all-to-all virtual-IP connectivity between WOW
nodes. We also quantify the impact of the described tech-
niques on structured routing through simulations, under dif-
ferent edge probabilities between nodes. Unmanaged Inter-
net Protocol (UIP) [10] proposes to use tunneling in Kadem-
lia DHT to route between “unmanaged” mobile devices and
hosts in ad hoc environments, beyond the hierarchical topolo-
gies that make up the current Internet. However, our focus
is to facilitate IP communication between Grid resources in
different “managed” Internet domains.

In [8], the authors describe an algorithm for providing
strong consistency of key-based routing (KBR) in dynamic
P2P environments, characterized by frequent changes in mem-
bership due to node arrivals and departures. The improve-
ments in eventual consistency by using the techniques de-
scribed in this paper can benefit the implementation of the
strongly consistent KBR. Similarly, [4] provide asymptotic
upper bounds on the number of hops taken by messages un-
der varying rates for link and node failures, and describe
heuristics to improve routing under those failures. However,
their work does not consider failures of links with neighbor
nodes and the subsequent impact on consistent structured
routing. To complement fault-tolerant routing, our work
also attempts to correct the overlay structure in presence of
link failures.

9. CONCLUSION AND FUTURE WORK
In this work, we describe and evaluate two synergistic ap-

proaches for improving routing in structured P2P networks:
annealing routing and tunnel edges. Together, these ap-
proaches improve the all-to-all routability of a 1000-node
ring structured overlay from 90% to 99%, when pairs of
nodes in the underlying network only have a 70% chance
of being able to communicate. Probabilitic analysis and
simulation-based experiments suggest that tunnel edges are
effective when each node maintains at least 3 neighbors on
each side. Experiments with an implementation demon-
strated the ability of IPOP to provide a consistenct P2P
ring, even when adjacent pairs of node in identifier space
cannot communicate using TCP and UDP, in both synthetic
environments and a wide-area deployment. The consistent
structured P2P routing has also been shown to improve the
virtual-IP connectivity within a WOW-based condor pool
experimentally.

Our current implementation of tunnel edges “passively”
relies on an overlap between connections of two nodes, for
forming an tunnel edge between them. Symmetric NATed
nodes can be difficult to handle using this implementation
since they can only communicate with public nodes (or nodes
behind cone-NATs). These nodes may not be able to con-
nect with any of their close neighbors. In future work, we
plan to change the implementation of tunnel edges to allow
nodes to “actively” form connections with common sets of
nodes, and then use these connections to form tunnel edges.
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