

978-1-4244-1694-3/08/$25.00 ©2008 IEEE

Provisioning of Virtual Environments for Wide Area Desktop Grids through
Redirect-on-write Distributed File System

Vineet Chadha, David Wolinsky, Renato J. Figueiredo
Advanced Computing and information Systems Laboratory

University of Florida, Gainesville, FL
{chadha,davidiw,renato}@acis.ufl.edu

Abstract

We describe and evaluate a thin client solution for desk-
top grid computing based on virtual machine appliances
whose images are fetched on-demand and on a per-block
basis over wide-area networks. The approach uses a dis-
tributed file system redirection mechanism which enables
the use of unmodified NFS clients/servers and local buffer-
ing of file system modifications during the appliance’s life-
time. The file system redirection technique is achieved
through user-level proxies, and can be integrated with vir-
tual private network overlays to provide transparent access
to image servers even if they are behind firewalls. We have
implemented and evaluated a prototype system which al-
lows thin client diskless appliances to boot over a proxy
VM bringing on-demand only a small fraction of the ap-
pliance image (16MB out of 900MB) and showing low run-
time overhead for CPU-intensive applications. The paper
also presents decentralized mechanisms to support seam-
less image version upgrades.

1 Introduction

Virtual execution environments based on system vir-
tual machines address some of the fundamental issues of
distributed computing – legacy support, security and site-
independent computation deployment. A key challenge
arising in such “Grid” infrastructures is that of data man-
agement; in particular, the provisioning of the state (e.g.
virtual disk images) required to instantiate a VM-based con-
tainer “appliance” which provides all the necessary runtime
execution environment for an application conveniently en-
capsulated in a VM image. Here, a virtual ”appliance” is
a VM based execution environment which supports volun-
tary sharing of user’s resources and run unmodified appli-
cations. In this paper we present a generic, user-level dis-
tributed file system virtualization framework which enables

multiple VM instances to efficiently share a common set of
virtual machine image files. The primary goal is to facilitate
the deployment of voluntary Grids deployed as wide-area
virtual networks of virtual machines [10]. Specifically, we
aim at reducing download times associated with appliance
images, and providing a decentralized, scalable mechanism
to publish and discover upgrades to appliance images.

Thin computing paradigms offer advantages such as
lower administration cost and failure management. In early
computing systems, thin-client computing was successful
because of two main reasons: low-cost commodity hard-
ware was not available to end users, and a centralized ap-
proach of computing is often preferred due to easier system
administration. As low-cost PCs and high-bandwidth local-
area networks became widely available, thin-client com-
puting lost ground. The advent of virtual machines have
opened up new opportunities; virtual machines can be easily
created, configured, managed and deployed. The virtualiza-
tion approach of multiplexing physical resources not only
decouples the compute resources from hardware but pro-
vides a much needed flexibility of easily movable compute
resources.

For data transfers over wide-area networks, and es-
pecially in voluntary-computing environments, available
bandwidth is a bottleneck. Different solutions proposed to
address bandwidth limitations include caching, data com-
pression and quality of service (QoS) provided for appli-
cations. In the environment focused in this paper, limited
bandwidth hinders the voluntary deployment of appliances
because these often have hundreds of MBytes of virtual disk
state — a 600-MB VM image takes more than one hour to
download in a 1Mbit/s link, which is a significant deter-
rent for end users. Optimizing the size of an appliance is
time-consuming, and in many cases not possible without
loss of functionality (e.g. by avoiding installation of cer-
tain packages). Nonetheless, it is often the case that only
a small fraction of the virtual disk is actually “touched” by
an application during run-time. We exploit this behavior
through on-demand data transfers that substantially reduce

Figure 1. Illustration of O/S image management over wide area desktops: User A downloads a small
ROW-Proxy configured appliance(VM2) from download server DS. VM2 appliance is configured to
form a virtual overlay network using IPOP. Image Server (IS) exports read-only images to clients
over NFS. VM1 is a client-configured diskless VM whose image is mounted over NFS through VM2.

the download time and bandwidth requirements for the end
user.

We describe a thin client approach of deploying NFS
proxies over a scalable virtual network. Our proposed en-
vironment allows sharing of read-only images among mul-
tiple clients and the re-direction of write access to a loop-
back local client buffer. The solution is very generic and
easily deployable as user level proxies which redirect traffic
between local and remote conventional network file system
servers, without requiring any kernel modifications. The ap-
proach embodies different components and technologies —
hosted virtual machines, a P2P overlay network, pre-boot
execution environment services, and a redirect-on-write vir-
tual file system. Virtual Machines over P2P networks are
deployed with pre-boot execution server to facilitate re-
mote network booting. Similarly to related efforts, our ap-
proach targets applications deployed on non-persistent vir-
tual containers [3][7] through provisioning of virtual envi-
ronments with role-specific disk images [14]. Specifically,
we show that our approach is suitable for low bandwidth
CPU-intensive applications.

The rest of this paper is organized as follows: In section
2, we discuss motivations behind the current work. Section
3, we describe the proposed framework of provisioning im-
ages over wide-area networks. We present an evaluation of
our architecture in Section 4. Section 5 describes related
work. Finally, we conclude our findings and future work in

section 6.

2 Motivation and Background

Grid computing is moving towards virtual execution en-
vironments as its baseline technology. For example, virtual
machines have been deployed over the grid for seamless
execution of scientific applications[3]. Often these experi-
ments are transient in nature and the execution environment
is dynamically setup. Even though middleware-controlled
grid virtual file systems have been deployed to facilitate
seamless access to data in such environments, often there
are applications which require shared read-only data such
as shared libraries between clients (e.g. VM instantiation)
for performance improvements.

One important application of ROW-FS is supporting
read-only access of shared VM disks, e.g. as supported by
Xen and O/S distribution images stored in file systems to
support rapid instantiation and configuration of nodes in a
network. The redirect-on-write (ROW-FS [6]) capabilities,
in combination with aggressive client-side caching, allow
many clients to efficiently mount a system disk or file sys-
tem from a single image – even if mounted across wide-area
networks.

One particular use case is the provisioning of non-
persistent VM environments for distributed computing. In
this scenario, the goal is to have thin, generic boot-strapping

VMs that can be pushed to computational servers without
requiring the full transfer or storage of large VM images.
Upon instantiation, a diskless VM boots through a pre-boot
execution environment (PXE) using one out of several avail-
able shared non-persistent root file system images, stored
potentially across a wide area network.

This approach delivers capabilities that are not presently
provided by VM monitors themselves, even if they support
non-persistent environments. Without a block level dis-
tributed file system on the host, on-demand transfer of VM
image files is not possible, thus the entire VM image would
need to be brought to the client before a non-persistent VM
could start. In voluntary Grid computing environments it is
difficult to acquire privileges on the host to perform such
file system mounts; in contrast, with ROW file system, the
NFS-mounted file system can be kept inside a guest, and no
host configuration or privileges are required to deploy the
boot-strapping VM and the diskless VM.

3 Architecture

The overall architecture is depicted in Figure 1. The ap-
proach is based on diskless provisioning of virtual machine
environments through a virtual machine proxy. The util-
ity of the envisioned architecture can be observed from the
viewpoint of both users and system administrators. Users
not only have fast and transparent access to different O/S
images but also have automatic support to upgrade the O/S
images. For administrators, it provides a framework for
simple deployment and maintenance of new images.

Figure 2. Redirect-on-write filesystem: User-
level proxy virtualizes NFS by forwarding
write calls to a shadow server. NFS client
transparently access the read-only images
(/home/foo/userA) from Server VM. NFS client
is configured to run shadow NFS server and
ROW-FS proxies.

As shown in Figure 1, an end user A downloads a small
proxy appliance from Download Server DS. The proxy ap-
pliance is configured to connect to a virtual network overlay
connecting it to other users (e.g. using IPOP[11][9]). The
proxy appliance is also configured to run a small ftp server
and DHCP server to download network bootstrap program
and allocate IP address to client’s working environment.
The actual appliances which carry out computation can be
configured with a desired execution environment and need
not be downloaded in their entirety by end users - they are
brought in on-demand through the proxy appliance. Each
node is an independent computer which has its own IP ad-
dress on a private network.

Key to this architecture is the redirect-on-write file sys-
tem (ROW-FS) which is described in [6]. ROW-FS consists
of user-level DFS extensions that support selective redirec-
tion of DFS calls to two servers: the main server and a copy-
on-write server. The architecture is novel in the manner it
overlays the ROW capabilities upon unmodified clients and
servers, without requiring changes to the underlying proto-
col.

The ROW-FS approach relies on the opaque nature of
NFS file handles to allow for virtual handles that are always
returned to the client, but map to physical file handles at the
main and ROW servers. The file handle hash table stores
such mappings, as well as information about client modifi-
cations made to each file handle. Files whose contents are
modified by the client have ”shadow” files created by the
ROW server in a sparse file, and block-based modifications
are inserted in-place in the shadow file. ROW-FS proxy
maintains the client’s session state in a set of data struc-
tures - hash table and bitmap [6]. While hash table keeps
the file handle mapping between main and shadow NFS
server, a presence bitmap marks which blocks have been
modified, at the granularity of NFS blocks. Figure 2 shows
one of the possible deployments of ROW-FS proxy. A user-
level proxy intercepts client’s mount request and stores the
mount file handle in a temporary location. This file handle
is used by nfsd ROW-FS proxy to direct read/write calls to
the servers.

A related copy-on-write approach is implemented in
UnionFS [15]. The key advantages of ROW-FS over
UnionFS are that the former is user-level and integrates
with unmodified NFS clients/servers, while the latter is a
kernel-level approach that requires support from the ker-
nel, and that the former operates with individual file data
blocks while the latter operates on whole files. UnionFS
copy-on-write mechanism is based on copy-up complete to
new branch on write invocation whereas ROW-FS just repli-
cates the needed block; hence, ROW-FS has added advan-
tage over UnionFS for instantiation of disk images, where a
large copy-up is expensive.

Figure 3 illustrates a deployment of ROW-proxy in a

Figure 3. Illustration of the use of the ROW proxy to support PXE-based boot of a (diskless) non-
persistent VM over a wide area network: VM1 and VM2 are deployed on the client’s desktop - VM1
is client-configured diskless VM, VM2 is a downloadable VM appliance configured with DHCP, TFTP
Server and NFS Proxies. Server VM (VM3) exports read-only O/S image.

diskless client environment. In Figure 3, VM1 is a diskless
virtual machine, and VM2 is a boot proxy appliance config-
ured with two NIC cards for communication with both host-
only and public networks. VM2 is configured to execute
ROW file system (ROW-FS) and NFS cache proxies. In ad-
dition, VM2 is configured to run DHCP and TFTP servers
to provide diskless client an IP address and initial kernel
image to VM1. Classic virtual machines such as VMware
provides support for PXE-enabled BIOS and NICs; PXE is
a technology to boot diskless computers using network in-
terface cards. The server VM is configured to share a com-
mon directory through ROW-FS to clients. To illustrate the
workings of our approach, consider the following steps to
boot a diskless VM with an appliance image served over a
wide-area network:

1. Diskless VM (VM1) invokes DHCP request for an IP
address

2. DHCP request is routed through a host-only switch to
gateway VM (VM2)

3. VM2 is configured to have two NICs: host-only (pri-
vate IP address) and public. VM2 receives request at
host-only NIC (eth0)

4. DHCP Server allocates an IP address and sends a reply
back to diskless VM (VM1)

5. Diskless VM invokes TFTP request to obtain network
bootstrap program and initial kernel image

6. VM2 receives TFTP request at host-only eth0

7. Kernel image is transferred to VM1 and loaded in
RAM to kick start boot process

8. Diskless VM invokes mount request to mount read-
only directory from Server (VM3)

9. VM2 is configured to redirect write calls to a local
server. Read-only NFS calls are routed through the
proxy VM2 to VM3; the connection between VM2 and
VM3 is through the virtual overlay network

The primary goal of the architecture is to automate the
process of publishing, discovering and mounting appliance
images. Furthermore, it should be possible for images to be
replicated (fully or partially) across multiple virtual servers
throughout a virtual network for load-balancing and fault-
tolerance. It is feasible to provide image versioning capabil-
ity through maintaining the latest image state in a decentral-
ized way using a Distributed Hash Table (DHT) — which,
in the case of the IPOP virtual network [9], is already re-
sponsible for providing DHCP addresses. DHTs provide
two simple primitives: put(key, value) and get(key). In or-
der to use the DHT to track appliance image versions, the
key functionality needed can be broken down into client-
side and publisher-side.

• Client-side: a client should be able to query which ver-
sion Vi is the most recent for an appliance A, and for
the virtual IP addresses of one or more servers which
have the image for A available for use. This informa-
tion is used at boot-time by the proxy VM to select
an appropriate server to mount a read-only image over
ROW-FS, and can also be used to redirect calls in case
of server failures.

• Client-side: a client should be able to periodically pub-
lish that it is using version Vi of appliance A, notifying
image publishers that such version is in use and should
not be removed

• Publisher-side: a developer should be able to publish
that a new version Vj of appliance A has been created,
along with the identifiers (IP address and mount path)
of where the image is available

• Publisher-side: a developer should be able to query for
the total number of sharers for a given version Vi of
appliance image A in order to make decisions about
garbage-collecting versions which are no longer in use.
E.g. if there are no users of image versions i through
j of an appliance A, and the current appliance version
is k > j, a publisher may decide to remove versions i
through j to make storage for additional versions avail-
able

A first-order approach to deal with this problem using
a DHT is to support three tables. One is indexed by the
appliance identifier A, assumed to be unique, which holds
as a value the latest version associated with A. A second
table is then indexed by a tuple (A,Vi), and stores as values
the (IP,mount path) tuple pointing to available servers for
this image. A third table, also indexed by (A,Vi), holds
a value “1” for each client currently using the image. This
value has a limited time to live (TTL) and must be refreshed
by each client before the expiration of the TTL; summing
up all the values associated with this key gives an estimate
reference count on the number of sharers of an image. The
goal is to store the state information such as reference count
of the number of current users of version Vi of appliance A.

4 Experiments and Results

This section evaluates the feasibility and performance of
our approach through quantitative experiments. First, we
evaluated the overhead associated with the use of a proxy
VM for on-demand access to the appliance image. We eval-
uate CPU, network and disk utilization during the appli-
ance boot, execution of a CPU-intensive application, and
reboot. Second, we profiled at the proxy VM the occur-
rence of RPC calls throughout the execution of an appliance
to correlate with VM overhead. Third, we measured the im-
age size replicated in the shadow server after diskless boot
and the total amount of data fetched on-demand from the
image server. Finally, we demonstrate a proof-of-concept
implementation and measure the boot and reboot times for
appliances deployed over the IPOP virtual network and in a
realistic wide-area environment.

4.1 Proxy VM resource consumption

The experiments are conducted to characterize resource
consumption (CPU, disk and network) by the proxy virtual
machine (VM2 in Figure 3). In this experiment, virtual ma-
chines VM1, VM2 and VM3 are deployed in a host-only

network using VMware’s ESX Server VM monitor. Note
that in this experiment we use the VM monitor as a tool
to collect resource statistics summarizing the utilization of
the ROW proxy appliance - we do not analyze the execu-
tion time of the application in a virtual environment. The
experimental setup is as follows: Server VM3 is configured
to have 2GB RAM, single virtual CPU. VM2 and VM1 are
configured to have 1GB RAM, and also a single VCPU. The
VMs are hosted by a dual Xeon 3.2GHz processor, 4GB
memory server. The size of the image of the appliance is
934MB. We have characterized memory usage for ROW-
proxies for an execution run for simplescalar application.
Memory overhead for executing the ROW-Proxy applica-
tion is very small (1-2MB).

Figure 4 shows time-series plots with CPU, disk and net-
work rates for three different intervals. These values are
obtained in 20-second intervals leveraging VMware ESX’s
internal monitoring capabilities. In the first interval, the
VM is booted. In the second interval, the VM runs a CPU-
intensive application (the computer architecture simulator
simplescalar) which models our target workload of a typi-
cal voluntary computing execution. In the third phase, the
appliance is rebooted.

VM Boot: Initially, the shadow copy-on-write server is
empty; no file system state is present. During VM boot,
the ROW-FS proxy accesses boot-time files from the server
VM (VM3) and re-generates the file system hierarchy in the
shadow server (local server) as described in [6]. The Fig-
ure shows high data write rates during VM boot execution.
Clearly, we can observe a maximum of 12% CPU consump-
tion and also a high data rate across the network to load the
initial kernel image into diskless client (VM1) memory.

Application Execution: Since the application is CPU
intensive, the proxy VM exhibits little run-time overhead
in this phase — once the diskless VM (VM1) is booted and
loads necessary files for the application execution into RAM
on-demand (as shown by initial network activity). We can
further observe that disk and network usage is negligible
in VM2 during the execution of the simplescalar applica-
tion, thus supporting our assumption of minimal overhead
of proxy configured VM.

VM Reboot: During reboot, the client has replicated
session state at the shadow server. We see an average boot
time reduction and further spikes in network and CPU us-
age as some of files are fetched and read from the Server
VM. In past results, we have shown that aggressive caching
can further improve boot performance [6].

4.2 RPC call profile

Figure 5 provides statistics for number of RPC calls dur-
ing the boot up of the diskless appliance VM1. The his-
togram is broken down by different types of RPC calls cor-

Figure 4. Proxy VM usage time series for CPU, disk and network. Results are sampled every 20
seconds and reflect data measured at the VM monitor. Three phases are shown (marked by vertical
lines): appliance boot, execution of CPU-intensive application (simplescalar), and appliance reboot.

responding to NFS protocol calls, from left to right: get and
set file attributes, file handle lookup, read links, read block,
write block, create file, rename file, make directory, make
symbolic link, and read directory.

The important conclusion taken from the data in Figure
5 is that ROW-FS, while increasing the total number of calls
routed to the local shadow server (Proxy VM), substantially
reduces the number of RPC calls that cross domains (calls
to server VM). We observe that the number of get attribute
(getattr) calls are increased due to invocation of getattr pro-
cedure to virtualize read calls. The read call virtualization
is important to maintain consistency between returned at-
tributes to the client from read call (from Server VM) and
post-read getattr call (from proxy-VM). Since all getattr
calls go to the local-area shadow server (Proxy VM), the
overhead of extra getattr calls is small compared to getattr
calls over WAN. For example, while the number of getattr
RPC calls to shadow server is approximately 12500 for a
boot sequence of diskless Linux, the number of attribute
calls is nearly 1800 more than traditional NFS. This is be-
cause of 1800 read calls. Also, note that all write calls are
directed to the shadow server.

4.3 Data transfer size

The RPC statistics confirm that the amount of data
needed to boot the appliance and execute an application is
far smaller than the entire appliance image. The total num-
ber of read calls is roughly 2000; at 8KB per block, the total
amount of data brought in from the server is approximately
16MB, which is less than 2% of the image size at the server
(934MB). Also, we observe that for VM boot with, only
646KB of data is created and redirected to the local shadow
server. Because the VM proxy includes the ROW-FS redi-
rection capabilities, the server VM3 is mounted read-only
and NFS blocks can be aggressively cached in VM2’s local
disk.

4.4 Wide-area experiment

In the final experiment, we have measured appliance
boot and reboot times in an actual WAN deployment. In the
experiment, VM3 is deployed in one domain, and VM1 and
VM2 are deployed on a different domain. The VMs are con-
nected by the IPOP [9] virtual network, and the server and
client VMs are behind NATs. The proxy VM2 is equipped
with both the ROW-FS proxy and a NFS cache proxy. Ta-
ble 1 summarizes the results from this experiment. Notice
that the boot times reduce to less than half, becoming com-
parable to the LAN PXE/NFS boot time of approximately 2
minutes.

Table 1. Appliance boot/reboot times over
WAN. ISP is a VM behind a residential ISP
provider; UFL is a desktop machine at the
University of Florida; VIMS is a server ma-
chine in Virginia.

VM1/VM2, Boot 2nd Boot Ping latency
VM3 seconds seconds

ISP, UFL 291 116 23ms
UFL, VIMS 351 162 68ms

5 Related Work

The Shark file system [4] provides mechanisms for scal-
able access to read-only data over the wide area network
through cooperative caching and NFS proxies; our approach
complements it by enabling redirect-on-write capabilities,
which is a requirement to support our target application en-
vironment of NFS-mounted diskless VM clients. SFS ad-
vocated the approach of read-only file system for untrusted
clients[8]. There have been upcoming commercial products
which either provide thin-client solutions based on pre-boot
execution environment [2] or provides cache based solution
as a viable thin-client approach for scalable computing [1].

Distributed computing approach based on stackable vir-
tual machine sandboxes is advocated in [16]. Stackable
storage based framework is also used to automate cluster
management as means to reduce administerial complexity
and cost [14].The approach advocated in [14] is reprovi-
sioning of application environment (Base OS, Servers, li-
braries and application) through role-specific(read or write)
disk images. A framework to manage cluster of virtual ma-
chines is proposed in [13]. Stork package management tool
provides mechanism to share files such as libraries and bi-
naries between virtual machines[5]. A copy-on-write file
server is deployed to share immutable template images for
operating systems kernels and file-systems in [12]. This ap-
proach uses a combination of traditional NFS for read-only
mount and AFS for aggressive caching of shared images
[12].

6 Summary and Conclusions

In this paper, we describe a framework that automates
appliance updates without requiring administrator interven-
tion and enables on-demand transfer of appliance state with
local buffering of modifications. We propose a ROW-FS
capability to support read-write operations over virtual IP
network overlays. Experiments show that proxy-configured
VMs consume few resources except during bootstrapping.
We have deployed an initial prototype and determined the

Figure 5. RPC statistics for diskless boot

feasibility of the proposed approach. Current work is inves-
tigating the integration of DHT-based publish-query of ap-
pliance location and version, garbage collection, and trans-
parent fail-over to replica servers.

References

[1] 2x computing. http://www.2x.com/.
[2] Moka5. http://www.moka5.com/.
[3] S. Adabala, V. Chadha, P. Chawla, R. J. O. Figueiredo,

J. A. B. Fortes, I. Krsul, A. M. Matsunaga, M. O. Tsug-
awa, J. Zhang, M. Zhao, L. Zhu, and X. Zhu. From virtual-
ized resources to virtual computing grids: The in-vigo sys-
tem. Future Generation Computing Systems,special issue
on Complex Problem-Solving Environments for Grid Com-
puting, 21(6), Apr 2005.

[4] S. Annapureddy, M. J. Freedman, and D. Mazires. Shark:
Scaling file servers via cooperative caching. In 2nd
USENIX/ACM Symposium on Networked Systems Design
and Implementation, May 2005.

[5] J. Cappos, S. Baker, J. Plichta, D. Nyugen, J. Hardies,
M. Borgard, J. Johnston, and J. H. Hartman. Stork: Pack-
age management for distributed vm environments. In Pro-
ceedings of the 21st Large Installation System Administra-
tion Conference (LISA), Nov 2007.

[6] V. Chadha and R. J. Figueiredo. Row-fs: A user-level vir-
tualized redirect-on-write disttributed file system for wide
area applications. In International Conference on high Per-
formance Computing(HiPC), Goa, India, Dec 2007.

[7] J. Chase, D. E.Irwin, L. E.Grit, J. D.Moore, and
S. E.Sprenkle. Dynamic virtual clusters in a grid site
manger. In Proceedings of 12th HPDC, Jun 2003.

[8] K. Fu, M. F. Kaashoek, and D. Mazieres. Fast and se-
cure distributed read-only file system. Computer Systems,
20(1):1–24, 2002.

[9] A. Ganguly, A. Agrawal, P. Boykin, and R. J. Figueiredo. Ip
over p2p: Enabling self-configuring virtual ip networks for
grid computing. In IEEE International Parallel Distributed
Processing Symposium (IPDPS), Rhode Island, Greece, Apr
2006.

[10] A. Ganguly, A. Agrawal, P. O. Boykin, and R. Figueiredo.
Wow: Self-organizing wide area overlay networks of vir-
tual workstations. In Proceedings of the 15th IEEE Interna-
tional Symposium on High Performance Distributed Com-
puting (HPDC), pages 30–41, June 2006.

[11] A. Ganguly, D. Wolinsky, P. O. Boykin, and R. Figueiredo.
Decentralized dynamic host: Configuration in wide-area
overlay networks of virtual workstations. In Workshop
on Large-Scale and Volatile Desktop Grids (PCGrid), Mar
2007.

[12] E. Kotsovinos, T. Moreton, I. Pratt, R. Ross, K. Fraser,
S. Hand, and T. Harris. Global-scale service deployment in
the xenoserver platform. In Proceedings of the First Work-
shop on Real, Large Distributed Systems (WORLDS ’04),
Dec 2004.

[13] M. McNett, D. Gupta, A. Vahdat, and G. M. Voelker. Usher:
An Extensible Framework for Managing Clusters of Virtual
Machines. In Proceedings of the 21st Large Installation Sys-
tem Administration Conference (LISA), November 2007.

[14] F. Oliveira, G. Guardiola, J. A. Patel, and E. V. Hensbergen.
Blutopia: Stackable storage for cluster management. In Pro-
ceedings of the IEEE cluster computing, Sep 2007.

[15] D. P. Quigley, J. Sipek, C. P. Wright, and E. Zadok.
UnionFS: User- and Community-oriented Development of a
Unification Filesystem. In Proceedings of the 2006 Linux
Symposium, volume 2, pages 349–362, Ottawa, Canada,
July 2006.

[16] D. Wolinsky, A. Agrawal, P. O. Boykin, J. Davis, A. Gan-
guly, V. Paramygin, P. Sheng, and R. Figueiredo. On the de-
sign of virtual machine sandboxes for distributed computing
in wide area overlays of virtual workstations. In First Work-
shop on Virtualization Technologies in Distributed Comput-
ing (VTDC), Nov 2006.

